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SOME REMARKS ON INTEGRAL GRAPHS WITH
MAXIMUM DEGREE FOUR

Krystyna T. Baliniska !, Slobodan K. Simié?

Abstract. An integral graph is a graph whose spectrum (of its adjacency
matrix} consists entirely of integers. Here we prove some results on bipar-
tite, nonregular integral graphs with maximum degree four. In particular,
trees, unicyclic graphs and graphs with some numbers excluded from their
spectrum are considered.
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1. Introduction

For a simple graph G = (V(G), E(G)) with n = |V(G)|, the spectrum
of A(G), the adjacency matrix of G, is called the spectrum of G and de-
noted by Sp(G) (see [3]). A graph is integral if its spectrum consists en-
tirely of integers. Let A;(G) > A2(G) > -+ > Au(G) be the eigenvalues
of G given in non-increasing order (A;(G) is usally called the indez of G).
Mi(G) = i, Mi(G)F (k > 0) is the spectral moment of the k-th order. We use
ecc(v) for eccentricity of v (€ V(G)), and rad(G) (diam(G)) for radius (resp.
diameter) of G. In addition, §(G) denotes the minimum (vertex) degree of G.

The following result is known as the interlacing theorem ([3] p. 19).

Theorem 1.1. Let A be a real symmelric matriz of order n, and let B be one
of its principal submatrices of order m. Then A_u4i(A4) < A(B) < Ai(A4),
wherei=1,...,m.

Theorem 1.2. Let G be a connected graph. Then the following holds:
12 A1(G) > A2(G) (cf. Theorem 0.3 [3] p. 18);

2° A (G) > A(H), for any H, the (proper) induced subgraph of G (cf. The-
orem 0.6 [3] p. 19).

The next result is due to J.H. Smith (see [3] p. 78); it completely character-
izes the graphs whose index does not exceed 2.
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Theorem 1.3. A\(G) < 2 (A (G) < 2) if and only if each component of G s
a subgraph (resp. proper subgraph) of one of the graphs shown in Fig. 1, each
having the index cqual to 2.

Ty(n) T3(n) 15(9)
Ty4(8) T5(7) Ts(5)

Fig. 1. Smith’s graphs
The next result can be found in [3] (see also [2]).

Theorem 1.4. If G is a bipartite graph, then M2(G) = 2m and M4(G) =
2m—+4f + 8q, where m, f, and q is the number of subgraphs isomorphic to Kj,
K12 and Cjy, respectively.

Let & be the set of all bipartite, nonregular integral graphs with maximum
degree four. Some basic properties of these graphs are summarized below (cf.

2])-

1) IfG €S, then Sp(G) C {—3,—-2,—1,0,1,2,3}. In addition, if 3 & Sp(G),
then G = I\71,4.

2)  diam(G) < 19p(G) — 1< 6.

3) IfG €&, andif H is a proper (induced) subgraph of G, then A;(H) < 3.
4) If G € S, and if H is a proper (induced) subgraph of (7, then Ay (H) < 2.
Besides, graphs from & up to 16 vertices (just 20) are all generated. Here

we study some subsets of S: trees and unicyclic graphs (Section 2), and graphs
without +2 and +1 in spectrum (Section 3).
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2. Trees and unicyclic graphs
Theorem 2.1. Ezcept for K1 4, there are no other trees in S.
Proof. For any tree T the following result of C. Jordan (see {1]) holds

diam(T) + 1
2

4

rad{(T) = | IE

Since 1' € &, then diam(T) < 6 as already noted, and thus rad(T) < 3. So any
tree T € S is imbeddable in the symmetric tree 775 (cf. [3], p. 130). ® The
index of T4 is 3 (by calculations) and it is not integral. So Ay(T) < 3, and
thus A;(T) = 2, and consequently 7' = K, 4 {(cf. Theoremn 1.3). a

Theorem 2.2. There are no unicyclic graphs in S.

Proof. Suppose to the contrary, that G is unicyclic and belongs to &. Then
G consists of a (unique) even cycle C' and some trees appended to its vertices.
Notice that G cannot be a cycle.

Observe first that g, the length of C, is less than or equal to 10. Namely,
if g > 12 then diam(G) > 6; for g = 12, it follows that G = Cy3, again a
contradiction.

Let | = max, d(u, C) (here d{u, C) is the distance between a vertex u and
the cycle C'). Then, clearly, -;—g +{ < 6. Notice that all vertices at a distance [
from C are of degree one.

Case (i): g =4 (1 < 4).

Assumne first that { = 4. [If all vertices of degree four are at distance at
most two from C, then G is an induced subgraph of the graph shown in Fig. 2
(follows from the bound on diameter).

Fig. 2. A unicyclic graph with ¢ =4 and [ = 4 (no vertex of degree 4 is at
distance 3 from the cycle)

#In general, T,f{m is a tree with q central vertices, all internal vertices of degree r, and
leaves at distance m or m + 1 to central vertices.,
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The index of the above graph is 2.9962, and thus A1{G) < 3, a contradition.

Assume now that there exists (in G) a vertex of degree four at distance three
from C. Then, by Theorem 1.4 (part 1°, with u as a cut-vertex), all vertices of
C but one are of degree two. Now depending on the number of vertices of degree
four and at the distance three from C we get three possible graphs (shown in
Fig. 3) in which G can be imbedded.

e

Fig. 3. Unicyclic graphs with ¢ = 4 and { = 4 (a vertex of degree four is at
distance 3 from the cycle)

The indices of these graphs are 2.7189, 2.6316 and 2.4972, respectively. Con-
sequently, A1 (G) < 3, a contradiction as above.
If { = 3, then G can be imbedded in the graph shown in Fig. 4(a) (follows

from the diameter condition).

() (b)

Fig. 4. Unicyclic graphs with g =4 and (a) { =3, (b) { =2

The index of this graph exceeds three, and morover, its second largest eigen-
value exceeds two because some vertices are superfluos. The second largest
eigenvalue can be reduced by deleting some vertices. By Theorems 1.1 and 1.3,
it is enough to delete just two vertices out of u, » and w. This results in graphs
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with indices less than three. Namely, if u and v (u and w) are deleted, then,
the corresponding index is 2.9971 (resp. 2.9965). So the same contradiction as
above appears. _

It remains to take that [ < 3. Then G can be imbedded in the graph shown in
Fig. 4(b). The index of this graph is three and it is not integral, a contradition.

Case (ii): g =6 (1 < 3)
By the same reasoning as above, there are two graphs in which G can be
now imbedded. They are shown in Fig. 5.

(@) ' (b)
Fig. 5. Unicyclic graphs with g =6 and (a) I = 3, (b) { =2

The index of the first graph is 2.9557, and thus A1 (G) < 3, a contradiction.
The index of the second graph is three and it is not integral, a contradiction.

Case (iii): g = 8 (1 < 2)

As in the previous two cases, we get either a graph shown in Fig. 6, or a
graph Cs o0 2K as graphs in which G can be imbedded (o stands for corona of
two graphs, see [5], p. 167; here, the new graph is obtained from a cycle by
adding two pendant edges to each vertex of the cycle).

Fig. 6. A unicyclic graph with g =8 and [ =2



24 K. Baliniska, S. Stnié

The indices of both graphs in question are less than three {the index of the
graph of Fig. 6 is 2.8523 < 3; the index of Cg 0 2K, is 2.7321 < 3). So, this
yields contradictions.

Case (iv): g =10 (I < 1)
Now (7 is an induced subgraph of C1002K}, and since its index is 2.7321 < 3,
this yields a contradiction. |

3. Graphs without some numbers in spectrum

Let us consider the graphs from & without either &2 or 1 in the spectrum.
These graphs have at most five distinct eigenvalues, and thus their diameter is
at most four.

Theorem 3.1. If £2 is not an eigenvalue of G € §, then G is isomorphic to
Sy or Sz (see Fig. 7).

Proof. The spectrum of G is —3, —=1%,0°,1%, 3 (here b and ¢ stand for multiplic-
ities of £1 and 0, respectively). Clearly, n = 24+ 2b+c¢, and m = b+ 9 (by
Theorem 1.4). Assuming that & (= m —n + 1) is the number of independent
cycles of G, it yields that # = 8 — b — ¢. By Theorems 2.1 and 2.2, since G is
not a tree or a unicyclic graph, & > 2, and therefore b+ ¢ < 6. Son <14 —c¢
{< 14). Since all integral graphs from S up to 16 vertices are known (as noted
in Section 1), the prove follows (for more details see Fig. 4 from [2] - the names
of graphs shown in Fig. 7 are the same as in [2]). O

In what follows assumne that +1 is not an eigenvalue of graphs in question.
In contrast to previous situation, it is not easy now to find all relevant graphs.
So far, based on computer search, only the graphs 51, S¢ and Sy7 (see Fig. 7)
are known. Notice that Sy and S17 have no vertices of degree one. Iu fact, the
following holds in general.

Theorem 3.2. If +1 is not an cigenvalue of G € § and if G £ 51, then
5(G) =2.

Proof. 1f §(G) > 3, then the index of G exceeds three, a contradiction. So
assume that §(G) = 1, and let r be a vertex of degree onc. Assume that u, its
neighbour, is of degree d.

Now the spectrum of G is —3,—2%,0¢,2%,3 (here a and ¢ stand for multi-
plicities of £2 and 0, respectively). By the interlacing theorem, it follows that
the spectrum of G — r is of the form —z, —'2“1, -y, 0“’, 1, 2‘1', z provided £z and
*y do exist (the cxponents have the same meaning as above). Moreover, if Lz
or *y exists, then « € (2,3) and y € (0,2). Notice first that £z indeed exists;
otherwise G’ — r is a Smith graph (since it is a connected graph whose index
equal to two — recall r is of degree one), and so (7 is a tree or a unicyclic graph, a
contradition (by Theorems 2.1 and 2.2). On the other hand, the existence of +y
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is not so important in what follows — if it does not exist, it can be considered to
be equal to zero. By the interlacing theorem, la —a’| < 1. Moreover, ' =a —1
since otherwise, ece(r) < 2 (see [4]) and then G becomes too small — a trivial
situation.

Consider now the moments (of orders 2 and 4) for graphs G and G —» (as in
the proof of Proposition 2.4 in [2]). By calculating AM, (= M,(G)— M,(G —r))
and AMy (= My(G) — My(G — 7)) in two ways (by definition and by Theorem
1.4) we get z? = 6 + /13 —d, and since d < 4, 2* > 9, a contradition (cf.
Theorem 1.2). |

More on these graphs (and on our main problem of constructing all graphs
from &) will be given in our fortcomining papers.

o Ay e I

5 Sz 53 So S17

Fig. 7. Integral graphs without +2 and 41 in the spectrum
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