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EQUIVALENCE CO-RELATIONS AND
CO-CONGRUENCES OF CO-ALGEBRAS

Dragan Mazulovié!

Abstract. This paper introduces the notions of equivalence co-relation
and co-congruence of a co-algebra {(understood in “the classical” sense).
We show that equivalence co-relations correspond to equivalence relations
(and therefore can be understood as encodings of the latter), while co-
congruences of co-algebras correspond in the same way to bisimulation
equivalences.
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1. Introduction

The notions of a co-operation and of a co-algebra understood as a set en-
dowed with a set of co-operations were introduced in [2] as follows.

Let X"" := n x X denote the union of n disjoint copies of X, i.e. the n-th
co-power of X (where n:= {1,2,...,n}). An n-ary co-operation is any mapping
f:X — XY". We say that n is the arity of f and write n = ar(f). A co-algebra
(in the “classical” sense) is a pair (X, F'), where X is a nonempty set and F is
a set of co-operations of various arities.

We say that a co-operation f : X — XY™ is compatible with a binary relation
o C X? if the following holds for every (z,y) € o:

if f(z) = (j,p) and f(y) = {l,q) then j =l and (p,q) € o.

A binary relation ¢ C X? is a bisimulation on a co-algebra (X, F) (see [4]) if
every co-operation in F is compatible with p. Bisimulation equivalence is an
equivalence relation on X that is a bisimulation on (X, F).

Objects called co-relations were introduced in [4] as the “relational counter-
part” for clones of co-operations introduced in [1]. For a positive integer n, an
n-ary co-vector on (or colouring of) X is any mapping r : X — n. An n-ary
co-relation is a set of n-ary co-vectors. Let r : X — n be a co-vector and let
A; :=r71(4), ¢ € n. Instead of r we shall often write (A,,..., Aﬂ,)v.

For a nonempty set A and mappings g1,...,0n : X — A let [g),...,05]
denote the co-tupling of g1,..., gn:

[gl,...,gnv] XU o A (i) & gi().
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Let f be an n-ary co-operation on X and let g be a co-relation on X. We
say that f co-preserves g or that p is co-invariant under f [4] if for every n
co-vectors rl, ... v" € g we have f-[r!,...,r"] € o (where the composition f.g
of mappings f: A — B and g : B — C is taken to be (f- g)(z) := g(f(»)), Le.
first f then g). Given a set F' of co-operations on X, let clnvx F denote the set
of all co-relations (of all finite arities) that are co-invariant under every f € F.

Bisimulation equivalences play the role of congruences in the structural the-
ory of co-algebras. Thus, essentially covariant notion of a bisimulation equiva-
lence is used in the analysis of essentially contravariant notion of co-algebra. The
aim of this paper is to introduce equivalence co-relations (as some kind of a dual
to equivalence relations) and co-congruences, and thus provide a contravariant
tool in the analysis of co-algebras.

2. Equivalence co-relations

In the sequel we focus on ternary co-relations. Let us denote the set of all
ternary co-relations on a set X by cReIg?).

Note that one of the coordinates of a co-vector is superfluous. Therefore,
by (A,e,C)Y we shall denote the co-vector (4, X \ (AUC),C)Y. For z € X
and A C X, instead of ({z},e, A)V we shall simply write (x,, A)V. So, for
z,y € X, (z,9,y)" stands for ({z}, X \ {z,y}, {y})¥.

The composition of co-relations and inversion of ternary co-relations were
introduced in [3] as follows. For ternary co-relations o, o’ we define #~! and
oo by:

o=t = {(C,e,A)Y | (A, e,C)Y €7}
coo’ = {(Ae,C)Y|(3C, A C X){(4,9,C)7 € on
(A, 0,CYY €' AC =X\ A)}.

In {3] it is also shown that the set of ternary co-relations forms a monoid with
respect to composition and, moreover, that the semigroup of reflexive binary
relations can be embedded into the semigroup reduct of the monoid of ternary
co-relations (for proof, see [3, Proposition 3.58]):

Proposition 2.1. Let Ay := {{z,z) | # € X}, and let Rx := {o C X? |
Ax C p} denote the set of all reflevive binary relations on X. Further, let
Sx := (Rx,0,”1) denote the semigroup of reflezive binary relations with the
usual inversion. Then the mapping ¢ : Rx — cRelg?) defined by

(o) = {{(A,0,B)Y | oN (A x B) = 0}.
is an embedding of Sx into (cRel(;'), o, 71).

In order to introduce equivalence co-relations, we shall first introduce full
co-relations, which play the role of reflexive relations.



Equivalence co-relations and co-congruences of co-algebras 35

Definition 2.2. A co-relation o € cReIf,?) is said to be full if the following
implication holds for all A,C C X:

(anc=dandaxccl/ (Px B)) = (4,5,C)° € 0.

(P,9,R)V €0
Let us mention some elementary properties of full ternary co-relations which
we shall need later.

Lemma 2.3. Let o be a full ternary co-relation.

(i) (X,0,0)7,(0,0,X)Y € 0.
(ii) If{A,8,C)V €0 and z € A, y € C then (z,0,y)¥ € 7.

Definition 2.4 A co-relation o € cRelg?) is called an equivalence co-relation if

e o is full,
e o is symmetric: 6~ = o, and

e o is transitive: oo = 0.

Let ¢ be an equivalence relation on X and let E, := {{z,y} | (z,y) € o}.
Connectedness components of G, := (X, E,), the graph of g, are complete
graphs with loops. More precisely, G, = K & ...® K}, where @& denotes the
disjoint union of graphs, and K} is the complete graph on n vertices with loops.
Components of G, are generally referred to as blocks of o.

We are going to show that the situation concerning equivalence co-relations
is dual. As we shall see in the next proposition, the graph G, assigned to
an equivalence co-relation ¢ in the similar fashion turns out to be a complete
multipartite graph.

Proposition 2.5. Let o € cRelg) be an equivalence co-relation and let E, :=
{{z,y} | (z,0,)Y € 0}. Then G, := (X, E,) is a complete multipartite graph.

Proof. Fix an equivalence co-relation 0. By u ~ v we denote that the vertices
u,v € X are adjacent in Gy. For u € X let N(u) := {v € X | v ~ u} stand
for the neighbour set of u in G,. To show that G, is a complete multipartite
graph it suffices to show that u ¢ v = N(u) = N(v).

Suppose u # v and take any w € N(u). Then {u, e, w)V € . Since o = goo,
there exists an A C X such that {u,e, A)¥ € o and (X \ 4, e, w)V € 0. Now
u % v and Lemma 2.3, (ii}, imply v ¢ A. So, v € X \ A. Applying Lemma 2.3,
(ii), again we obtain (v,e,w)V € o i.e. w € N(v). This proves N(u) C N(v).
The other inclusion follows analogously. ‘ ]

Every complete multipartite graph induces a partition on the set of its ver-
tices. Blocks in the partition induced by G, shall be referred to as blocks of o,
as stipulated by the next definition.
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g = 09 =

Figure 1: Two equivalence co-relations on {a, b, ¢,d}

Definition 2.6. Let ¢ € cRel(B) be an equivalence co-relation and let B -
{Bi,...,Bg} be the partition ofX induced by G,. We say that B is the palhtlon
1nduced by o and refer to B;j’s as blocks of .

In analogy with equivalence relations, partition B shall be denoted by X/o.
For € X, the unique block of o containing x shall be denoted by x/o.

The partition X /o induces an equivalence relation on X which shall be de-
noted by rel(c).

The operator rel has some important properties which we list in the following
proposition.

Proposition 2.7. Let o be an equivalence co-relation. Then:

(i) for all x € X we have a/o = z/rel(c);
(ii) rel(o) = X*\Upe,myveq (P X R).

Also, if p is a binary reflezive relation then () is full, and rel (9) =

Remarks 2.8. (i) ¢(Sx) (see Proposition 2.1) is exactly the set of all full
ternary co-relations.

(ii) If we denote by Eq(X) the set of all binary equivalence relations on X
and by cEq(X) the set of all ternary equivalence co-relations on X, then ¢ is an
isomorphism between the partially ordered sets {Eq(X), C) and {cEq(X}, D).

(iii} The set of all ternary equivalence co-relations is a bounded partially
ordered set with respect to C, cAx = {{4,,B)Y | A = § or B = @} and
cVx :={{A,e,B)Y | AN B = 0} being the least and the the greatest element,
respectively.

(iv) The intersection and the union of two equivalence co-relations need not
be an equivalence co-relation. Consider the co-relations ;) and o5 depicted in
Fig. 1 via the corresponding (complete multipartite) graphs. oy U oy is not full,
while o1 N &3 is not transitive. Therefore, neither is an equivalence co-relation.
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3. Equivalence co-relations as co-congruences of co-algebras

A congruence of a universal algebra (A, F) is an equivalence relation in-
variant under all the fundamental operations. This motivates the following
definition.

Definition 3.1. Let A := (X, F) be a co-algebra. o € cReIE,?) is said to be a
co-congruence of A if

s 0 is an equivalence co-relation, and

e g cclnvy F.

Denote by cCon A the set of all co-congruences of A.

Having the notion of co-congruence at hand, we would now like to show
how to factor co-algebras by co-congruences and then to show that factoring by
co-congruences corresponds to factoring by bisimulation equivalences.

Lemma 3.2. Let o be a co-congruence of the co-algebra (X, F) and let f € F.
For all z,2',y,y € X and j,j' € ar(f) the following holds: if /o = z'/0o,
f(x) = (4, y) and f(2') = (j',y), then j = j' and y/o =y'/o.

Proof. For a co-operation f : X — X"" and j € n, denote by f/ the partial
mapping X —e+ X defined by f7(z) = y < f(z) = (4, v).

Suppose first that j # j/, say, j = 1 and j/ = 2. Let r := (X, e, ()Y,
s:= (0,0, X)V and t := f - [r,s,...,s]. Since r,s € o (Lemma 2.3, (i)) and
o € clnvx{f}, we have t € 0. Let t =: (P,e,Q)V. Then y € X implies
(FfYH)~Yy) € P. So, x € P because fl(z) = y. Similarly, ¥ € X implies
(f9)~Yy') € Q and thus, 2’ € Q. Now, z € P, 2’ € Q and {P,e,Q)V € o,
so, by Lemma 2.3, (ii), we have (z,e,2')¥ € 7. But (z,e,2')V € ¢ means that
z/o # z'[o. Contradiction. Therefore, j = j'.

In order to show the other part of the statement, suppose to the contrary
that y/o # /0. Then (y,e, i)V € 0. As above, let r := (X, e,0)V and let
t .= (P,e,Q)V := f [r,r,...,r]. Since r € o and o € clnvx{f}, we have
t€o. But,z € P,2' € Q, t € o and Lemma 2.3, (ii), imply (z,e,2')V € o i.e.
z/o # &' /o. Contradiction. 0

Definition 3.3. Let A = (X, F) be a co-algebra and let ¢ € cCon A. For
f € F, ar(f) = n, define f: XJo — (X)) by: f(z/o) := (j,y/o) where
(,y) := f(z). Let F := {J | f € F}. The co-algebra Ajo = (X/a, F) is
referred to as the factor co-algebra of A.

Let us note that Lemma 3.2 ensures that the above definition is correct.
The following theorem, which follows immediately from Lemma 3.2, settles the
question of the relationship of bisimulation equivalences and co-congruences of
a co-algebra.
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Theorem 3.4. Let A := (X, F) be a co-algebra and let o € cCon A. Then:

(i) rel(o) is a bisimulation equivalence of the transition system (X, F).

(ii) If R is a bistmulation equivalence of the transition system (X, F) and
o := ¢(R) (see Proposition 2.1), then o = *R up to a permutation of
coordinates (for the definition of *R see Definition 6.5 in [{]).

(iii) The poset (cCon A, C) is isomorphic to the poset (BsEq A, D), where BsEq A
denotes the set of all of bisimulation equivalences of the transition system
A.

Finally, let us remark that co-congruences exibit quite a peculiar behaviour.
We say that a co-operation f : X — X"" depends essentially on exactly one
argument if there exists a j € n and a function g : X — X such that for all
z € X, f(z) = (j,g(z)). We say that a co-operation f: X — X"" depends on
at least two arguments if it is not true that f depends essentially on exactly one
argument.

Proposition 3.5 Let A := (X, F) be a co-algebra. <cAx € cCon A if and only
if every f € F depends essentially on ezactly one argument.

Proof. <=: QObvious.

=: Suppose that there exists an f € F which depends on at least two
arguments, say, the first two, and suppose that cAx € cConA. Let r :=
(X, 0,87, s:= (0,0, X)7, and (P,e,Q)¥ := f[r,s,...,s]. Then.(P,e,Q)V €
cAx. But, both P and @ are nonempty. Contradiction. m]
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