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MICROTHEORETICAL AND NUMERICAL
CALCULATION OF PHONON SPECTRA IN
SUPERLATTICES

S.K. Jaéimovskil, D.L I1ié¢?, I.LK. Junger®, J.P. Setrajéic¢?

Abstract. The Green’s funclions method, adjusted to bounded crys-
talline structures (PriM 9-13'"), is applied to obtain the phonon disper-
sion law in superlattices. The system of difference equations defining
Green’s functions of displacement type for a superlattice motive is given.
Poles of Green’s functions define phonon spectra. They can be deter-
mined by solving the secular equation. In general case and for different
boundary parameters, this problem is solved numerically (Mathematica
4) and presented graphically (CorelDraw 9). The correlation with spectra
of phonons in the corresponding unbounded and film-structures is estab-
lished in the work. The crystalline systems with the basic motive (made
up from 2 different ultrathin films with specific interconnections) period-
ically repeating itself along one direction normal to the connected motive
boundaries are the superlattices.
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1. Introduction

Precise structuring of solids at the nanometer-sized dimension is most im-
portant for modern science of solids nowadays [1,2], especially in the field of
electronics, optoelectronics and high-temperature superconductivity. There are
many reasons for interest in low-dimensional structures (thin films, superlattices,
quantum wires and quantum dots) as more real structures than the infinite ones.
Phenomena connected with such low dimensions cause the formation of new and
different(changed) characteristics of solids and specific effects [3-5], which are
interesting not only from the fundamental physical point of view but also as the
structures of widespread practical significance.

Phonons are basic excitations in crystals and describe oscillatory movements
of their components. The study of the contribution and influence of the phonon
subsystem on physical characteristics of solids is of particular importance to
the theory of solids, because phonons are always present in crystals, no matter
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whether as main carriers of the mechanisms which ”produce” certain physical
characteristics, phenomena and effects in crystalline structures appear electrons,
excitons, ferroelectronic inducements, or some other forms of the elementary
excitation.
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Figure 1: Arrangement of atoms in the basic motive of the superlattice

The phonon spectra in crystal superlattices were analyzed here using the
method of two-time temperature dependent retarded Green’s functions.

2. Phonons in superlattices

Superlattices are ultrathin layered crystal structures, periodical in one direc-
tion, with the period exceeding the constant of the lattice about twenty times
[1,2]. The scope of our study in this paper is the superlattice, the basic mno-
tive of which are composed n, layers of one and n, layers of another type of
atoms, alternately arranged along the z-direction, while it is unbounded along
the z and y directions. To make connected layers consisting of different atoms
possible, the lattice constants along the  and y directions must respectively be
equal, i.e. a® = a® = a, and ay = az = ay, whereas along the z-direction they
may be different a? = a® # a% = @® and a?7° = a).

We introduce the following notation:

Najy/z +Nm/y/z

= {nwanyanz} sy Ngjy/z SR ) ; 9 )

where: ng;, - is the atom site counter along the z (i.e. y) direction, n. - is the
position counter of the basic motive of the superlattice (z-direction), while: n,
- i1s the atom site counter in the basic motive.

Starting from the standard Hamiltonian of the phonon subsystem for bulk
structures [6-9], the phonon subsystem Hamiltonian of superlattices

(1) H=T+V}5, +V4; =Hp+Hz,
can be presented in the following separated form:

e operator of the kinetic energy

(2) ‘ Ir=T+T,
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¢ interaction potential related to the interfaces between crystalline films

(4) Vi =Vl + v + v+ vf,

where the corresponding components refer to the surfaces n; = 0, n, — 1, ng i
ng +np — 1, Le.
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Taking into account that the superlattice represents the periodical crystal
structure, for an arbitrary function of the position the cyclic conditions of z, y
and z indexes are valid, by which the permitted validities of z, y and (particu-
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larly) z-components of the wave vector can be obtained:

— N, k — a2 P
(12) fmxm‘ymzml"‘Nz/y — fm,mym,m| = etVz/yRa/yBxfy — eTVa/yt ,

_ i{na+ne) Nk _ 270,14
fm,mym,m1+(na+nb)N, - fmzmym,ml = ez(n +ns) ¢ = TVt |

For counting the allowed values of the z-component of the wave vector k.,
the counter v, € {0,+1,+2, ... + N,/2} is used, by which the boundaries of
the first Brillouin zone along the z-direction are defined:

T T
(na +mp)a’ (g +mny)a

(13) k: € |-
where the notation & for the average validity of the lattice-constant along the
z-direction is introduced as:

(ng — 1)a®*+ (np — 1)a® + 2a
N, + 1y )

(14) a=

We are looking for the phonon dispersion law with the aid of the phonon
two-time cornmutator Green’s function

Giappam (t =) = {(tan, @) |umm () =
(15) = Ot —t'){[uan, (), wi,m, ()]}

which satisfies the equation of motion
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where M; € (M,, Mp). Assuming that ¢’ = 0 and after performing time Fourier
transform, the last equation acquires the form
2 ih 1

(17) -M;w Gﬁ,m;rﬁ,m, (w) = _Q_ﬂ_(sﬁ,rﬁam,mx + E(([pﬁ,m: H]'“’r‘ﬁ.,m,»w .

Next, we are going to calculate the commutators in Green’s function which
appears in the equation (17).

Since the translational invariance of the system we are studying is broken, we
introduce the partial spatial Fourier-transform by indexes z,y and z (because
by the index [, the translational symmetry has been disturbed)

Gn,n,;m,mz

(w) — % Z Gn,;m, ei[a,k,(n_,—mx)+ayky(ny—my)+&(na+nz,)k,(n.,—m,)+J]
E

(18)
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where N = N, N,N,, k = {kz, ky, k,} and:
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4. a%;(n, — 1) +a.bkz(nb — 1) + 2ak, y M — Ty = Tg + Ty

Applying this to the equations of motion of each layer inside the basic motive of
the superlattice, we obtain the system of n, + n; of nonhomogeneous algebraic-
difference equations with the same number of undetermined Green’s functions:
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where the following notations are introduced:
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In further calculation, the described model is reduced by the following sub-
stitutions:

~ _ n?
a*=a=d=a=gqa,; Q=02 = =Qf="24a;
/s /b 3 . Gy as a o
a/b _  afb _ — . 2 — Q5
Gz =0Qy =0z =0C; Qgszﬂgy:QZ':QZZﬁ 3

to the simple cubic lattice model. Introducing symbols:

2 k k
0a = %—4(sin2-a2—z+sin2a79)—2;
2 k
(21) o = 3—3—4(sin2a2z+sinz-a—gl)—2,

we obtain the system of equation, the determinant which can be written in the
following form:
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Nir
where A = g, + 1 —a, B=9, +1—~ 8, Nit = (na + np) x (na + np), et =
e e~ = e~'%*:  n, + np undetermined Green’s functions can be expressed
' D, ) . .
as follows: Gy,, = —==, where D,,, is the determinant of the variable, and

D the determinant of the system. Poles of Green’s functions by which the
phonon dispersion law is determined, can be obtained on the condition that the
determinant of the system (22) is equal to zero [10].

As the equation for D=0, is not in general solvable analytically, we applied
here the numerical method as the approach to certain cases. Different combina-
tions of atom numbers n, and n; have been examined, and also the changes of
relations of Hooke’s elastic constants between and inside the crystalline films.
During further analysis, the superlattices made of films (with n, and n, layers).
of the same atom types have been examined in two different cases:

1. When the connection between the atoms within the layers is weaker than

the one between the atoms on the boundary surfaces of the films (o =

B8 = 2.0).
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2. When the connection between the atoms within the layers is stronger than
the connection between the atoms on the boundary surfaces of the films
(e =6 =0.5).

These two cases are graphically presented in Fig. 2, where one can see the
reduced phonon frequencies (w/f2)® on the ordinate and reduced wave vectors
along the z-direction ak,(n, + ny)/7 on the abscissa. Only the centre of the
first Brillouin zone was taken into consideration (k; = k, = 0). Numbers of
atoms in the relative layers are shown in the brackets: (ng,n). ’
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Figure 2: Energy spectra of phonons in superlattices with two layers

5Based on the expression (21), the frequencies 1 4 and 2y are connected with the equation:
9?4 = —bﬂ% = mﬂ%. It is supposed in the analysis that m = 1, from what follows:
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3. Conclusion

First of all, we formulated the Hamiltonian of the described model struc-
ture of the phonon subsystem of the superlattice and obtained the system of
equations for calculation of phonon frequencies. After that we analyzed the
energy phonon spectra in the superlattices, composed of alternately repeated
ultrathin films of the same materials. The influences of superlattice parameters
on phonon spectra were examined (the relation of elastic constants inside and
between film layers and nuraber of their atoms). On the basis of these analyzes
we have come to the following conclusion:

1. As the result breaking of the translational invariance along the z-direction,
the energy zone (which is continual as in unbounded crystals) passes into
the subzones separated by the forbidden energy zones.

2. Since the length of the motive, repeating itself along the z-direction of the
superlattice is greater than the distance between atoms, the z-component
of the wave vector must be redefined.

3. With the increase of energy, the density of phonon states in all examined
cases becomes higher.

4. In case of the symmetric superlattice (n, = np) with the identical atoms,
energy levels join at the boundary of the first Brillouin zone.

5. In case of a loose connection between the layers of the superlattice, shifting
of energy levels takes place inside the bulk zone (w/§2 = 2) irrespective of
the total number of atoms inside the basic motive of the superlattice. If
the connection between the layers of the superlattice is stronger, energy
levels are being shifted above the bulk zone.
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