NovIi SAD J. MATH. 167

VoL. 31, No. 1, 2001, 167-173

IDENTITIES IN THE POLYNOMIAL EXPRESSIONS
OF MATHEMATICAL MODELS OF ROBOTIC
MECHANISMS

Milos Rackovié !

Abstract. Automatic generating of the symbolic mathematical models
of robotic mechanisms belongs to the class of problems of combinative
optimisation. One way of dealing with this problem is the application of
object-oriented approach to design of the system for mathematical mod-
elling of robotic mechanisms. This paper presents formal specification of
the system for reducing the numerical complexity of the polynomial ex-
pressions forming the robotic mechanism model, using the Unified Mod-
elling Language.

AMS Mathematics Subject Classification (1991): 68Q40, T0B15

Key words and phrases: object-oriented specification, trigonometric iden-
tities

1. Introduction

Considerable progress in modelling robotic mechanisms has been achieved
by introducing the numeric-symbolic [1] and symbolic methods which develop
special data structures for representing analytic expressions of the model and
enable reduction of numerical complexity of the generated model. In {2, 3],
a database management system was introduced into the modelling process of
robotic mechanisms and the basic Newton-Euler method for forming the model
of simple kinematic chain dynamics in closed form [1] has been broadened in
such a way as to enable modelling of both complex and closed kinematic chains
using the notations introduced in [4]. Now, the model of the robotic mechanism
in closed form [2, 3] can be expressed as:

(1) P =H(q,0)§+¢"C(q,0)+ +h%(q,0) + B(q,0)r

where:
H = H(q,©) - inertial matrix of the mechanism;

C = ((q,9) - matrix of the Coriolis and centrifugal effects;
hG = h%(q, ©) - gravity vector;
B = B(gq,0) - matrix of chain closure;

o - reaction vector of chain closure.
1University of Novi Sad, Faculty of Science, Institute of Mathematics, Trg D. Obradoviéa
4, 21000 Novi Sad, Yugoslavia

168 Milos Rackovi¢

A detailed mathematical analysis shows that all model expressions are of the
following form:

(2) V=) ki [] =5

i=1 =1

where: .
Y - robotic quantity to be calculated;

k; - coustant coefficient related to the i-th addend;
z; - one of the variables of the robotic mechanism model;
e;j - exponent of the j-th variable of the i-th addend.

It is important to mention that the samne form (Egq. 2) represents both the
basic mathermnatical expressions for forming the dynamic mechanism model and
the fully-developed analytic expressions of the model. The difference is in the
fact that z; in the case of the developed expressions must be one of the basic
robotic quantities (q, ¢, §, sing, cosgq).

In [5], the object-oriented approach is introduced to design a system for
symbolic modelling of robotic mechanisms. The formal specification of the sys-
tem is given in Unified Modelling Language (UML) [6-8] by use case and class
diagrams. In [9], the state diagram is given which describes the dynamics of the
system only on the highest level. More details about the process for forming the
starting model of the mechanisin are given in [10]. This paper describes the sys-
tem for reducing numerical complexity of the generated model. The main task
is to specify the elimination of the identities from the fully-developed analytical
expressions of the generated model.

2. Class diagram

The system statics is represented by the class diagram in Fig. 1. The
basic classes of the system are Calculating graph and Analytic expressions.
The class Calculating graph represents mathematical expressions which form
the mathematical model of the mechanism dynamics, and the class Analytic
expressions represents the fully-developed analytic expressions of the model.
Both classes have the attribute phase which contains the integer value indicating
the phase in the process of modelling.

In order to represent the polynomial expressions (Eq. 2) we introduced the
abstract classes Variable and Addends. The class Variable is used for repre-
senting all variables in polynomial expressions which stand for robotic quantities.
Each variable has the attributes code and value. The attribute code uniquely
determines the variable and the attribute value stores the numerical value of
the robotic quantity which is represented by that variable. The class Addends
serves for connecting the expression with its addends. This class contains the
same attributes. The attribute code stores the code of the variable from the

Identities in the polynomial expressions . .. 169

left-hand side of the equality sign in the expression, and the attribute value
stores the value of the constant coeflicient of the addend.

Calculating - Analytic
graph Variable expressions
hase : int code : int hase : int
P value : double P

1

1 1
Analytic
variable
1.* I .
Graph Elementary Main analytic
variable variable variable
type : int 0. <>
level : int 1
Factor
0.* { 5 degree : int T
1 v
Addends
code : int
sh : int
value : double
0.* 1.*
oo | X O e

Graph
addends

Analytic
Fig. 1. Class diagram addends

Although both expressions are of the same type we have to introduce differ-
ent classes for their representation in order to distinguish them in the process
of forming the model and reducing its calculating complexity. We specialise the
class Variable on the classes Graph variable and Analytic variable. The
class Addends is specialised on the classes Graph addends and Analytic
addends for the same reason of distinguishing the two kinds of expressions.
The class Analytic variable does not contain any additional attributes apart
from the inherited ones. On the contrary, the class Graph variable, in ad-
dition to the inherited attributes, have the two additional attributes type and
level. The attribute type takes values from the set {’0°,’1°,2°,"3’}, and denotes
the type of the robotic quantity which is represented by the variable., The
attribute level is introduced to enable calculating of the robotic quantities by

170 Milo$ Rackovié

bottom-up navigating through the database. The class Analytic variable is
the abstract class which is also specialised on the classes Elementary variable
and Main analytic variable, because the fully-developed analytic expressions
contain only two kinds of variables.

Let us describe storing of the fully-developed analytic expressions. The
variable from the left-hand side of the equality sign is stored as an instance of
the class Main analytic variable. This variable (expression) is connected to
its addends by aggregation to the class Analytic addends, where the constant
coefficients of every addend are stored (in the attribute value) so that each
addend takes a new instance of the class. Connection of the addend and its
factors is represented by the aggregation from the class Analytic addends
to the class Elementary variable in which all basic robotic quantities are
stored. Each addend is connected only to its factors, and for every connection
we have attached the association class Factor, which represents the degree of
that factor stored in the attribute degree. Storing of the expressions in the form
of calculating graph is analogous to the previous one but we will not describe
this here because the process for eliminating the identities from the developed
analytical expressions does not use these expressions.

3. Elimination of identities

When the starting model of the robotic mechanism is formed ([10}]), the next
step is the elimination of the redundant mathematical operations. First, we need
to form the fully-developed analytic expressions and then to apply all possible
trigonometric identities. The sequence diagram given in Fig. 2 specifies the
process of elimination of the trigonometric identities from the fully-developed
analytic expressions.

The actor User initialises the process by calling the method trig_ident. This
method belongs to the class Analytic expressions and it is called over its
instance which contains all fully-developed analytic expressions. The control is
then passed to the class Utility (method ¢rig_identities). This class contains
utility methods and does not serve for storing the analytic expressions. For this
reason this class is not included in the class diagram in Fig. 1. In order to
apply all possible trigonometric identities we need to process all fully-developed
analytic expressions, one by one. This is performed by the external loop in
which we call the method nezt_var_ml belonging to the class Analytic expres-
sions. This method finds the next unprocessed analytic expression, while such
expression exists.

For each expression, we have to sort first its addends according to the num-
ber of factors in every addend and initialise the serial number of the addend -
(methods sort_add and init_sn which belong to the class Utility). Then, using
the double loop, we pass through the addends of the current expression, so that
every two addends are compared with the aim of discovering and applying the
identities. Here we use the method nezt_add_sn which belongs to the class Main

171

.

expressions . ..

Identities in the polynomial

X

v (ree)uoosip F

spuappe
nk[euy :jee

spusppe
nkeuy :zee

spuappe
Jnheuy ee

: — SISIX9 10U IRA [TIUN
! (ee)us1o5=us SISTX3 10U ppe Jnun
(19+7ozee)jo05TInd [[= 0] us3o3
. SISIX2 JOU ppe [un
(1ee)32007193=12 [= o] Jooond
— = uoosIp
Ama&..«og 198=7o [1 = jo] 10097108
“ | SR
(zee‘ Tee)atfres™yoayo=yo [| = Yo] awres” §o3yo
: . | SRR
. o - JeJ U ouwes
(Tee a«wE nTsey=yo [[=3o] us103
' H us”ppe 1xau
(Jee‘ee)oe) U aures=3o 93essaw puas
: (1eR)usT198=[us us™193
DA us~—ppe 1xau
Quau JUS‘ABUI)US " pprRTIXaU o8essow puss
! (ee)usT198=1us us
DA ppe Mos .
(ev‘Us*AvuI)us™ppe_IXau [WTRATIXoU)
' - “IV a8essow puas
e (us)us~jgur
' (Aeur)ppe pos . -3
' (1‘ABW)[UI TBATIXIU
" » (aseyd)
. juopr Sy
: ()seunuapr Sin P p! oI
J|qeLreA Anmn suorssaidxa
onkpeue onh[euy

UTRJA] ‘ABLI

Jas()

Fig. 2. Sequence diagram

172 Milos Rackovié

analytic variable and finds the next addend according to the one with serial
number sn which is generated for every addend by calling the method get_sn,
belonging to the class Analytic addends. If we want to apply some trigono-
metric identity on the two addends, they must first fulfil the condition of having
the same number of factors. The condition is checked by the method same_n_fac
which belongs to the class Utility, and then, in the case when it is fulfilled, the
method has_tr_id is called, belonging to the same class. This method finds the
trigonometric identity which can be applied, if such identity exists, and then
performs its elimination. It is possible to apply the trigonometric identities of
the form:

sinz 4-cosz =1

sin (z + y) =sinz - cosy +cosz - siny
cos(z +y) =cosz-cosy —sinz-siny

where = and y are either some of the internal coordinates of the robotic mech-
anism or the variables obtained from the mentioned identities.

In all three cases, one of the addends is eliminated and in the other one, the
number of factors is reduced by one. All these operations are performed in the
method has_tr_id. Now, the addend with the reduced number of factors can be
the same as the one of the remaining addends of the current expression. If it is
s0, we need to unite these two addends, by summing their constant coefficients.
These operations are realised by the method check_same which belongs to the
class Utility and the methods get_coef, pui_coef and discon, belonging to the
class Analytic addends.

The described operations specify the process of eliminating the trigonomet-
ric identities. In a similar way, we can specify the process for eliminating the
identical expressions too, which is also part of the process for reducing nu-
merical complexity of the analytic expressions. The next task is to store the
reduced fully-developed analytic expressions in the form of calculating graph
again, which is not a subject of this paper.

4, Conclusion

By a detailed analysis of the Newton-Euler method it was established that
the mathematical relations forming the robotic mechanism model are in the
polynornial form. With the aim of forming mathematical models of robotic
mechanisms in symbolic form, it is necessary to develop special data structures,
suitable for storing the polynomial expressions and for reducing their calculating
complexity.

The object-oriented approach was used to design a system for mathermatical
modelling of robotic mechanisms in symbolic form. Using UML, the complete
formal specification of the informational requests of complex technical systems
can be performed. In the class diagram, consisting part of this modelling lan-
guage, the statics of the given system is described. The system dynamics can

Identities in the polynomial expressions ... » 173

be specified too, using the use case and other UML diagrams. Elimination of
the trigonometric identities from the fully-developed analytical expressions of
the mechanism model is specified here by the sequence diagram. By adding
specification for the other system processes we can obtain a complete formal
specification of the given system, which is the basis for its implementation.

References

(1]
2]

(3]

(6]
[7]

[9]

[10]

Vukobratovié, M., Kiréangki, N., Real-Time Dynamics of Manipulation Robots
(Springer-Verlag 1985). .
Rackovi¢, M., Vukobratovié¢, M., Surla, D., ”Generation of Dynamic Models of

Complex Robotic Mechanisms in Symbolic Form™, Robotica (1998) volume 16,
pp. 23-36.

Rackovié, M., Surla, D., Vukobratovié¢ M., ?On Reducing Numerical Complexity
of Complex Robot Dynamics”, Journal of Intelligent and Robotic Systems 24
(1999), pp. 269-293.

Vukobratovié, M., Borovac, B., Surla, D., Stokié¢, D., Biped Locomotion, Dynam-
ics, Stability, Control and Application (Springer-Verlag 1990).

Rackovié, M., Surla, D., "Object-Oriented Specification of the System for Gen-
erating Mathematical Models of Robotic Mechanisms Dynamics”, Fourth ECPD
International Conference on Advanced Robotics, Intelligent Automation and Ac-
tive Systems, Moscow, 1998, pp. 270-275.

Booch, G., Rumbaugh J., Jacobson, L., The Unified Modeling Language User
Guide, Addison-Wesley Longman, Inc., 1999.

Rumbaugh J., Jacobson, 1., Booch, G., The Unified Modeling Language Reference
Manual, Addison-Wesley Longman, Inc., 1999.

Stanojevié, 1., Surla; D., Introduction to Unified Modelling Language, Group of
Information Technologies, Novi Sad, 1999.

Surla, D., Rackovié, M., ”Object-Oriented Specification of the System for Gener-
ating Symbolic Models of Robotic Mechanisms”, Novi Sad J. Math. Vol. 30, No.
3, 2000, pp. 149-160.

Rackovié, M., ”Specification of the Classes for Forming the Robotic Mecha-
nism Model, Informal Proceedings of the TARA 2000 Conference, Novi Sad,
Yugoslavia, September 6-7, 2000, pp. 85-92.

