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UNSTEADY INCOMPRESSIBLE BOUNDARY LAYER
EQUATION IN FULL TWO AND TWO-ONCE
LOCALIZED PARAMETRIC APPROXIMATION

D. J. Ivanovié!

Abstract. The corresponding equations of unsteady boundary layer, by
introducing the appropriate variable transformations, momentum and en-
ergy equations and one similarity parameter set, are transformed into
generalized partial nonlinear differential equation. These parameters ex-
press the influence of the outer flow velocity, and the flow bistory in the
boundary layer on the boundary layer characteristics. Since the equation
contains the sums of terms equal to the number of parameters, it is neces-
sary to limit the number of parameters for numerical integration. So it is
very important that the chosen set of parameters possesses the following
two properties:1. the first parameter is to be "strong” enough, so that the
solutions lies close to the exact solution, and 2. the following parameters
introduce in the solution small corrections only, and provide a sufficiently
fast convergence. For this purpose, the modern parameter method has
been developed to calculate boundary layers, known as generalized sim-
ilarity method. The numerical integration of the generalized equation
with boundary conditions has been performed by difference schemes and
using Tridiagonal Algorithm Method with iterations in full two paramet-
ric approximation, where the first unsteady and dynamic parameters will
remain, while all others will be let to be equal to zero, and in two-once
localized parametric approximation, where also the first unsteady and dy-
namic parameters remain, while all others will be equal to zero and where
the derivatives with respect to the first unsteady parameter will be consid-
ered equal to zero, while the derivatives with respect to the first porous
parameter will be considered equal to zero. The obtained results show
that for both the confuser and this diffuser regions as well as for both the
accelerating and decelerating flows, there are differences between their
values, especially close to the separation point of the boundary layer, and
is very important for particular problem with laminar-turbulent transition
region on the contour.
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1. Introduction

The multiparametric method known as generalized similarity method [1,2],
is used to solve to the problem of unsteady incompressible plane boundary layer
on the contour [3-6,8]. The method, regarding its own nature and properties,
widely employed in the modern investigations concerning fluid mechanics. Sim-
ilar solutions of the boundary layer equations play an important role in the
investigation of the stability of hydrodynamic flows, developing semi-empirical
criteria for the transition to turbulence, a wide application in technical practice
i.e. especially in nuclear reactors, as well as in different devices in chemical
technology as well as for flight control in aeronautics.

2. Mathematical problem

The mathematical model of the problem considered is described by the fol-
lowing equation:

(1) Wi + Uy W,y — U0, =Us + UU, + 0¥y,
with the boundary and initial conditions:

y=0: ¥ =V¥,=0; y—oo: ¥, = U(zx,t);
(2) t=1to: ¥y =ui(z,y); z=ux0: ¥y, =uo(t,y),

where: ¥(z, y,t) - stream function, U(z, ¢) - free stream velocity; v - kinematic
viscosity; ui(x,y) - streamwise velocity distribution in the boundary layer at
a given point of time ¢ = {p; uo(t,y) - streamwise velocity distribution in the
boundary layer at the cross-section = xg; x - streammwise coordinate; y - cross-
wise coordinate; t - time. For theoretical considerations of the given probler, it
is necessary to solve equation (1}, with the corresponding boundary and initial
conditions (2}.

3. Universal equation

Equation (1) can be solved using numerical method; in that case the function
U(z,t) must be known before applying the solution procedure. With such a
solution of equation (1), one gets immediately the solutions of the concrete
problems. The general similarity method {1,2], or method of ”universalization”,
which has been developed for the problems of steady plane boundary layer, is
also extended to unsteady boundary layer problems [3-6,8]. In this paper, the
method of generalized similarity has been developed using also some ideas which
are present in the appropriate method for steady problems [2,7].

According to the generalized similarity method [5,6,8], the new variables
z,t,m, ®(z,n,t) are introduced by the following relations:

v -1/2
t=z, t=1t, n= yUbO/z (G’DU/ Ubn_ldl‘) ’
0
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@ —1/2
(3) ®(z,n,t) = WUb/?-1 (agl// Ub“‘la'z)
8]

where ag = 0.4408, by = 5.714 {2], so that equation (1) can be reduced to the
form:

—bo ‘ 0= p a
DQony + (aOU ’ /0 Ut lda’) U [1 - q,’z? + (1~ bo/2)®®,,] + E(J-‘I"I)n+

—_ o— T 0= 7? **___
(4) (aoU ® 1)/0 Ut ldx) U.(1— @) + anBzT

T EL]
(aoU“bc‘ / Ub”‘lda:) B¢, + fB—3nBtCI>,,,, + (aoUl_b“ / Ub“"'ldx) (@ @y — B, Py0)
o 0

where the corresponding boundary conditions and are as follows:

(5) n=0: &=2>o, =0; n—)oo:<I>,7"—)1,

(6)z*" = (aOU‘b”/O Ub"‘ld:c) B; B(z,t) :/O D, (1 —@p)dny; T = 2",

It can be noticed, that the conditions with respect to the variables z and ¢ in
(2), are not taken into account. These conditions are significant only in the
calculation of the concrete problems, and thus they can be omitted here. By
assuming that the the function U(x,t) is analytical, one can introduce the set
of parameters [5,6,8]:

) frm = UFTIUERD) omektn (kin=1,2,3...; kVn #0)

as new independent variables, from which we have the first parameters:
(8) fio=2"Us; fou=U"'2"U;

The parameters (7) express the influence of the outer flow velocity and the flow
history in the boundary layer, on boundary layer characteristics.
Now, the already transformed equation (4) is transformed into a new form:

B @y + 0.5[aoB® + (2 — bo) f1,0]@@nq + f1,0(1 = 87) + fo,1(1 — @) + 0.50T" "Dy

= ﬂB_l Z Ck,ank,,‘¢f)f)+ } E [Ckﬂ nfkn+Ak ”(q> cI)ﬂfkn ¢fk,n¢nn)]

k,n=0 k,n=0
kVazo kV nA0

9)

with the corresponding boundary conditions:

N=0:2=®p; nso00:®, >1; frn=0 (k=0,1,.,; kvn #0): ® = do(n),
(10)
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where ®g(n) is Blausius’s solution for the problem of flat plate. In equation (9)

the following notations have been used:
*

*
(11) Avn=(&=Ohofern+ fepn +(E+n)fin F

*k *k
Ck,n = (k' - l)fO,lfk,n + fk,n+1 + (k + Tl')fkvn T; F= Uz.:‘
*k *k

In order to take equation {(9) as universal, the multipliers F and T have to
be expressed by means of quantities which are explicit functions only of param-
eters (7). In the determination of these functions, one can use the momentum

equation: ‘

(12) (UJ*)t—i-(UZO’”):E—l-UUmJ* —Tw/p=10;

and the equation of energy:

(13) (U2<5”)¢ + U36’f’fy + U + 30770, — 2ve) =0

where ‘

= L'/? (1 q>n dn;, Tw = PVUb°/2+1L_1/2((I>nn)ﬂ=O§
0 . T
0 = 2/ ®,(1 - ®X)dy; €= —1/2 / tb,mdn; L= aOI/U_b”/ Ubo=lde,

0 0

(14)

Introducing the quantities:
oo o0

o™ = B—‘/ (1 —®,)dy; Hi* = B—l/ ®,(1— @2)dy;
0 0

¢ = B(®yy Ja=0; a= b/o q’;zmdﬂ,

and writting in developed form the derivative with respect to t, equation (13)
reduces to a new form, from which the obtained expression for the function T™*
depends only of the parameters (7):

(15)

T = {22 Y (k+n)fenHi%,, + HI" ¢~ 2f1,0 — H™(fro+ fo1)

k,n=0
kvn;to
00
- Z (k= 1) fo, 1 fun + Fems)HGE 1420 Y (k= 1) frofen
S vy
(16) Fhern)H Y, 4 D (k= 1) forfem + fena) HS
v
+2fo1] + 6H;" f1,0] — daH{[H™" +2 Z (k+n)funH] ]
Vo

(23 (k+n)fundliy,  +H—1]-1)7L

k,n=0
kVnz®o
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Also, writting in a developed form the derivative with respect to z, equation
(12) is reduced to a new form, from which the expression for the function F**
is obtained which depends only on the parameters (7):

Fr*= 2{(~2f10— H"(fro+ fon.+051"")

(17) — Z [(}f - l)fo,lfk,n +fk,n+1 + (k. + n)T"fk,n]H}’:,n}

k,n=0
kVno

By the above procedure the existence of the functions F** and 7™* is shown,
and something more, their explicit forms are determined. In equation (9), the
velocity at the cuter border of boundary layer and its derivatives are not involved
in explicit form, thus this equation can be called the generalized, i.e. universal
equation. The universal boundary conditions have the form as (10).

4. Approximative universal equations

The numerical integration of equation (9), with the corresponding univer-
sal boundary conditions (10), can be performed ”once and forever” only for its
approximative form. This means that the solution of the universal equation in
practice needs limitation of the number of the independent variables. It leads to
the necessity of applying of the ”"segment” method, in which all variables from
someone have to be equal to zero. In such a way, the approximative univer-
sal equation is obtained. Having the above procedure in mind, the parameters
f1,0, fo,1 will be remained, while all others will be let to be equal to zero. Equa-
tion (9), in these full two-parametric approximation has the form:

B2®,,, + 0.5[aoB? + (2 ~ bo) f1,0]®®ny + fr,0(1 — ®2) + fo,1(1 — @)
g +0.50T** @y = B~ 1T (f1,0B1, 0 + fo,1Bros) — fg,leo,l]q’nn
T (f1,0®n10, + fo1Puse,) — fg,lq)nfo,l + f10F" (@nPnsy 0 — Do Pan)
+fo,1(F*™ — f1,0)(®nPnso, — o, i)
and the corresponding boundary conditions (10) are reduced to the following:
(19) n=0:2=0,=0; n 500:P, > 1; fr0=fo,1=0:D=D(n).

where the functions T** and F** , after the same approximation in expressions
(16) and (17}, now have the following forms:

T = {2[2(fr,0H7Y, o+ foaHiY, ) + Hi'NC = 2f10 — H (fr,0 + fo,1)
+Io Hr 1+ 2= frofo HY, , — o1 HEY + 2foa] + 6HT™ fio — 4}
{H™ +2(f,0HF, , + fo Hy) )2(f1,0HTY, , + fo, 1H1f01)
+H - 1] -1}
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F** = 2{¢C—2f1,0— H*(f1,0 + fo,1 + 0.5T**) + fg,lH*O*,l =T (f1,0H}],

+fo 1 Hj )}
(20)
Also, we consider here approximation of equation (9) in two parametric ”once
localized” enviroment, and this is done when the first unsteady fo 1 and dynamic
fi1,6 parameters also remain, while all others will be equal to zero, and the
derivatives with respect to the first unsteady fo; parameter will be considered
equal to zero. For this approximation equation (9) has the form:

B2®,,, +0.5[a0B? + (2 — bo) 1,0]8%,7 + f1,0(1 — $2)
(21) +fo,1(1 = @) +0.59T*®yy = B~ T* f10By, , By
HI* fr,0@01,0 + F10F " (29 Pns, 0 — By Pop)]

and the corresponding boundary conditions (10) are the same as the conditions
(19). The functions T** and F** after two-once localized approximation in
expressions (16) and (17), have the following forms:

T = {2(2f1,0H{Y, , + H{")C = 2fi,0 — H™*(fr,0 + foa1)] + 6HY fr,0 — 4o}
{(H™ +2f10H}] ) 2 1083y, , + HIY ~ 1) =1} 7h

F** = Q[C — 2f1’0 - H“(fl,o + fO,l + 0.5T“) - T**fl,OH}‘;'O]-
(22)

The numerical integration of the generalized similarity equations (18) and
(21), in full two and in two-once localized approximation with their boundary
conditions (19) has been performed by means of the difference schemes and us-
ing Tridiagonal Algorithm method with iterations. The obtained results ®,, .,
A and B of these equations, (18) and (21), can be used in the drawing gen-
eral conclusions of boundary layer development and in calculation of particular
problems. The results show that the unsteady parameter fo,; has a significiant
influence on the friction distribution and especially on the location of separation
point of the unsteady boundary layer. When this parameter is increasing, the
friction value ¢ is increasing and the separation point location is shifting toward
the greater absolute values of the negative parameter f; 0. This means, that the
positive local acceleration leads to the postponing separation of the boundary
layer in the diffuser region. The local deceleration favors the occurrence of sepa-
ration of flow: in comparison with the steady flow, the separation is occurring at
lower absolute values of the negative parameter f; . For both the confuser and
diffuser regions the accelerated flow around the contour increases the friction
and postpones separation, and vice versa. Differences between the obtained so-
lutions after numerical integrations of equations (18) and (21) are about 8-10%
in the diffuser contour region, especially in the vicinity of the separation point of
boundary layer for accelerating flow, while the differences for decelerating fluid
flow in the same region is about 15%. In the conffuser region of the contour,
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there is no significant differences between the results obtained from (18) and
(21), so one can use equation (18) to calcule the boundary layer characteristics.
However, in the diffuser contour region is much better to use equation (21),
because the results are more correct and there is laminar-turbulent transition
of fluid flow.

5. Conclusion

This paper deals with the unsteady plane boundary layer of incompressible
fluid flow on contour. A generalized similarity method is practically formed
for studying of this problem. By applying this method, a universal partial
nonlinear differential equation has been obtained. Finally, this equation has
been numerically solved in approximative forms, i.e. in full two and two-once
localized approximation. Beside the general conclusions of the analysis, the
obtained results can be used to solve some particular problems of fluid dynamics.
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