ON THE GAUSSIAN AND MEAN CURVATURE OF CERTAIN SURFACES

Eberhard Malkowsky¹, Vesna Veličković²

Abstract. The Gaussian and mean curvatures of surfaces are real valued functions of two real variables. We apply our software for differential geometry [7], [1], [2], [5] and [6] to represent the Gaussian and mean curvatures of various types of surfaces.

AMS Mathematics Subject Classification (1991): 53A05, 68N05 Key words and phrases: Computer Graphics, Differential Geometry, Gaussian curvature, mean curvature

1. Introduction and notations

Throughout this paper we assume that $D \subset \mathbb{R}^2$ is a domain and surfaces are given by a parametric representation

$$(1.1) \quad \vec{x}(u^i) = (x^1(u^1,u^2), x^2(u^1,u^2), x^3(u^1,u^2)) \quad ((u^1,u^2) \in D)$$

where the component functions $x^j: D \to \mathbb{R}$ (j=1,2,3) have continuous partial derivatives of order $r \geq 1$, denoted as usual by $\vec{x} \in C^r(D)$, and the vectors $\vec{x}_k = \partial \vec{x}/\partial u^k$ (k=1,2) satisfy $\vec{x}_1 \times \vec{x}_2 \neq \vec{0}$. If we denote the surface normal vectors, the first and second fundamental coefficients of a surface S given by (1.1) by

$$\begin{split} \vec{N}(u^i) &= \frac{\vec{x}_1(u^i) \times \vec{x}_2(u^i)}{||\vec{x}_1(u^i) \times \vec{x}_2(u^i)||}, \ g_{jk}(u^i) = \vec{x}_j(u^i) \bullet \vec{x}_k(u^i) \quad \text{and} \\ L_{jk}(u^i) &= \vec{N}(u^i) \bullet \vec{x}_{jk} \quad \text{where } \vec{x}_{jk}(u^i) = \frac{\partial^2 \vec{x}}{\partial u^j \partial u^k} \quad \text{for } j, k = 1, 2, \end{split}$$

respectively, then the functions $K:D\to {\rm I\!R}$ and $H:D\to {\rm I\!R}$ with

$$K = \frac{L}{g}$$
 and $H = \frac{1}{2g}(L_{11}g_{22} - 2L_{12}g_{12} + L_{22}g_{11}),$

where $g = \det(g_{jk})$ and $L = \det(L_{jk})$, are the Gaussian curvature and the mean curvature of S. We use our software to give a graphical representation of the Gaussian and mean curvatures of some interesting surfaces.

¹Department of Mathematics, University of Giessen, Arndt- strasse 2, D-35392 Giessen, Germany, e-mail:eberhard.malkovsky@math.uni-giessen.de

²Department of Mathematics, Faculty of Science and Mathematics, University of Niš, Ćirila i Metodija 2, 18000 Niš, Yugoslavia, e-mail:vvesna@BankerInter.net

2. Pseudo-Spheres

Pseudo-spheres are surfaces of revolution with constant Gaussian curvature. Let γ be a curve with parametric representation $\vec{x}(s) = (r(s), 0, h(s))$ and r(s) > 0 ($s \in I \subset \mathbb{R}$), where s is the arc length along γ , and RS be the surface of revolution generated by the rotation of γ about the x^3 -axis. Putting $u^1 = s$ and writing u^2 for the angle of rotation, we obtain the following parametric representation for RS on $D = I \times (0, 2\pi)$

$$(2.1) \vec{x}(u^i) = (r(u^1)\cos u^2, r(u^1)\sin u^2, h(u^1)) \ ((u^1, u^2) \in D)$$

Omitting the argument u^1 , we find that the fundamental coefficients of RS are given by $g_{11}=(r')^2+(h')^2=1$, since u^1 is the arc length along γ , $g_{12}=0$, $g_{22}=r^2$, $L_{11}=r'h''-r''h'$, $L_{12}=0$ and $L_{22}=rh'$. So the Gaussian curvature of RS is given by $K=r^{-1}(r'h''-r''h')$. Since $(r')^2+(h')^2=1$ implies r'r''+h'h''=0, we obtain $K=r^{-1}(r'h''h'-r''(h')^2)=-r^{-1}((r')^2+(h')^2)r''=-r''/r$ and consequently

(2.2)
$$r''(u^1) + K(u^1)r(u^1) = 0.$$

First, we assume K=0. Then $r=c_1u^1+c_2$ with the constants c_1 and c_2 . If we choose $c_1=0$ then $h'=\pm 1$ implies $h=\pm u^1+d$ with some constant d, and we obtain a circular cylinder. If $c_1\neq 0$ then $(r')^2+(h')^2=1$ implies $|c_1|\leq 1$. For $|c_1|=1$, we have $h'\equiv 0$, hence $h\equiv const$, and we obtain a plane. For $0<|c_1|<1$ and a suitable choice of the coordinate system, we have $r=c_1u^1$ and $h=d_1u^1$ for some constant d_1 with $c_1^2+d_1^2=1$, and we obtain a circular cone.

Let $K \neq 0$. Then we may assume $K = \pm 1$.

Let K=1. Then the general solution of (2.2) is given by $r(u^1)=C\cdot\cos{(u^1+u^1_0)}$. By a suitable choice of the arc length, we may assume that C>0 and $u^1_0=0$. Now $(r')^2+(h')^2=1$ implies

(2.3)
$$h(u^1) = \int \sqrt{1 - C^2 \sin^2(u^1)} \, du^1.$$

The choice C=1 yields the unit sphere. For $C \neq 1$, the integral in (2.3) is elliptic. It exists on $(-\pi/2, \pi/2)$ if C < 1, on $(-\arcsin(1/C), \arcsin(1/C))$ if C > 1.

Finally, let K = -1. Then the general solution of (2.3) is given by $r(u^1) = C_1 \cosh u^1 + C_2 \sinh u^1$. In the special case $C_1 = 1/2 = -C_2$, we obtain

$$r(u^1) = e^{-u^1}$$
 and $h(u^1) = \int \sqrt{1 - e^{-2u^1}} du^1$ for $u^1 > 0$.

Figure 1: Pseudo-spheres K = 1, C = 0.75; K = 1, C = 1.5; and K = -1, $C_1 = 1/2 = -C_2$.

3. Exponential Cones

Let $h: \mathbb{C} \to \mathbb{C}$ be an analytic function and $f = |h|: \mathbb{R}^2 \to \mathbb{R}$. We write $z = u^1 + i \cdot u^2$. Then the function h generates an *explicit surface* with the parametric representation

(3.1)
$$\vec{x}(u^i) = (u^1, u^2, f(u^1, u^2)) \quad ((u^1, u^2) \in \mathbb{R}^2)$$

in a very natural way, and represents the modulus of h. A classification of surfaces of this kind with Gaussian curvature K of constant sign can be found in [8]. The surfaces generated by the function h defined by $h(z) = z^{\alpha+i\cdot\beta}$ for real constants α and β are called exponential cones. Here the cases $\alpha \geq 1$ and $\alpha \leq 1$ correspond to $K \geq 0$ and $K \leq 0$, respectively. Using the representation of complex numbers by polar coordinates $z = \rho e^{i\phi}$ for $\rho > 0$ and $\phi \in (0, 2\pi)$, we obtain $f(z) = \rho^{\alpha} e^{-\beta \phi}$. We put $u^1 = \rho$ and $u^2 = \phi$. Then exponential cones on $D = (0, \infty) \times (0, 2\pi)$ are given by

$$\vec{x}(u^i) = (u^1 \cos u^2, u^1 \sin u^2, (u^1)^\alpha e^{-\beta u^2}) \quad ((u^1, u^2) \in D);$$

are special cases of screw surfaces given by

(3.2)
$$\vec{x}(u^i) = (u^1 \cos u^2, u^1 \sin u^2, f(u^1, u^2)).$$

Since the first and second fundamental coefficients of exponential cones are

$$\begin{split} g_{11} &= 1 + \alpha^2 (u^1)^{2\alpha - 2} \mathrm{e}^{-2\beta u^2}, \quad g_{12} = -\alpha \beta (u^1)^{2\alpha - 1} \mathrm{e}^{-2\beta u^2}, \\ g_{22} &= (u^1)^2 \left(1 + \beta^2 (u^1)^{2\alpha - 2} \mathrm{e}^{-2\beta u^2} \right), \\ g &= (u^1)^2 \left(1 + (\alpha^2 + \beta^2)^2 (u^1)^{2\alpha - 2} \mathrm{e}^{-2\beta u^2} \right), \\ L_{11} &= \frac{1}{\sqrt{g}} \alpha (\alpha - 1) (u^1)^{\alpha - 1} \mathrm{e}^{-\beta u^2}, \quad L_{12} = \frac{1}{\sqrt{g}} (1 - \alpha) \beta (u^1)^{\alpha} \mathrm{e}^{-\beta u^2}, \end{split}$$

$$L_{22} = \frac{1}{\sqrt{g}} (\alpha + \beta^2) (u^1)^{\alpha+1} e^{-\beta u^2},$$

we obtain, putting $\delta = \alpha^2 + \beta^2$ and $\gamma = (\alpha - 1)\delta$,

$$K(u^{i}) = (\alpha - 1)\delta \frac{(u^{1})^{2\alpha} e^{-2\beta u^{2}}}{g^{2}} = \gamma \frac{(u^{1})^{2\alpha - 4} e^{-2\beta u^{2}}}{(1 + \delta(u^{1})^{2\alpha - 2} e^{-2\beta u^{2}})^{2}}$$

and similarly

$$H(u^i) = \delta \frac{(u^1)^{\alpha - 2} \mathrm{e}^{-\beta u^2} \left(1 + \alpha (u^1)^{2\alpha - 2} \mathrm{e}^{-2\beta u^2} \right)}{2 (1 + \delta (u^1)^{2\alpha - 2} \mathrm{e}^{-2\beta u^2})^{3/2}}.$$

Figure 2: Exponential cone, $\alpha = -1$, $\beta = -0.1$ and its Gaussian and mean curvature.

Figure 3: Exponential cone, $\alpha=0.5,\,\beta=-0.05$ and its Gaussian and mean curvature.

Figure 4: Exponential cone, $\alpha=2,\ \beta=0.15$ and its Gaussian and mean curvature.

4. Minimal surfaces

Surfaces with identically vanishing mean curvature are called minimal surfaces. It is well known (cf. e. g. [3, Satz 6.6, p. 60] that if S is a surface the boundary of which is a closed curve such that the surface area of S is less than or equal to the surface area of any other "neighbouring" surface with the same boundary then S has identically vanishing mean curvature.

The mean curvature of surfaces of revolution with parametric representation (2.1) is given by $H=(r^2(r'h''-r''h')+rh')/(2r^2)$. Now H=0 is equivalent with r(r'h''-r''h')+h'=0. If h'=0, we obtain a plane. If $h'\neq 0$ then, multiplying by h' and using h''h'=-r'r'' and $(r')^2+(h')^2=1$, we obtain $r''r=(h')^2$. This yields $(r^2)''=2$, since $r''r=1/2(r^2)''-(r')^2$ and $(r')^2+(h')^2=1$. By a suitable choice of the parameter u^1 , we obtain $r(u^1)=\sqrt{(u^1)^2+c^2}$ ($u^1\in\mathbb{R}$) where c is a constant. If c=0, then $r(u^1)=u^1$ since $r(u^1)\geq 0$, and then $h'(u^1)=0$, and we obtain a plane. If $c\neq 0$, then $r'(u^1)=u^1((u^1)^2+c^2)^{-1/2}$, and $(r')^2+(h')^2=1$ yields $(h')^2=c^2((u^1)^2+c^2)^{-1}$, hence $h'(u^1)=|c|/\sqrt{(u^1)^2+c^2}$. Therefore $h(u^1)=c$ arsinh (u^1/c) for a suitable choice of the coordinate system. Putting $u^{*1}=h(u^1)$ and $u^{*2}=u^2$, we obtain

$$\vec{x}(u^{*i}) = (|c| \cosh u^{*1} \cos u^{*2}, |c| \cosh u^{*1} \sin u^{2}, u^{*1})$$

$$((u^{*1}, u^{*2}) \in \mathbb{IR} \times (0, 2\pi)).$$

Thus the minimal surfaces of revolution are planes and catenoids.

Another minimal surface is Scherk's surface, given by a parametric representation

$$\vec{x}(u^i) = (u^1, u^2, \log(\frac{\cos u^2}{\cos u^1})) \quad ((u^1, u^2) \in R_{kj})$$

where, for $k, j \in \mathbb{Z}$ with $k + j \in 2 \cdot \mathbb{Z}$,

$$R_{kj} = I_k \times I_j = ((k-1/2)\pi, (k+1/2)\pi) \times ((j-1/2)\pi, (j+1/2)\pi).$$

It is easy to see that the Gaussian curvature of Scherk's minimal surface is given by $K(u^1, u^2) = -\cos^2 u^1 \cos^2 u^2 (1 - \sin^2 u^1 \sin^2 u^2)^{-2}$.

Figure 5: Scherk's minimal surface and its Gaussian curvature.

5. Surfaces generated by the modulus of analytic functions

The Gaussian and mean curvatures of surfaces with parametric representation (3.1), where f = |h| and h is an analytic function, are given by

$$K = \frac{|h''|^2}{g^2} \left(\operatorname{Re} \left(\frac{(h')^2}{h''h} \right) - 1 \right) \text{ where } g = 1 + |h'|^2 \quad \text{and}$$

$$H = \frac{2}{g^{3/2}} |h| \left(\left| \frac{{h'}^2}{h} \right| g - |h''|^2 \operatorname{Re} \left(\frac{(h')^2}{h''h} \right) \right).$$

We consider the function h defined by $h(z) = 1/\sin \pi z$ ($z \notin \mathbb{Z}$), and put $w = w(z) = \cos 2\pi z$ and $\psi(z) = (h'(z))^2 (h''(z)h(z))^{-1}$. Since $2\cos^2 \pi z = 1 + \cos 2\pi z = 1 + w$ and $2\sin^2 \pi z = 1 - \cos 2\pi z = 1 - w$, we obtain

$$h'(z) = -\pi \frac{\cos \pi z}{\sin^2 \pi z},$$

$$h''(z) = \pi^2 \frac{\sin^2 \pi z + 2\cos^2 \pi z}{\sin^3 \pi z} = \frac{\pi^2}{2} \frac{w+3}{\sin^3 \pi z},$$
 and so
$$\psi = \frac{2\pi^2 \cos^2 \pi z}{\pi^2 (w+3)} = \frac{w+1}{w+3}.$$

Therefore

$$Re(\psi(w)) - 1 = Re(\psi(w) - 1) = Re\left(\frac{w+1}{w+3} - 1\right) = -2Re\left(\frac{1}{w+3}\right)$$
$$= -\left(\frac{1}{w+3} + \frac{1}{\bar{w}+1}\right) = -2\frac{\frac{1}{2}(\bar{w}+w) + 3}{|w+3|^2} = -\frac{2(3 + Re(w))}{|w+3|^2}.$$

Furthermore

$$|h''|^2 = \frac{\pi^4}{4} \frac{|w+3|^2}{|\sin^3 \pi z|^2}$$
, and with $\phi(w) = |w-1|^2 + 2\pi^2 |w+1|$

$$g = 1 + |h'|^2 = 1 + \frac{\pi^2}{2} \frac{|1 + w|^2}{|\sin^2 \pi z|^2}$$

= $\frac{1}{4|\sin^2 \pi z|^2} (|2\sin^2 \pi z|^2 + 2\pi^2|w + 1|) = \frac{1}{4|\sin^2 \pi z|^2} \phi(w),$

and so

$$K = \frac{|h''|^2}{g^2} \operatorname{Re}(\psi(w) - 1) = -\frac{4\pi^4 |w - 1|(3 + \operatorname{Re}(w))}{\phi^2(w)}.$$

Finally putting

$$w_1(u^i) = \text{Re}(w) = \cosh 2\pi u^2 \cos 2\pi u^1,$$

$$w_2(u^i) = |w - 1| = \frac{1}{\sqrt{2}} (\cosh 4\pi u^2 + \cos 4\pi u^1 - 4w_1(u^i) + 2)^{1/2},$$

$$w_3(u^i) = |w + 1| = \frac{1}{\sqrt{2}} (\cosh 4\pi u^2 + \cos 4\pi u^1 + 4w_1(u^i) + 2)^{1/2}$$

and $w_4(u^i) = \phi(w) = (w_2(u^i))^2 + 2\pi^2 w_3(u^i)$, we have

(5.1)
$$K(u^{i}) = -\frac{4\pi^{2}w_{2}(u^{i})(3 + w_{1}(u^{i}))}{(w_{4}(u^{i}))^{2}}.$$

Similarly, putting

$$w_5(u^i) = (w_3(u^i))^2$$
, $w_6(u^i) = w_3^2(u^i)w_4(u^i) - 2\pi^2 w_5(u^i)$ and $f(u^i) = |h(z)| = \frac{\sqrt{2}}{\sqrt{\cosh 2\pi u^2 - \cos 2\pi u^1}}$,

we obtain

(5.2)
$$H(u^{i}) = \pi^{2} \frac{f(u^{i})w_{6}(u^{i})}{(w_{4}(u^{i}))^{3/2}}.$$

We represent the Gaussian and mean curvatures of exponential cones and explicit surfaces as screw surfaces and explicit surfaces by putting f = K and f = H in (3.2) and (3.1), respectively.

Figure 6: Lines of constant Gaussian and lines of constant mean curvature.

Figure 7: Gaussian curvature given by (5.1).

Figure 8: Mean curvature given by (5.2).

References

- Failing, M., Entwicklung numerischer Algorithmen zur computergrafischen Darstellung spezieller Probleme der Differentialgeometrie und Kristallographie, Ph.D. Thesis, Giessen, 1996, Shaker Verlag, Aachen, 1996
- [2] Failing, M., Malkowsky, E., Ein effizienter Nullstellenalgorithmus zur computergrafischen Darstellung spezieller Kurven und Flächen, Mitt. Math. Sem. Giessen, 229(1996), 11-25
- [3] Laugwitz, D., Diferentialgeometrie, Teubner Verlag Stuttgart, 1977
- [4] Kreyszig, E., Differentialgeometrie, Akademische Verlagsgesellschaft Leipzig, 1957
- [5] Malkowsky, E., An open software in OOP for computer graphics and some applications in differential geometry, Proceedings of the 20th South African Symposium on Numerical Mathematics, (1994), 51-80
- [6] Malkowsky, E., An open software in OOP for computer graphics in differential geometry, the basic concepts, ZAMM, 76, Suppl 1, (1996), 467-468
- [7] Malkowsky, E., Nickel, W., Computergrafik in der Differentialgeometrie, Vieweg-Verlag Wiesbaden, Braunschweig, 1993
- [8] Ullrich, E., Betragsflächen mit ausgezeichnetem Krümmungsverhalten, Math. Z., 54(1951)