Novi SAD J. MATH. 27

Vor. 31, No. 1, 2001, 27-32

REDUCIBILITY METHOD IN SIMPLY TYPED
LAMBDA CALCULUS

‘Silvia Ghilezan!, Viktor Kuné¢ak?

Abstract. A general reducibility method for proving reduction properties
of the simply typed lambda calculus is presented and sufficient conditions
for its application are derived.

AMS Mathematics Subject Classification (1991): 03B40, 68N18
Key words and phrases: lambda calculus, simple types, reducibility method

1. Introduction

There has recently been a reawakening of interest in many aspects of real-
izability interpretation, in particular semantics of type theories for constructive
reasoning and semantics of programming languages. The substantial idea of
the reducibility method is to interpret types by suitable sets of lambda terms
which satisfy certain realizability properties. The reducibility method, based on
realizability interpretations, was introduced in [10] for proving the strong nor-
malization property for the simply typed lambda calculus and further developed
in [5] and [11] for proving the strong normalization property for polymorphic
(second order) lambda calculus. There is an overiew of these proofs in [1].

In [9] and [3] the reducibility method is applied in order to characterize all
strongly normalizing lambda terms in lambda calculus with intersection types.
The reducibility method is also used in [2] for characterizing some special classes
of (untyped) lambda terms such as strongly normalizing terms, normalizing
terms, and terms having (weak) head-normal forms, by their typeability in the
intersection type systems.

This work presents the reducibility method as a general framework for prov-
ing reduction properties of the simply typed lambda calculus (Section 3). The
presented method leads to uniform proofs of the Church-Rosser property, the
standardization property, and the strong normalization property of A— in [4].
The simplicity and wide applicability of the method from Section 3 is a result of
using simply typed lambda calculus. The basic idea of this method is inspired
by the work of Koletsos and Stavrinos for lambda calculi with intersection types

in [7], {8], and {6].

1Faculty of Engineering, University of Novi Sad, Trg Dositeja Obradoviéa 6, 21000 Novi
Sad, Yugoslavia, e-mail: gsilvia@uns.ns.ac.yu

?Laboratory of Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139, USA, e-mail: vkuncak@mit.edu

28 S. Ghilezan, V., Kunéak
2. Preliminary notions

First, we present some basic notions of the lambda calculus.

Definition 2.1. The set A of lambda terms is defined by the following abstract
syntax.

A = var|{AA|AvarA

var = o« |var’

We use z,y, z, ... for arbitrary term variables and M, N, P, Q, ... for arbitrary
termis.

FV(M) denotes the set of free variables of a termt M. By M[z:=N] we
denote the term obtained by substituting the term N for all the free occurrences
of the variable x in M, taking into account that free variables of N remain free
in the term obtained.

Next we present the simply typed lambda calculus, A—.

Definition 2.2. The set type of types is defined as follows.

type = atom|type — type
atom = «|atom’

We use «, 3, ... for arbitrary atoms and 7,0, ... for arbitrary types.

A type assignment 1s an expression of the forrn M : ¢, where M € A and
© € type. A context I' is a set {«) : 0y,...,&n : 0} of type assignments with
different term variables and DomT = {z1,...,2,}. ’

Definition 2.3. [Type assignment system A—] The type assignment P : ¢ is
derivable from the context T' in A=, notation ' - P : o, if '+ P : ¢ can be
generated by the following nziom-scheme and rules.

(az) Feg:otrz:o

''+M:0>57 I'FN:o

(= &) TFMN:7

Fe:cbM:T

(=1) LM M)y:o—r

Reducibility method in simply typed lambda calculus 29

3. Reducibility method for A—
Definition 3.1. Let AABCA, thenA—-B={MecA|VNe€A MN e B}.

Let us define the interpretation of types with respect to a fixed subset P C A in
the following way.

Definition 3.2. The map [~]p : type — 2% is defined by:
1. [e]p =P, « is an atom;
2. [r = alp=(Ir]lp = [s]») N P.

We write simply [—] instead of [—]» when there is no place for confusion. The
following statement can be derived immediately from Definition 3.2.

Proposition 3.3. [o]p C P, for every type o.

Let us further define the valuation of terms [-], : A — A and the relation =
which connects the type interpretation and the term valuation as follows.

Definition 3.4. Let [-]: type — 2% be a type interpretation and let
p:var = A be a valuation of term variables in A. Then

1. [-],: A = A is defined by
M], = M{zy:=p(z1),..., 20 :=p(zn)] where FV(M) = {z1,...,20};

2.pEM:p iff [M],c [l

9. pET iff V(z:p)eT plEo:gp;

4 TEM:0c iff YVopET pEM:o;

5. p(z:=N)(z) =N, p(z:=N)(y) = ply) forz # y.

The following conditions on P C A are suflicient to prove that all terms typeable
in A— are contained in P.

Definition 3.5. Let P be given. Then we define:
(P1) (V¢ € type) var C [¢l;
(P2) (Vo € type) (YN € P) Mz :=N] € [¢] = (Az.M)N € [¢];
(P8) M €P = \z.MeP.

Now we can prove the followiné realizability property.

Proposition 3.6. (Soundness) If P satisfies (P1), (P2), and (P3), then

TEQ:p=>rEQ: vy

30 S. Ghilezan, V. Kunéak

Proof. By induction on the derivation of T F @Q : ¢.

Case 1. The last step applied is (az), i.e. I,z : ¢ F z : ¢. Then obviously
[,z:9 =z : ¢, by Definition 3.4 (2), (3) and (4). ,

Case 2. The last step applied is (—» F), i.e TFM:7 > ¢ TFN:7 =
I' - MN : . Then by the induction hypothesisT EM : 7 > pand T N : 7.
Let p |= T, then [M], € [t — ¢] C [r] — [¢] and [N], € [r]. Therefore
(M N], = [M],[N], € [#}

Case 3. The last step applied is (= I), ie. T,z : 0 v M : 7 = T
Az.M : o0 — 7. By the induction hypothesis Iz : o | M : 7. Let p |
I' and let N € [o]. By the variable convention let us assume z ¢ FV(N)
and ¢ ¢ FV(T), whenever p(z) = T for T # z. Then p(z:=N) = I since
z ¢ DomT and p(¢:=N) | z : o since N € [o]. Therefore p(z:=N) |
M : 7, ie [M],.=n) € [7], which means by Definition 3.4 (1) and (5) that
MY :=p(¥)}[z:=N] € [r]. Here ¥ are variables from FV(M)\ {2} for which
p(yi) Z yi. By (P2) wehave (Az.M [y :=p(¥)])N € [r]. Then [Az.M],N € [r]
since z ¢ FV(Az.M). We conclude that [Az. M], € [o] — [r] since NV € [o] was
arbitrary. It remains to show that [Az.M], € P. By (P1) we can take N =z,
so by repeating the previous argument it follows that M[y :=p(¥)] € [r] C P
by Proposition 3.3. Finally [Az.M], = Az.M[¥ :=p(¥)] € P by (P3). o

Proposition 3.7. Let P satisfy (P1), (P2) and (P3). Then

TFM:p= MeP.

Proof. Let T M : o, then T' | M : ¢ by Proposition 3.6. Let us take such a p
that p(y) = y for all y € var. For every (z : o) € I' we have that p = « : o since
z € [e] by (P1). Therefore p E T and consequently p = M : ¢, which means
that M = [M], € [¢] C P. o

In order to prove that for a given P C A the properties (P1) and (P2) hold,
we will proceed by induction on the construction of the type 7, but then we
need stronger induction hypotheses. These stronger conditions actually unify
the conditions for saturated and P-saturated sets which are considered in re-
ducibility methods in [9], [1], [2], [7], and [8].

Definition 3.8. Let P, X C A be given. Then
PVAR(X) means (Vz € var) (Vn >0) (VM,,..., M, €P) eM,... M, € X.

Lemma 3.9. PVAR(P) = (V¢ € type) PVAR([¢]).

Proof. By induction on the construction of ¢. Let us assume PVAR(P).

Case ¢ = « is an atom. Since [a] = P, the statement holds by the assump-
tion.

Case p =17 — 0. Let My,..., M, € P. Then «M,...M,, € P by the
assumption. It remains to prove that zM; ... M,, € [r] — [o] and this holds by

Reducibility method in simply typed lambda calculus ' 31
Definition 3.1, since for any Mp41 € [7] C 'P we have that e M,y ... M, M, 41 €
[e] by the 1nduct10n hypothesis. O

An immediate consequence of Lemma 3.9 is the following statement.

Corollary 3.10. PVAR(P) = (P1).

Proof. If P VAR(P) holds, then according to Lemma 3.9 P VAR([¢]) holds for
every ¢ € type. Obviously, P VAR([¢]) implies that var C [¢]. {Box

We proceed similarly for (P2).
Definition 3.11. Let P C A be given. Then PSAT(X) means

(VM,N € P) (Vn > 0) (VM,,..., M, € P)
Mlz:=N|M,.. M, e X = (Ae. M\)NM,... M, € X.

Lemma 3.12. PSAT(P) = (V¢ € type)PSAT([¢]).

Proof. By induction on the construction of ¢. Let us assume PSAT(P).
Case ¢ = a € atom. Since [a] = P, the property holds by the assumption.
Case p =1 — 0. Let M,N, M,,..., M, € P. Suppose

M[z:=NIM,... M, € ([r] - [¢]) nP.

By PSAT(P) we have that (Az. M)NM,... M, € P. Let M, 4 € [r] be arbi-
trary. Since [7] C P, we have that M[z:=N]M;... M, M, ;1 € [o]. Therefore
by the induction hypothesis (Az. M)NMy... M, M, 41 € [o]. Since M4, was
arbitrary, we obtain (Az. M)NM,... M, € [7] — [o]. w

Corollary 3.13. PSAT(P) = (P2).
Proof. By Lemma 3.12 and by Definition 3.5 of (P2). a

Consequently, the conditions PVAR(P) and PSAT(P) are generalizations of
(P1) and (P2), respectively.
The following statement presents the general reducibility method.

Proposition 3.14. Let P C A be such that PVAR(P), PSAT(P), and (P3)
hold. ThenTHM : o= M € P.

Proof. According to Proposition 3.7 and Corollaries 3.10 and 3.13. O

4. Discussion

This method is general, since a suitable choice for the subset P of A for
which three properties PVAR(P), PSAT(P), and (P3) hold provides that a
term typeable in A— belongs to P. In [4] it is shown that P satisfying the
required properties can be:

32 S. Ghilezan, V. Kuné¢ak

o the set C'R of all lambda terms having the Church-Rosser property,
e the set SN of all strongly normalizing lambda terms,
e the set ST of all lambda terms having the standardization property.

It rernains to investigate whether the method presented here can be extended
in order to prove more properties of the (untyped) lambda calculus using simply
typed lambda calculus instead of intersection type systemns from [9]. The other
direction in future work can deal with the question whether this method can be
applied to some other type systems as well.

Acknowledgment. The authors thank George Stavrinos for valuable remarks.

References

[1] Barendregt, H.P., Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.): Handbook of Logic in Computer Science, Vol. 2. Oxford
University Press, Oxford (1992), 117-309

[2] Gallier, J., Typing untyped A-terms, or reducibility strikes again! Annals of Pure
and Applied Logic 91(1998), 231-270

[3] Ghilezan, S., Strong normalization and typability with intersection types. Notre
Dame Journal of Formal Logic 37(1996), 44-53

[4] Ghilezan, S., Kungak, V., General reducibility method in lambda calculus (sub-
mitted for publication)

[6] Girard, J.-Y., Une extension de linterprétation de Godel a I'analyse, et son
application & !'elimination des coupures dans 'analyse et la théorie des types.
In: Fenstad, J.E. (ed.): Proceedings of the 2nd Scandinavian Logic Symposium.
North-Holland, Amsterdam (1971}, 63-92

[6] Koletsos, G., Church-Rosser theorem for typed functionals. Journal of Symbolic
Logic 50(1985), 782-790

[7] Koletsos, G., Stavrinos, G., Church-Rosser theorem for conjunctive type systems.
In: Kakas, A.K, Sinachopoulos, A. (eds.): Proceedings of the First Panhellenic
Logic Symposium. University of Cyprus (1997), 25-37

[8] Koletsos, G., Stavrinos, G., The structure of reducibility proofs. In: Kolaitis, Ph.,,
Koletsos, G. (eds.): Proceedings of the Second Panhellenic Logic Symposium
Delphi (1999), 138-144

[9] Krivine, J.L., Lambda-calcul types et modeles. Masson, Paris (1990)

[10] Tait, W.W., Intensional interpretation of functionals of finite type l. Journal of
Symbolic Logic 32(1967), 198-212

[11] Tait, W.W., A realizability interpretation of the theory of species. In: Logic
Colloquium (Boston). Lecture Notes in Mathematics, Vol. 453. Springer-Verlay,
Berlin (1975), 240-251

