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ON THE GAUSSIAN AND MEAN CURVATURE OF
CERTAIN SURFACES

Eberhard Malkowsky!, Vesna Velickovié?

Abstract. The Gaussian and mean curvatures of surfaces are real val-
ued functions of two real variables. We apply our software for differential
geometry [7], [1], [2], [5) and [6] to represent the Gaussian and mean cur-
vatures of various types of surfaces.
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1. Introduction and notations

Throughout this paper we assume that D C IR? is a domain and surfaces
are given by a parametric representation

(1‘1) 5(’”") = (xl(ula UZ), wz(uls uZ)’ w3(u1, uZ)) ((ula UZ) € D)

where the component functions z/ : D - R (j = 1, 2, 3) have continuous partial
derivatives of order » > 1, denoted as usual by £ € C"(D), and the vectors
T = 8T/0u* (k=1 2) sa.tlsfy Ty X Iy # 0. If we denote the surface normal
vectors, the first and second fundamental coefficients of a surface S given by
(1.1) by

ot Z1(u') x F5(u') N i
N(u* = = , o and
(u) “zl(u,) »; 2(11’)“ gjk( ) ( ) k( )
2—0
Lix(w') = = N(u') o ;x where Fx(u') = FRE for j,k=1,2,

respectively, then the functions K : D —+ IR and H : D — IR with
L 1
K= 7 and H = E(Lllgn —2L12g12 + Laagn),

where g = det(g,x) and L = det(L;x), are the Gaussian curvature-and the mean
curvature of §. We use our software to give a graphical representation of the
Gaussian and mean curvatures of some interesting surfaces.
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2. Pseudo—Spheres

Pseudo-spheres are surfaces of revolution with constant Gaussian curvature.

Let v be a curve with parametric representation Z(s) = (r(s),0, h(s)) and
r(s) > 0 (s € I C IR), where s is the arc length along v, and RS be the surface
of revolution generated by the rotation of ¥ about the z3-axis. Putting u! = s
and writing u? for the angle of rotation, we obtain the following parametric
representation for RS on D = I x (0, 2n)

(2.1) :E'(u") = (r(u') cosu?, r(ul)sinu?, h(ul)) ((u!,u?) € D)

Omitting the argument u!, we find that the fundamental coefficients of RS are
given by g;1 = (r')?+(h')? = 1, since u! is the arc length along v, g12 = 0, g2z =
r2 D11 = vR"—¢"k’, Li3 = 0 and L4, = rk’. So the Gaussian curvature of RS is
given by K = r=1(r'h” — r"’h’). Since (/)2 + (k’)? = 1 implies r'r" + 'R = 0,
we obtain K = r~Y(#'h"K — r"(R')?) = —r~1((r")? + (R')®)r" = —r"/r and
consequently ,

(2.2) ' (ul) + K (u")r(u') = 0.

First, we assume K = 0. Then r = cyu! + ¢y with the constants ¢; and cz. If
we choose ¢; = 0 then A’ = 21 implies h = +u! + d with some constant d, and
we obtain a circular cylinder. If ¢; # 0 then (/)% + (h')? = 1 implies |e1| < 1.
For |c1| = 1, we have A’ = 0, hence h = const, and we obtain a plane. For
0 < |e1] < 1 and a suitable choice of the coordinate system, we have r = cyu!
and h = d,u! for some constant d; with ¢? + d? = 1, and we obtain a circular
cone.

Let K # 0. Then we may assume K = +1.

Let K = 1. Then the general solution of (2.2) is given by r(ul) = C -
cos (u! + u}). By a suitable choice of the arc length, we may assume that C' > 0
and u} = 0. Now (r')? + (h')? = 1 implies

(2.3) h(u') = / \/1— CZsin?(ul) du'.

The choice C = 1 yields the unit sphere. For C # 1, the integral in (2.3) is
elliptic. It exists on (—x/2,7/2) if C < 1, on (— arcsin (1/C), arcsin (1/C)) if
C>1

Finally, let K = —1. Then the general solution of (2.3) is given by r(u') =
C; coshu! + Cysinh u!l. In the special case C; = 1/2 = —C3, we obtain

r(ul) = e~ % and 'h(ul) = /\/1 —e~2u' gyl for u! > 0.
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Figure 1: Pseudo-spheres K =1, C = 0.75; K = 1, C = 1.5; and K = -1,
Cl = 1/2 = —Cz.

3. Exponential Cones

Let h : C — C be an analytic function and f = |h| : R* — IR. We write
z = ul 4+ i-u?% Then the function h generates an ezplicit surface with the
parametric representation

(3.1 (') = (ul,?, f(ut,u?)  ((u},4?) € RY)

in a very natural way, and represents the modulus of A. A classification of
surfaces of this kind with Gaussian curvature K of constant sign can be found
in [8). The surfaces generated by the function A defined by h(z) = 2>+ for
real constants a and 3 are called ezponential cones. Here the cases o > 1 and
a < 1 corrsepond to K > 0 and K < 0, respectively. Using the representation
of complex numbers by polar coordinates z = pe*® for p > 0 and ¢ € (0, 27),
we obtain f(z) = p®e~P¢. We put u! = p and u? = ¢. Then exponential cones
on D = (0,0) x (0,27) are given by

#(u') = (u' cos u?, ulsin u?, (ul)“e_ﬁug) ((u!,v?) € D);
are special cases of screw surfaces given by
(3.2) #(u') = (u! cos u?, ulsin u?, f(u',u?)).
Since the first and second fundamental coefficients of exponential cones are
g =1 +a2(ul)2a-—2e—2ﬁu2’ g12 = _aﬂ(ul)2a—le—2ﬂu7,
gz = (u)? (14 p2 (w220
g = (ul)? (1 + (a2 + ﬂz)z(ux)za—2e-2pu

Lll = —l-a(a - 1)(Ul)a—le_ﬁu2, L12 =

77

1 — a)B(u')*e P¥’
(1= )p(uye
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LZZ — _]'_(a+ﬂ2)(ul)a+le—ﬁu2’

V9
we obtain, putting § = a? + 8?2 and v = (a — 1)4,
ul)zae—wu’ _ ' (ul)2a—4e—2ﬁu2
92 = YT+ o(u))2o-Ze-28u7yz

K(u’.) = {a— 1)5(

and similarly
(ul)cvz—ze—ﬁu2 (1 +a(u1)2a—2e—2ﬁu2)
2(1 + o(ul)20—2e—28u?)3/2

H(ui) =4
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Figure 2: Exponential cone, « = —1, 8 = —0.1 and its Gaussian and mean
curvature.

Figure 3: Exponential cone, @ = 0.5, 8 = —0.05 and its Gaussian and mean
curvature.
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Figure 4: Exponential cone, & = 2, 8 = 0.15 and its Gaussian and mean
curvature. '

4. Minimal surfaces

Surfaces with identically vanishing mean curvature are called minimal sur-
faces. It is well known (cf. e. g. [3, Satz 6.6, p. 60] that if S is a surface the
boundary of which is a closed curve such that the surface area of S is less than
or equal to the surface area of any other "neighbouring” surface with the same
boundary then S has identically vanishing mean curvature.

The mean curvature of surfaces of revolution with parametric representation
(2.1) is given by H = (r2(r'h" —r""h')4+rh') /(2r?). Now H = 0 is equivalent with
r(r'h”" —r"h')+h' = 0. If k' = 0, we obtain a plane. If A’ # 0 then, multiplying
by h’ and using A"k’ = —r'r" and (r')2+ (h')? = 1, we obtain r"'r = (h’)%. This
yields (r?)" = 2, since 7''r = 1/2(r?)" —(r')? and (/)24 (h')? = 1. By a suitable
choice of the parameter u!, we obtain r(u') = \/(ul)? +c? (u! € R) wherecisa
constant. If ¢ = 0, then r(u!) = u! since r(u!) > 0, and then h'(u') = 0, and we
obtain a plane. If ¢ # 0, then 7'(u!) = w!((u!)? +¢?)~1/2, and (r')2 + (h')2 =1
yields (h)2 = c%((u!)? + ¢?)~ !, hence h/(u') = |c|/4/(u?)? + 2. Therefore
h(u!') = ¢ - arsinh(u!/c) for a suitable choice of the coordinate system. Putting
u*! = h(u') and u*? = u?, we obtain

Z(u*) = (|| coshu*! cos u*?, |¢| cosh u*! sin u?, u*?)

((u*',u*?) € R x (0,2m)).

Thus the minimal surfaces of revolution are planes and catenoids.
Another minimal surface is Scherk’s surface, given by a parametric repre-

sentation
cos u?

) ((«,4®) € Rij)

=0 4\ __ 1 2
#(u') = (o, 0, log (S0
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where, for k,j € Z withk+ ;€2 %,
Rag =T x I; = ((k = 1/2)m, (k+ 1/2)7) x ((j — 1/2)m, (G + 1/2)).

It is easy to see that the Gaussian curvature of Scherk’s minimal surface is given

by K(u',u?) = —cos? u! cos? u?(1 — sin® u! sin? u?)~2.

Figure 5: Scherk’s minimal surface and its Gaussian curvature.

5. Surfaces generated by the modulus of analytic functions

The Gaussian and mean curvatures of surfaces with parametric representa-
tion (3.1), where f = |h| and A is an analytic function, are given by

"2 n2
K= (Re((h) )‘1) where g =1+ [A'|* and

92 h!''h
2 h)2
H = —lh ( g — IW"|Re (%)) .
We consider the function h defined by h(z) = 1/sinwz (2 ¢ Z), and put

w = w(z) = cos2mz and ¥(z) = (K'(2))?(h"(2)h(2))"". Since 2cos?mz =
1+ cos2rz =1+ w and 2sin” mz =1 — cos 27z = 1 — w, we obtain

h'?
h

cos Tz
hl(z) =T P] ’
sin® 7z
sinnz+2cos?nz 7w w+3
" 2
h'(z) =m —3 = 3 and so
sin” wz 2 sin”® 7z

272cos?mz w1

Com2(w4+3) T w43
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Therefore
+1 1
Re(¢¥(w)) =1 =R —1)=R w —1) ==
((w) e(w(uw) = 1) = Re (225 - 1) = —2re (1)
=_( 1,1 )__2%(1B+w)+3_ 2(3 4+ Re(w))
w+3 w41/ lw+3]2 [w+ 32

Furthermore

4 2
B2 = L Chatl and with ¢(w) = |w — 1|2 + 27%|w + 1]

4 |sind 722’

214 wi?
— 14 WP=14 T
g 7] 2 |sin? mz|?

(12sin? 7z|? 4+ 202 |w + 1]) = #(w),

= 4| sin? mz|2 4|sin® rz|?

and so 2 .
4 - :

[gzl Re($(w) — 1) = — mw — 1[(3 + Re(w))

¢*(w)

K =

Finally putting

wi(u!) = Re(w) = cosh 2mu? cos 27u!,

. 1 :
wa(u) =|w-1|= ﬁ-(cosh 47u? + cos 4mu' — 4w, (u') + 2)V/?,
wa(v’) =l|lw+1|= ﬁ(cosh 4mu? + cos 4rul + 4w, (u') +2)1/?

and wq(u') = ¢(w) = (wa(u'))? + 272ws(u?), we have

(5.1) K(u) = _ArPwa(v) (3 + w;(u")).

(wa(w))?
Similarly, putting
ws(u') = (wa(u'))?, we(v') = wi(u)wy(u') — 2r%ws(v') and
0 _ V2
f@) = 1hE)] = V/cosh 2mu? — cos 2rul’
we obtain : )
(5.2) H () = w2100

(wa(u?))¥/2
We represent the Gaussian and mean curvatures of exponential cones and ex-

plicit surfaces as screw surfaces and explicit surfaces by putting f = K and
f = H in (3.2) and (3.1), respectively.
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Figure 8: Mean curvature given by (5.2).
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