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SPECIAL MESHES AND HIGHER-ORDER SCHEMES
FOR SINGULARLY PERTURBED BOUNDARY
VALUE PROBLEMS

Relja Vulanovié!

Abstract. Bakhvalov (B) and Shishkin (S) meshes are used very often
to discretize singular perturbation problems. The smoother B meshes
are more complicated than the piecewise equidistant S meshes, but their
considerably better accuracy usually outweighs this. In this paper, we
point out that the real advantage of S meshes comes to light when con-
structing higher—order discretizations. We show this by considering an
almost third-order finite—difference scheme for a semilinear problem with
two small parameters.
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1. Introduction

Let us consider the following singularly perturbed boundary value problem:
(1) —®u’ —pu’ +c(z,u) =0, z€X=[0,1], u0)=Us u(l)=1Un,

where 1
(2) 0<e<<l, p=¢€", p>g,

¢ is a sufficiently smooth function and U and U, are real numbers. For 2 € X
and 2 € IR, we also assume ’

(3) cu(Z,u) > m?>0, m>0.

This problem is used as a suitable problem to illustrate our point that the
only advantage of the Shishkin [13], or S, meshes over the Bakhvalov [2], or
B, meshes is that higher-order discretizations are much simpler on S meshes,
since too complicated nonequidistant schemes can be avoided. Problem (1) is
not artificially constructed for this purpose: it also models transport phenomena
arising in chemistry or biology, {3]. It belongs to the class of singularly perturbed
boundary value problems with two small parameters, which have been analyzed
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asymptotically in [9] and numerically in [15], [16], and most receutly in two
dimensions in [5). On numerical methods for singular perturbation problems in
general, one can find in two 1996 books, [8] aud [12], aud on S and B neshes in
particular, in [14], [17], [10], [11], [18], and [6], for instance.

Space limitations prevent us from presenting here some generalizations; they
will appear elsewhere. One of them is straightforward, viz. replacing the —pu'—
term in (1) with —pb(z)u’. Another, the inclusion of the case 0 < p < %, requires
some modifications of the numnerical method. It is also possible to construct a
similar scheme for the case p = 0 and to prove its stability, but the proof of
e-uniform convergence is still open.

2. The discretizations

Let X" denote any mesh with the points 0 = zo < 2y < - < zy = L.
Problem (1) requires a mesh which is dense near both # = 0 and « = 1. This is
because the unigue solution, u,, of (1) has in general two exponential boundary
layers at the endpoints of X. Moreover, the following estimates hold for z € X
and £ =0,1,2,..., see [15] and [16]:

(4) [l < M[1+ e vo(2) + e Fui(2))],

where v, (z) = exp(—m|z —t]/e), t = 0,1, and M is used throughout the paper
as a generic constant which is independent of both £ and .

For simplicity, let N be even and let both B and S meshes be symmetric
with respect to @2 = +. The meshes are described below on [0, 3]. A B mesh
introduced in [14] is used in this paper as a comparison to the standard S mesh.

It is generated by #; = A({/N), where

[ el mest ift e (0,0,
30 ={ 20 Tt -y vl it € lod]

S

with 0 < a < ¢ < } and « solving the equation 7(a) = .

The S mesh is piecewise equidistant. It is formed by using a fine mesh on the
interval [0, ;= aeln N] and a coarse mesh on [o, %] (it is assumned that ¢ > 0
and o < %—) Let the index J be defined by z; = o and let ¥ < MJ. ‘

Let hi = ¢; — zi_1, 1 = 1,2,..., N, and let w" = [wy, wy,...,wn-1]7 be
the vector corresponding to a mesh function on X% \ {0,1}. We formally set
wo = Uy and wy := Uy.

The following nonequidistant central scheme can be used on both meshes:

Tow; = —e*Dfw; — pDipw; +¢i, i=1,2,...,N -1,

with

" 2 Wi_1 — W + Wil — wi)
w; =
C T R+ i hi hit1 ’
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1 hi hi
/ = 1+1 . i ‘ o
o Wy hi T hz’-}-l h,; (’LU1 wz—l) + _—hi+1 (w1+1 wz)

and ¢; = ¢z, w;).

We would also like to use an equidistant four—point third~order scheme, 1"
to approximate u”. Let h denote the mesh step and let s = (3—+/15)/6 ~ —.145.
Then,

(5) D"w; = A72[(1 — s)wi_1 + (35 — 2)w; + (1 — 3s)wip1 + swiga),

is a O(h®) scheme for «”(z; + sh). It is interesting to compare this scheme to
that in [4], which is also a four—point third—order scheme for u” and even makes
use of the same quantity s. However, the latter, which is optimal in the sense of
minimizing the truncation error, uses special nonequidistant points and there-
fore cannot be applied here. It is too complicated to construct a nonequidistant
generalization of (5). Besides, that can be done in several different ways and it
is hard to tell in advance which one will produce the most suitable scheme, cf.
[17]. Because of all those complications, (5) will be used here only on a portion
of the fine parts of the S mesh. It will be combined with two other third—order
schemes,

D'w; = (12h) 7 [(6s — B)w;—q1 — 3(2s + 1)w; — 3(2s — 3)wip1 + (65 — 1)wiys)
and
Duw 1 n 5 n 1 n
P = Wi = —35) w - Jit1s
TR WY e U TR Rt
to give the following discretization scheme:
Tw; = —°D"w; — uD'w; + c(z; + sh, Dw;).
Then, T and T¢ are used to form a hybrid scheme Ty,

Tw;for 1 <i<J—2,
Thw; = Tow; forJ—lSiSN/Q,
symmetrical scheme w.r.t. z/ = % for N/24+1<i< N-—-1

Thus, we are going to consider two discretizations of problem (1), both of
the form
(6) Rw; =0, 1=1,2,...,N—1,

where either R = T or R = Tg. Thisis an (N —1) x (N — 1) nonlinear system.
Our numerical results will show that the special meshes stabilize T, which i«
not surprising having the result in [1] in mind. On the B mesh, we can expect
second—order ¢—uniform accuracy, whereas on the S mesh, the second order is
diminished by logarithmic factors. As for Ty, it is analyzed in the next section.
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3. The error estimate for Ty
The key assumption in the following analysis of the scheme Ty is
(7) e < MN~Y(InN)%2.

Even though this is certainly a theoretical restriction, it is practically quite
acceptable, since the relationship between € and N is usually such that no mesh
point lies inside the layer when the mesh is equidistant. This can be expressed
by the inequality

1
eln—-< MN~Y
€

which implies (7).

Let F be an (N —1) x (N —1) matrix denoting the Fréchet derivative of the
operator Tx on the S mesh, F = T4 (w") for an arbitrary vector w". Let also
[|wh]| = max;<i<n—1|w;| and let the corresponding subordinate matrix norm
be denoted in the same way. Moreover, let Ny denote a sufficiently large positive
integer independent of €. Then we can prove the following stability result which
is crucial for our main result.

Theorem 1. Let (2), (3), and (7) hold and let N > No. Then F is a nonsin-
gular matriz and ||F~}|| < M. Thus, the discrete problem (6) with R = Ty on
the S mesh has a unique solution.

« Proof. This is a nonstandard stability proof, since F' = [f;;] is not an L-matrix,
nor can we fully apply to F Lorenz’s standard decomposition (SD), [7]. We
consider several cases.

1. p > 1. In this case, the nonzero elements of F are f;; > 0, fiix1 < 0,

i=1,2,...,N-1, (setting formally fio = fy_1,~ = 0}, and because of the four-

point scheme D", f; ;42 > 0,i=1,2,...,J — 2, and symmetrically f;; 2 > 0,

i=N-J+2,...,N—1. By looking at the coefficients of the schemes D" and
¢ which dominate the elements of F, we can prove that

Afiivefivritr < fiit1figrige, 1=1,2,...,J =2

The last J — 2 rows of F satisfy an analogous inequality. This is equivalent to
Lorenz’s SD and implies that F is an inverse-monotone matrix. Then ||F~}|| <
m~2 follows easily.

2. % < p < 1. We cannot prove now that F is inverse monotone, since the
signs of the F—elements resulting from T¢ are not fixed any longer. Instead, we
decompose F appropriately, F = A+ B. The scheme —puDw;, i = K, ..., N —
K, is separated from the rest of the discretization to form B and A = F — B.
Here K is either J or J + 1.

2.aeP~! < M N. In this case we choose K = J+1,since fr; > 0and fj5+1 <0.

BT ey a1
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It holds that [|B|| < MuN.
2.bel"? < M/N. Now K = J and

N <M 1 N 1
InN = Np/0-p) InN —  InN’

1Bl < Me?

The last inequality holds because of p/(1 — p) > L.

In both subcases 2.a and 2.b, A is inverse monotone by SD and satisfies ||A~1|| <
m~2. Also, note that because of (7) and N > Ny, ||B|| can be made sufficiently
small so that [|A!||||B|| < M < 1. Then we use

A

F Y =||+A4A'B)! _1<—-ll——<M

I = 0 + 47 8) A7) € i <

to conclude the proof. |
Let u? = [ue(21), ue(2), ..., ue(y_1)]7. In the next theorem, we prove an

e—uniform error estimate for Tx.

Theorem 2. Let (2), (3), and (7) hold and let N > Ny. Then,

InN\*
h h
w" — <M

where wh is the solution of the system (6) with R = Ty on the S mesh with
am > 4.

Proof. Using (4) and a fairly standard technique on the S mesh (see the relevant
references mentioned in the introduction), we can prove the consistency error

estimate
€? InNV)? INVCAN
| Tauell < M {NJ“ (—N—) SM( ~ ) :
where the last inequality follows from (7). Then Theorem 1 completes the proof.
Note that the above term £2/N results from Tou? (2 7). ]

4. Numerical results

Let us consider the following enzyme kinetics problem from (3],

(8) Pu = —%u" — 3%/ 4 %ﬂ; =0, u(0)=u(l)=1.

This problem satisfies (2) with p = % and (3) holds only locally. Since the
constant functions 1 and 0 are respectively the upper and lower solutions of (8),
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only the values u € [0, 1] are of interest and then ¢, > %, so that any m € (0, 3)
can be used. The exact solntion of problem (8) is not known but it behaves like
(o) = e~/ 4 om0/

In order to run our numerical experiments more easily, we changed the differ-
ential equation in (8) to Pu= f(2), where f(¢) = Py.(z). This means that we
can take y. for the solution of the modified problem, since y. practically satisfies

the boundary conditions.

In addition to p = %, we have tested other values of p and the results are
sitnilar, even for the theoretically unsafe values of p € (0, %)

The table below shows a comparison between Ty and 1. Ty is used on
the S mesh with J = 45N and a = 8.2, so that am > 4. The B mesh uses
g = .45. Err stands for the maximum pointwise error and Ord is the numerically
calculated order of convergence. All the methods represented in the table are
uniform in ¢, since the results are the same for ¢ = 107%, k = 6, 8,10, 12. It may
be disappointing that Ord for Ty is considerably less than 3, but the results are
still significantly better than those obtained by T, even on the B mesh. We
can conclude from the results for 7¢ on the S mesh that the reason for the lower
Ord is not the scheme but the S mesh itself. Nevertheless, it is obvious that the
use of S mesh pays off when it is combined with a higher—order scheme.

Err and Ord for Ty and T¢

Ty on S mesh || Te: on B mesh || T on S mesh

Err ] Ord Err | Ord Err | Ord
100 || 2.8E-5 | — b.2E-5 | — 8.9E-4 | —
200 §| 6.3E-6 | 2.2 1.2E-5 ] 2.1 31E-4 [ 1.5
400 || 1.3E-6 | 2.3 3.0E-6 | 2.0 1.0E-4 | 1.6
800 |[ 2.4E-7 | 2.4 7HE-7 | 2.0 33E-5 [ 1.6
1600 || 4.2E-8 | 2.5 1.9E-7 | 2.0 1.0E-5 | 1.7

]V’
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