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LAPLACE TRANSFORM OF LAPLACE
HYPERFUNCTIONS AND ITS APPLICATIONS

Bogoljub Stankovié!

Abstract. The aim of this paper is to touch a few aspects of the theory
and applications of the Laplace transform of Laplace hyperfunctions. It
is also shown how this theory can applied to the mathematical model of
dynamics of a viscoelastic rod.
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1. Introduction

Laplace transform (in short LT) was originally employed to justify the Hea-
viside operational calculus [8]. Thereupon, many papers have been published in
this sense. Let us mention only some of them [3], [4], [6],. .. Later on the Laplace
transform has been elaborated as a powerful mathematical theory (see [6], [19]),
very useful in practice and many time applied by engineers. And despite of the
belief it has the following three theoretical shortcomings:

1. In order that the integral

oo

& [ s = 7o) = 219

0

has a sense, the function f must satisfy
2 f(2)] S e, >0,

with constants H and ¢ (f being of exponential type). In short, applications of
the LT call for some growth conditions of the originals.
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2. No simple characterisation of the Laplace image of functions satisfying
(2) is kuow. So we do not know a priori whether or not a solution % to an
equation P(u) = 0, obtained nsing LT to a mathematical model Q(u) = 0, is
the LT of a solution u to Q(u).

3. The expression

c+100
1 s Ty
(3) flz) = 57 - e f(s)ds, ¢> H,

o~

is the inversion formula for the LT only if we know that f(s) is LT of f. Also, it
converges in general case only as Cauchy’s principal value. It does not converge
absolutely. In short, we have no an easily applicable inversion formula.

To overcome these dificulties mathematicians invented different, foundations
and theories of the Heaviside calculus. We can divide thein in two groups by
their aproach: analitic or algebraic.

To the first gronp belong those theories in which the LT is defined on a
subspace of generalized functions, continuous functionals on appropriate test
function space ([10], [17], [18], [20]) or other analytic approaches [5], [2].

The second group contains theories which use algebraic approaches [14], [15].
Of this group, the most popular in applications has been Mikusinski’s operator
calculus.

Mikusinski’s fonudation of the Heaviside calculus is based on the fact that
the convolution algebra C([0, 00)) of continuous functions on [0, c0) has no any
divisor of zero. The quotient field M is defined to be the space of Mikusinski
opetarors. M includes different spaces of distributions D’ and ultradistributions
D’} ([12]). This follows because if f € D[, ) and ¢ € D, ,, then the
regularization fx ¢ € Cp o). In this way D'E‘(Lw} is imbedded in M. M is large
enough, perhaps too large. M overcomes the first of the shortcomings of the
LT but the second and third are reinforced.

We will present the foundation of the theory of LT of Laplace hyperfunctions
elaborated by H. Komatsu {[10], [11]). In our opinion his approach successfully
overcomes all the three shortcomings of the classical LT and the well elabo-
rated classical theory of LT can be used. However, this approach is not known
sufficiently. This is the reason of my talk in this Conference.

2. Hyperfunctions and Laplace hyperfunctions

Let us denote by O(f2) the space of all holomorphic functions on an open
set ) C C.
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Definition 1. ([16])
Bjo,c0) = O(C\ {0, 00))/O(C)

is the space of hyperfunctions with support in [0, 00).

If f € Bjp,ce), then there exists an F € O(C \ [0, o)) which defines a class
[F] such that f = [F] and f is also written in the form

(4) f=Fy(z+i0) — F_(z — i0),

F is called a defining function of f. One can find in [9], Chapter 1, how to
determine a defining function F for an f belonging to A(R), C(R), Ly, (1R) or
D'(R).

Conversely, if we have a defining function of a hyperfunction f we can char-

acterize the subspace of hyperfunctions to which it belongs (see Theorem 2.4.
in [13]). Specially, the following theorem is often used

Theorem 1. (Theorem 1.3.2 in [9]). Let f be a continuous function. Let F
denote a defining function of the hyperfunction If defined by f. Then Fi(z +
ie) — F_{& — ie) converges locally uniformly to [ as ¢ — 0.

If [ € £1,:(0,00), then Fi(z + i) — F_(x — ig) converges for almost all x
to f, when s — 0.

We will define a sheaf (O°*P on the radial compactification O = TUSL ol the
complex plane as follows. For each open set V in O the section space O%*P(V)
is defined to be the space of all the holomorphic functions F(z) on V N C such
that on each closed sector

Y={se€C:a<arg(z—b) <3}
whose closure g in O is included in V, we have the estimates

F()| < ce?l e PN

with constants I and c.

Definition 2. ([{1]).

Bib,) = 0%P(0\ [0, 00) /O™ (0)

is the space of Laplace hyperfunctions with support in [0, co].
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A Laplace hyperfunction f with support in [0,00], f € BFS“;O], is represented
by the class [F], where F is a holomorphic function, F € (0 \ [0, c0]), or
by

f(z) = Fy(z +i0) — F_(z — i0).

The next theorem gives a interesting relation between BFOKI;O] and Big,co)-

Theorem 2. (Theorem 2 in [11]). The restriction mapping O°**(0\ [0, 0o]) —
O(C\ [0, 00)) induces a natural mapping p

(5) piBIP L — Bo).

The mapping p is surjective but not injective. Its kernel equals Bﬁﬁ. Hence we
have the natural isomorphism:

(6) Bio,00) = Big 01/ Bioc)-

We will use a subspace of Bﬁ;};o] denoted by E[O,oo] = B[?’Eo] belongs 1o

[:[0,00] if and only if there exists g € L0.([0, 00)) such that § extends lg on [0. ]
we have _
Eloc([oa OO)) = L[OYOO]/BF:OP].

3. Laplace transform of Laplace hyperfunctions
Definition 3. (/11]). LT f = Lf of an f = [F] € Bj;Z, is defined by

f(s) =/;:e“”F(z)dz, s €9,

where C is a path composed of a ray from e’;g to a point ¢ < 0 and a ray from
¢ to el with —r/2<a<0<f<m/2

We note that the domain §2 of f depends on the choice of the defining
function F. Therefore the LT f should be regarded as a germ of functions as
the domain € of opening (—=/2, /2) shrinks.

Next theorem characterizes the LT and the space [,Bﬁ;q;o].

Theorem 3. (Theorem [ in [11]). L is an isomorphism

. rexp exp
L: B[O,oo] — EB[O’OO],
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where EBF(’)(’I;O] is the space of holomorphic functi?ns f of exponential type defined
on a neighbourhood ) of the semi-circle S = {e'!; 10| < 7/2} in O such that

—  log|f(pe”)]

) lim, 00 < —acos, |0 < /2.
)

Iffe EB(JXP ooy then a defining function F of its inverse image is given by

(8) :51—/ ds, ze€C\][0,00),

where u is a fixed point in {2 and the path of integration is a convex curve in 2.

F belongs to OP(C\ [0, 00)) and

flz) = Fy(z +10) — F_(z — 0).

In connection with (6} we have that £ induces the isomorphism

L Bpooo) = LBRZ /LB,

Since every continuous function or locally integrable function on [0, 00) is
indentified with a byperfunction in B, ), its LT makes sense as a class of
holomorphic functions. But some classes of functions can be directly imbedded
into Bﬁ;‘};] using LT Such a class is C**P ([0, 00)), the space of all continuous

functions f on [0, co) satisfying -

(9) |f(z)| < Cef*, 2> 0.

If G € C**P ([0, c0)), then its Laplace transform

e—w(Y )dz, Res> H,

0\8

represents a holomorphic function which satisfies the estimate

)| < g, Res > H.
Because of (7} g belongs to EBexP Hence, the inverse image of g gives by
(8) the defining function F of f e B[ 0,001 and by Theorem 1 we obtain that f

extends G on [0, 00]. In this way the space C**P([0, o0))} is naturally imbedded
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in Bﬁ;q;o]. If G € C**P([0, 00)), then we denote by #G the corresponding Laplace

hyperfunction. (¢ stands for the Heaviside function). Similarly, we can imbed

measurable functions satisfying exponential type condition (9). A direct conse-
exp exp

quence is that the classical LT of an G € C([O,oo)) and the LT of 8G € B[o o]
coincide. This makes possible the use of well elaborated classical theory of LT

((6], [19]).
We give some properties of the LT of Laplace hyperfunctions (see [11]). For
f € By
d

L(z"e® f(z))(s) = (— E)nﬁf(s —a),neNU{0},ac C

.

C(d(in f(z+0)(s) =5 e Lf(s), ue NU{D}, c €R.

[:J(a)(x) = 5% where J(a)(Z') — J(a)($'), o = 0, 1,2,... and

§)(e) = 27 YT (~a), @ #0,1,,2,..,a€C.

We can define the convolution of Laplace hyperfunctions of two elements
f, g belonging to BFS"EO] without any restriction. Since f-g € EBFJEOJ, the
convolution

L(f *g)(z) = F(5)3(s).

t
Hence, f*g € BFS‘EO]. If 6f,8g € HCFJEO), then 0f xf0g =6 [ f(t — 7)g(7)dr.
bl ¥ 0

4. Dynamics of a fractional derivative type of a viscoelastic
rod

We illustrate how the LT can be applied to a mathematical model of the
dinarnics of a fractional derivative type of a viscoelastic rod ([1]). This model
is the initial value problem

(1) TO() 44T (1) + g(O)T(1) = 0, ¢ > 0, T(0) =0, T'(0) = Ty # 0

where vy > 0, 0 < a < 1, g € O®(0), g is bounded on [0, c0) and T(¥ (t) is
the fractional derivative

t
T()(t) = _1_)% / T_“;;_T)dr, t>0.

'l -«
1]

exp

We have first to imbed equation (10) with initial data, in B[o,oo]'
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In view of Green’s formula
D2(6(x)T(z)) =T (z)0(z) + T(l)(O)é(:) +‘T(0)D,,6(x)
=T (2)0(z) + T4d(z)

and

UWWHV»==%ﬂ£:3/u—ﬂwﬂﬂ%Mr

x

d 1 w
= zv-r(l—_ajﬂx) /(a: —7)7 T (r)dr
= 0(z) T (z).

The initial value problem (10) is reduced to the equation in Big? ,
(1) D*(6(2)T(2)) +yD*(0()T(2)) + 9(2)(0(2)T(2)) = Toé(z).

Applying the LT we have
(52 +vs%) x LT (s) = T — LgT(s)

T 1

12 = -
( ) ‘CT(S) s2 +7S°‘ SZ +7sa

LgT(s).

The inverse Laplace transform of p—#;,Res > 4'/(2=9) js the function

&, k . . .
2E3_a2(—722~*), where E, ,(z) = kgo F(kZuW' is Mittag-Leffler’s function of
two parameters and z2~%, z > (0, is the principal branch. This follows from the

properties of the function E, ., (z) (see [7], p. 210). Since

1

— 2-ay\—2
= —_—7z2—°‘1"(a) +O0((yz“~%*)7*%), z— o0,

(13) Ey—o2(—v2*"%)

where 0 < a < 2 (see [7], p. 210), zE2_q2(—722"%) € Cﬁ)x,go) and to the function
2E3_a,2(—y2?~ %) corresponds 6(z) E3_a,2(—72%"%) € 6Cgr ) C Bgh)-

The inverse Laplace transform of (12) gives

0T () = ((0(t)tFz-a,2(rt*~*) * Tg)(2)

(14) (B(1)t Eaean(—12=%)) * (48T (1)) (2).
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exp

Equation (14) is equivalent to (11) in B[ o]

If we consider equation (14) in HCE;(I;O) it has the form of an integral equation
of Volterra’s type of the second kinde.

Theorem 4. ({1]). Denote by H(t) = tEz_o(—vt*~%), where E,, , (z) is Mittag-
Leffler’s function (see [7]), and by
t
Kit,r)=H({t—-1)g(r), Kny1(t,7) = /Kn(t, 7), Ki(o,7)do, n € N.

T

The initial value problem (10) has a solution

T

(15) T(t) = +TOZ “+1/ Cnr (¢, 7)H (7)dr

¢
which belongs to C*[0,00) N Cib .

“If g is a constant, then T € C 0,00) ﬂC&;‘ﬂo) 08.00)5 for g > 0 the solution T
s asymptotic stable.

We introduce a subspace Eloc([(],oo]) of Bf(;(';o] Ag e Bﬁ;(go] belongs to
Lioe ([0, 00]) if and only if § is an extension to [0, 00] of a g € Ly, ([0, 00)) where
g is bounded on [0, r] for an r > 0.

Then, all the solutions to equation (11) in Zloc([(], o0o]) have the form 6T +V,
where T' is given by (15) and V € B

Ifin (10) ¢ > 0 and T'(0) # 0, then T, given by (15), belongs to C[l()’m ﬂCeOXgO)

and there is no elassieal solutions to (10).
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