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THE FEFERMAN-VAUGHT THEOREM FOR
REDUCED IDEAL-PRODUCTS

Milan Z. Grulovié', Milos S. Kurilié!

Abstract. The Feferman-Vaught theorem for first order logic is gen-
eralized for reduced ideal-products of topological structures. Roughly,
the theorem connects satisfaction of a topological formula in a reduced
ideal-product of topological structures with the satisfaction of the adjoint
Boolean formula in the corresponding Boolean algebra.
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1. Preliminaries

Throughout the paper {(S;,O;) | ¢ € I} will be a family of topological
structures of a given first-order language £ (in the sense of [5]). By A and ¥ we
will denote an ideal and a filter on the index set I respectively. 7; : [],c; Si —
S;, j € I, will be the canonical projections.

OM is the topology on [I;c;Si with the base BA which consists of sets
Nicr ﬂ[l(Oi), where L € A and O; € O;, for all i € L. The topological
structure ([T;c; Si, O*) will be denoted by HA S;. The equivalence relation ~
on [[;c; Si defined by: f ~ g iff {i € I | f; = g;} € ¥ determines the quo-
tient space (structure) []* S;/ ~ which will be called the reduced ideal-product
(shortly r.i. product or just r.i.p.) of the family {(S;,0;) | i € I'}. Such a r.i.p.
will be denoted by qu\} Si ([7]).

The natural mapping q : [[;c; S — [l,c; Si/ ~ is given by q(f) = [f],
where [f] is the equivalence class of f. Since ¢ is an open mapping, B} =
{q(B) | B € B} is a base for the topology O} on H/\I\, S;.

It is proved in [6] that the r.i.p. preserves separation axioms Ty, 11, T, T3
and T; 1 if and only if the following condition holds:

VA€ UVB & UL e A(LC A\ Band L° ¢ ) (AD).

Reduced ideal-products which satisfy the above condition were investigated in
[6], [7] and [8]. Special (A¥)-r.i. products are: the Tychonov product (for
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A = [I]<¥ and ¥ = {I}), the full box product (for A = P(I) and ¥ = {I}),
the ultraproduct (for A = P(I) and ¥ an arbitrary ultrafilter on I) and the
Knight’s box product (for A = [I]<* and ¥ = {A C I | A® € [I|<*}, where &
and p are cardinals satisfying |I| > k > p > w).

By = we will denote the well-known congruence relation on the Boolean
algebra P(I) given by:

A =B iff forsome Fe UV, ANF =BnNF.

The equivalence class containing the element A € P(I) will be denoted by [A].

The structure (P(I)/=,+,-,,0,1), where [A] + [B] = [AUB], [A4]-[B] =
[AnB|, [A] = [A], 0 = [#] and 1 = [I], is a Boolean algebra. If A is an
ideal on I (more precisely on P(I)), then A/== {[L] | L € A} is an ideal on

P(I)/ =. The structure B def (P(I)/=,+,-,,0,1,A/ =) is a Boolean algebra

with distinguished ideal. Let £g = {+,-,”,0,1, A} be the associated first-order
language. The theory we consider, Ty, includes all axioms of the theory of
Boolean algebras and the additional axioms:

A(0); A@) AA(y) = Az +y); Mz) Ay <z = Ay).

2. The Feferman-Vaught-type theorem for r.i.p.

The classical theorem of S. Feferman and R. Vaught can be found, for in-
stance, in [4] and [3]. In [5] M. Flum and J. Ziegler gave a topological version
of this theorem concerning Tychonov products. L. Bertossi considered in [2]
the ” D-product” of a family of topological spaces and formulated the Feferman-
Vaught-type theorem for such structures.

Here we extend the above results for any r.i.p. of a family of topological
structures.

Let ¢ be an Li-formula ([5]) and let Y be a set variable. The formula Y
is obtained from ¢ substituting each free occurence of Y of the form ¢t € Y by
t=1t.

Lemma 2.1. If ¢ is an Li-formula and (S, O) a topological structure, then for
each valuation v in (S, Q) it holds:

(S,0) E (¢ = ¢ )(Y/5)],
where v(Y/S) is the valuation obtained from v substituting the value of Y by S.

Proof. If Y is not free in ¢, then ¢ = ¢¥ and the proof is completed. Otherwise,
we proceed by induction on the complexity of the formula ¢. We omit the case
when ¢ is atomic and the induction steps when ¢ is of the form ¥ A 0, =
and Jz 1. Solet ¢ = IX(t € X A ) and let (S,0) and v be arbitrary while
(S,0) = ¢[v(Y/S)]. Then there is U € O such that

(a) (S,0) = (t e X)(Y/S)(X/U)] and (b) (S,0) = [o(Y/S)(X/U)].
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Y is free in ¢, so X #Y and v(Y/S)(X/U) = v(X/U)(Y/S). By the induction
hypothesis we have (S,0) = (¥ <= Y)[v(X/U)(Y/S)] and by (b) (S,0) =
Y [(Y/S)(X/V)]. Now, by (), (S,0) E (1 € X A ) p(X/U)(Y/S)] for
some U € O, ie. (S,0) | 3X(t € X ApY)[w(Y/S)], which gives (S,0) =
(o = ©¥)[v(Y/S)]. The proof of the converse implication is similar.0

Theorem 2.2. (The Feferman-Vaught-type theorem for r.i. products). For
each Li-formula @(zt,..., 2P, X1 ... X?) there is a sequence of formulas
(o591, ..., ¥m) satisfying:

(A) for all j € {1,...,m}, ¥; is an L-formula and the free variables of
©; are among the free variables of ¢. Moreover, if X is a set variable which is
positive (negative) in o, then X is positive (negative) in v;;

(B) 0(y1,---Ym) is a formula of the language Ly which is monotonic, that
is:

T Fy1 <A AYm <tm Ao(Y1, - Ym) = o(t1, ..., tm);

(C) for each mnonempty set I, any ideal A and any filter ¥ on I, for each
family {(S;,0;) | i € I} of topological structures, each f1,..., fP € [[S; and
each UY,..., U € B there holds:

[ s kel 7@, gD i B ol [F, ]l

where Iy, ={i € I | S; =;[f},.... .U ... UM} for j€{1,...,m} and B
is the above defined model.
We say that ¢ is determined by the sequence (o391, ..., 0m).

Proof. Our proof follows the proof of the Feferman—Vaught theorem for first-

order logic. Like in [5], the sequencesa: ,xP; X X LU L
Uq; [f1]7"'7[fp]; q( ) ""q(Uq) Z? "’f1p7 27 N 7U7/q and [le] : [ 771]
will be denoted respectively by Z, X, f, U, [f], ¢(U), fi, U; and [Iw] By Fu(p)
we will denote the set of free variables of the formula ¢ and Fot(p) (Fv~(p))

will be the set of the second order variables which are positive (negative) in .
The r.i.p. H/\I\, S; will be denoted shortly by S.

The proof is based on induction on the complexity of the formula ¢; the
basic logical connectives will be = and A and the basic quantifier will be 3. We
omit the (easy) case when ¢ is atomic and the induction steps when ¢ is of the
form: ¢, ¢ A0 and Jxop.

Let o = Y (t(xl,...,2P) € Y A ¢(at,... 2P, X ..., X9 Y7)). By the
induction hypothesis there is a sequence (7;61,...,60,,) determining ¢. Let [ =
2™ and let 51 = {1}, so = {2}, ..., 8m = {m}, S;ns1,...,s; bealist of all subsets
of {1,2,...,m}. We will prove that the sequence (o;¢1,..., %1, M, ., 0m),
where:

l

o= Elzl,...,zl(/\ 2 < YA /\ zi-2j = 2 AT(21, ..o, Zm) A
k=1 s;Us;j=sg k

>3

Az \v));

1
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pr=3YteYA N 0) k=1,

JESK

determines . 9}/ is obtained from 6; as in the preceding lemma. By convention,
the empty conjunction is a true sentence (in ”our” notation T').

(A) By the induction hypothesis, §;, j = 1,...,m, are £;-formulas and
Y is negative in 6, so 1y and n; are L;-formulas. Since Fuv(6;) C Fu(9),
we have Fu(¢y) C Fu(p) and Fo(n;) C Fu(p). Also, Fut(p) = Fut(¢) C
Ny Fot(0;)\{Y} C N._; Fut () N =, Fv*(n;) and the analogous result
holds for Fv~(¢p).

(B) Since 7 is a formula of the language L£pg so is 0. Suposse y1 < t1,...,y <
ti, v1 < wiy.. 0, < Wy and o(y1,..., Y1, 01, ., Um). Then there exist
21,...,2 satisfying z1 < y1,...,2; < gy, thus 21 < t1,...,2; < t;. Also, if
siUs; = s, then z; - z; = 2, and it holds 7(z1,...,2y). Finally, vy < wy

implies z \ wr < zg \ v and from A(zy \ vg) it follows A(zx \ wy), for each
ke{l,...,m}. Hence o(t1,...,t;,,w1,..., Wn).

(C) Let I, A, U, {(S;,0;) | i € I}, fL,...,fP € [[S;, UY,..., U9 € BM be
arbitrary. We will prove that
SEIY(teY ne(W)[f],qU)] iff B = o[(ly, ], [1y,]]-

) Let V.= [[V; € B be such that t[[f'],...,[f?]] = [t[f]] € ¢(V) and

(=
S = ¢llfl:a(U), q(V)]. Let

Z¢F={iel| Sk N o U,Vil}, k=1,...,L

JESK

Because of [t[f]] € ¢(V) we have F = {i € I | t[fi] € Vi} € ¥. Further, for
i € ZFNF it holds: S; = t[fi] EViNNjes, 0 i[fi Ui, Vi), whence S; 'Z’(/Jk[f“ Ui,

i.e. i € I,. Therefore Z¥ N F C I, and
(ZF] <Ly, k=1,...,1

If s; Us; = s then: ¢ € ZinZi it S = A
Thus Z' N Z7 = Z*, consequently:

0;(fi, Ui, Vi) iff i € ZF.

JESK

siUsj; = s = [Zl][ZJ] [Zk]

Fork € {1,...,m}, sy = {k}, whence Z* = Iy, . Since the sequence (7;61,...,6)
determines the formula ¢ and S = ¢[[f],¢(U),q(V)], we have B = 7[[Iy,], .. .,

[1p,]], that is
B E=7[[Z'],...,[Z2™].
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Finally, let k € {1,...,m} and j € Z¥\I,, = ng\Ieky. Then S; = 6x[f;,U;, Vj]
and S; = 0 [f;,U;,V;]. V=T1V; € B, so, forsome L € A, V =(,.; 7~ 1(O;).
Let us suppose that j ¢ L. Then V; = S;, so it holds:

S; = 0kl f;,U;, S5 and S; 01115, U5, 551,

which is, according to the previous lemma, impossible. Therefore j € L and
ZF\ I, C L € A, which implies Z* \ I,,, € A. But then [Z*]\ [I,,] € A/=, ie.
MIZM\ [1,)), k=1,...,m, which proves

B = oflLy]. - L) 1] 2, )

(«<=) Let B = o[[Ly, ], [Lp]s [Ina)s - - -, [In,.])- Then there exist Z*,..., Z"
C I, such that the following conditions are satisfied:
(a) [Zk} < [Iwk]’ k=1,....1
(b) siUs;=s, = [2'][27] = [2%];
(c) BE T([Z1]7 N VAR
(d) [ZM\ I, ) €AN/=, k=1,...,m.
Hence, for some sets F*, 7% G* € ¥ it holds:
(al) ZFNF*C Iy, k=1,...,1;
(b1) s;Us; =8, = Z'NZJINFk = Zk 0 Fik;
(d1) ZF\ I, NGF €A, k=1,...,m.
Let F =y F* N N Fik n N, Gk Then F € ¥ and it holds:

siUs;j=sk
(a2) ZKNF C I,, k=1,....L
(b2) siUsj =8, = Z'NZINF=Z"NF;
(d2) Z\1, NF €A, k=1,....m.
From (b2) it follows (by a simple inductive argument):
(b3) s;,Usj,U...Usj. =5, = ZNhNZ=2N...NZ"NF=2Z,NF.

Forie ], (Z*\I,, NF) =L let

s L {je{l,...,m}|iez}.
Then, for some h € {1,...,1}, it holds:
s(t) =sp={j1,.--,dr} =85 U...Us,,
whence, because of (b3) and (a2):

ie (| ZnF=2z"n..nZ"nF=2"nFCly,
Jj€s(i)

and also S; E ¥n[fi,U;]. Thus we can choose V; € B; so that the following
holds:

tfi] € V; and SitE N\ 0;[f: U Vil

J€s(d)
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For i ¢ L we define V; = S;. L is a finite union of elements of A, so L € A and

V =]]V; € B:. Let us prove: S = ¢[[f],q(U),q(V)]. Let
Iy, ={iel| S EkKfi,U,Vi]}, k=1,...,m,
jo€{l,...,m} and i € Z"°NF. We discuss the possible cases:
i) ¢ € L Now S o 0i1fi,U;, Vi] and since jo € s(i) it holds:
= Jj€Es(i) VI
S; ): 9]'0 [fu U,,VZ] Hence 7 € Ig]o.
(i1) @ ¢ L. By our agreement V; = S;. Also i ¢ (Z%° N F)\ I, , thus
i € I, = Iyv . Let us assume that i ¢ Iy, . Then:
Jo :

Si ): 0% [ﬁ, ﬁ“ S’L] and SZ Pé 0]0 [ﬁv 7’” S’LL
which is impossible because of the previous lemma. So, again i € Iy, .
From (i) and (ii) it follows Z7% N F C Iy, , accordingly:
[ZJ] < [Igj], ] = 17 s, M.

The condition (¢) and the monotonicity of 7 imply B = 7[[Iy,],..., s, ]],
whence by induction hypothesis

S = ollfa(U), a(V)].
F@h&tm €V, thus [t[f]] € ¢(V) € BY. We conclude: S = [t[f]] € ¢(V) A
¢llf1,4(U), q(V)], that is
SEIY(teY Ao(Y)(fl.qU)).0

Remark. Let us just recall that £;-formulas are invariant, in other words, for
any Li-formula y it holds in general:

(S,0) Fx iff (8, B) = X

where B is any base for the topology O. In particular, in our case we have:

QL s.ohke it (8B Ee i Blollyl.... [0l

It is seen from the proof that if ¢ is a sentence, then the formulas 1, ..., ¥,
are sentences as well. Hence the following holds.

Corollary 2.3. For any L;-sentence @ there exists a sequence of formulas (o311,
-y Um) such that it holds:
(A) for each j € {1,...,m}, ¢; is an L,-sentence;
(B) o is a monotonic formula of the language Lp;
(C) for any set I, any ideal A, any filter ¥ on I and any family of topological
structures {(S;, 0;) | i € I} it holds:

ILs.ohke @ Biollyl....[,]
where Iy, = {i € I'| (S;,0;) F;}.0
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Corollary 2.4. Reduced ideal-product of topological spaces preserves Ly-equiva-
lence. O

Theorem 2.2 enables us to give a short proof of the Los theorem for topo-
logical structures.

Theorem 2.5. Let p(xt,... 2P, X1 ... X9) be an Li-formula. If {(S;, O;) |
i € I} is a family of topological structures and U an arbitrary ultrafilter on I,
then for aech f*,..., f? € [[S; and each U,..., U € BPW) it holds

P(I) - R

W II, Sk« W {iellSiEelfiUl}eU
Clearly, Hg(l) S; is the ultraproduct of the given family.

Proof. The condition (1) holds iff the formula ¢ is determined by the sequence
(y1 = Lig) (that is ift: [I;'" S = ¢[[f,a0)] <= B [ (y = D[[L,]). Also,
since U is an ultrafilter, B is the two-element Boolean algebra (i.e. P(I)/= =
{0,1}). The theorem is proved by the usual induction. We consider the only
nontrivial case:

e=3Y(t(z',...,zP) e Y Ag(a!, ..., 2P, X ... X9V 7).

By the induction hypothesis, the formula ¢ is determined by the sequence (y; =
1; ¢). Following the proof of Theorem 2.2, the sequence (o; 1,12, 11), where

o(y1,y2,v1) =321,22(21 <y1r A zo <ya A z1-20=21 A z1 =1 A A(z1 \ v1));
Yr=3Y(tEY AY), Yo=Y (Y NT);
m = ¢,
determines ¢. Evidently:
T b o(y1,y2,v1) < y1 =1 Aya=1 A X1\ vq).

Also, ¥1 = ¢ and 1), is a true sentence; thus [Iy,] = [I,] and [Iy,] = [I] = 1.
Now

P(I) -
[[, "SiEella@) iff Bl (@n=1Ay=1AAN)IL]1[1]

i [I]=1A[L,]°€A/= iff [I,]=1,

since A/== P(I)/=. So the sequence (y = 1; ¢) determines .0
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