THE FEFERMAN-VAUGHT THEOREM FOR REDUCED IDEAL-PRODUCTS

Milan Z. Grulović ${ }^{1}$, Miloš S. Kurilić ${ }^{1}$

Abstract

The Feferman-Vaught theorem for first order logic is generalized for reduced ideal-products of topological structures. Roughly, the theorem connects satisfaction of a topological formula in a reduced ideal-product of topological structures with the satisfaction of the adjoint Boolean formula in the corresponding Boolean algebra.

AMS Mathematics Subject Classification (1991): Primary 54B10, 54B15, 03C85, Secondary 03C65
Key words and phrases: Topological products, Reduced ideal-product, Feferman-Vaught theorem

1. Preliminaries

Throughout the paper $\left\{\left(\mathcal{S}_{i}, \mathcal{O}_{i}\right) \mid i \in I\right\}$ will be a family of topological structures of a given first-order language \mathcal{L} (in the sense of [5]). By Λ and Ψ we will denote an ideal and a filter on the index set I respectively. $\pi_{j}: \prod_{i \in I} S_{i} \longrightarrow$ $S_{j}, j \in I$, will be the canonical projections.
\mathcal{O}^{Λ} is the topology on $\prod_{i \in I} S_{i}$ with the base \mathcal{B}^{Λ} which consists of sets $\bigcap_{i \in L} \pi_{i}^{-1}\left(O_{i}\right)$, where $L \in \Lambda$ and $O_{i} \in \mathcal{O}_{i}$, for all $i \in L$. The topological structure $\left(\prod_{i \in I} \mathcal{S}_{i}, \mathcal{O}^{\Lambda}\right)$ will be denoted by $\prod^{\Lambda} \mathcal{S}_{i}$. The equivalence relation \sim on $\prod_{i \in I} S_{i}$ defined by: $f \sim g$ iff $\left\{i \in I \mid f_{i}=g_{i}\right\} \in \Psi$ determines the quotient space (structure) $\prod^{\Lambda} \mathcal{S}_{i} / \sim$ which will be called the reduced ideal-product (shortly r.i. product or just r.i.p.) of the family $\left\{\left(\mathcal{S}_{i}, \mathcal{O}_{i}\right) \mid i \in I\right\}$. Such a r.i.p. will be denoted by $\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}([7])$.

The natural mapping $q: \prod_{i \in I} S_{i} \longrightarrow \prod_{i \in I} S_{i} / \sim$ is given by $q(f)=[f]$, where $[f]$ is the equivalence class of f. Since q is an open mapping, $\mathcal{B}_{\Psi}^{\Lambda}=$ $\left\{q(B) \mid B \in \mathcal{B}^{\Lambda}\right\}$ is a base for the topology $\mathcal{O}_{\Psi}^{\Lambda}$ on $\prod_{\Psi}^{\Lambda} S_{i}$.

It is proved in [6] that the r.i.p. preserves separation axioms $T_{0}, T_{1}, T_{2}, T_{3}$ and $T_{3 \frac{1}{2}}$ if and only if the following condition holds:

$$
\forall A \in \Psi \forall B \notin \Psi \exists L \in \Lambda\left(L \subseteq A \backslash B \text { and } L^{c} \notin \Psi\right)
$$

Reduced ideal-products which satisfy the above condition were investigated in [6], [7] and [8]. Special $(\Lambda \Psi)$-r.i. products are: the Tychonov product (for

[^0]$\Lambda=[I]^{<\omega}$ and $\Psi=\{I\}$), the full box product (for $\Lambda=P(I)$ and $\Psi=\{I\}$), the ultraproduct (for $\Lambda=P(I)$ and Ψ an arbitrary ultrafilter on I) and the Knight's box product (for $\Lambda=[I]^{<\kappa}$ and $\Psi=\left\{A \subseteq I \mid A^{c} \in[I]^{<\mu}\right\}$, where κ and μ are cardinals satisfying $|I| \geq \kappa>\mu \geq \omega)$.

By \equiv we will denote the well-known congruence relation on the Boolean algebra $P(I)$ given by:

$$
A \equiv B \text { iff for some } F \in \Psi, \quad A \cap F=B \cap F
$$

The equivalence class containing the element $A \in P(I)$ will be denoted by $[A]$.
The structure $\left\langle P(I) / \equiv,+, \cdot{ }^{\prime}, \mathbf{0}, \mathbf{1}\right\rangle$, where $[A]+[B]=[A \cup B],[A] \cdot[B]=$ $[A \cap B],[A]^{\prime}=\left[A^{c}\right], \mathbf{0}=[\emptyset]$ and $\mathbf{1}=[I]$, is a Boolean algebra. If Λ is an ideal on I (more precisely on $P(I)$), then $\Lambda / \equiv=\{[L] \mid L \in \Lambda\}$ is an ideal on $P(I) / \equiv$. The structure $\mathbf{B} \stackrel{\text { def }}{=}\left\langle P(I) / \equiv,+, \cdot,^{\prime}, \mathbf{0}, \mathbf{1}, \Lambda / \equiv\right\rangle$ is a Boolean algebra with distinguished ideal. Let $\mathcal{L}_{\mathbf{B}}=\left\{+, \cdot{ }^{\prime}, 0,1, \lambda\right\}$ be the associated first-order language. The theory we consider, $T_{\mathbf{B}}$, includes all axioms of the theory of Boolean algebras and the additional axioms:

$$
\lambda(0) ; \quad \lambda(x) \wedge \lambda(y) \Longrightarrow \lambda(x+y) ; \quad \lambda(x) \wedge y \leq x \Longrightarrow \lambda(y)
$$

2. The Feferman-Vaught-type theorem for r.i.p.

The classical theorem of S. Feferman and R. Vaught can be found, for instance, in [4] and [3]. In [5] M. Flum and J. Ziegler gave a topological version of this theorem concerning Tychonov products. L. Bertossi considered in [2] the "D-product" of a family of topological spaces and formulated the Feferman-Vaught-type theorem for such structures.

Here we extend the above results for any r.i.p. of a family of topological structures.

Let φ be an \mathcal{L}_{t}-formula ([5]) and let Y be a set variable. The formula φ^{Y} is obtained from φ substituting each free occurence of Y of the form $t \in Y$ by $t=t$.

Lemma 2.1. If φ is an \mathcal{L}_{t}-formula and $(\mathcal{S}, \mathcal{O})$ a topological structure, then for each valuation v in $(\mathcal{S}, \mathcal{O})$ it holds:

$$
(\mathcal{S}, \mathcal{O}) \models\left(\varphi \Longleftrightarrow \varphi^{Y}\right)[v(Y / S)]
$$

where $v(Y / S)$ is the valuation obtained from v substituting the value of Y by S.
Proof. If Y is not free in φ, then $\varphi \equiv \varphi^{Y}$ and the proof is completed. Otherwise, we proceed by induction on the complexity of the formula φ. We omit the case when φ is atomic and the induction steps when φ is of the form $\psi \wedge \theta, \neg \psi$ and $\exists x \psi$. So let $\varphi \equiv \exists X(t \in X \wedge \psi)$ and let $(\mathcal{S}, \mathcal{O})$ and v be arbitrary while $(\mathcal{S}, \mathcal{O}) \models \varphi[v(Y / S)]$. Then there is $U \in \mathcal{O}$ such that
(a) $(\mathcal{S}, \mathcal{O}) \vDash(t \in X)[v(Y / S)(X / U)]$ and $(b)(\mathcal{S}, \mathcal{O}) \vDash \psi[v(Y / S)(X / U)]$.
Y is free in φ, so $X \neq Y$ and $v(Y / S)(X / U)=v(X / U)(Y / S)$. By the induction hypothesis we have $(\mathcal{S}, \mathcal{O}) \models\left(\psi \Longleftrightarrow \psi^{Y}\right)[v(X / U)(Y / S)]$ and by $(b)(\mathcal{S}, \mathcal{O}) \vDash$ $\psi^{Y}[v(Y / S)(X / U)]$. Now, by $(a),(\mathcal{S}, \mathcal{O}) \vDash\left(t \in X \wedge \psi^{Y}\right)[v(X / U)(Y / S)]$ for some $U \in \mathcal{O}$, i.e. $(\mathcal{S}, \mathcal{O}) \models \exists X\left(t \in X \wedge \psi^{Y}\right)[v(Y / S)]$, which gives $(\mathcal{S}, \mathcal{O}) \vDash$ $\left(\varphi \Longrightarrow \varphi^{Y}\right)[v(Y / S)]$. The proof of the converse implication is similar.

Theorem 2.2. (The Feferman-Vaught-type theorem for r.i. products). For each \mathcal{L}_{t}-formula $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$ there is a sequence of formulas $\left(\sigma ; \psi_{1}, \ldots, \psi_{m}\right)$ satisfying:
(A) for all $j \in\{1, \ldots, m\}, \psi_{j}$ is an \mathcal{L}_{t}-formula and the free variables of ψ_{j} are among the free variables of φ. Moreover, if X is a set variable which is positive (negative) in φ, then X is positive (negative) in ψ_{j};
(B) $\sigma\left(y_{1}, \ldots, y_{m}\right)$ is a formula of the language $\mathcal{L}_{\mathbf{B}}$ which is monotonic, that is:

$$
T_{\mathbf{B}} \vdash y_{1} \leq t_{1} \wedge \ldots \wedge y_{m} \leq t_{m} \wedge \sigma\left(y_{1}, \ldots, y_{m}\right) \Longrightarrow \sigma\left(t_{1}, \ldots, t_{m}\right)
$$

(C) for each nonempty set I, any ideal Λ and any filter Ψ on I, for each family $\left\{\left(\mathcal{S}_{i}, \mathcal{O}_{i}\right) \mid i \in I\right\}$ of topological structures, each $f^{1}, \ldots, f^{p} \in \prod S_{i}$ and each $U^{1}, \ldots, U^{q} \in \mathcal{B}^{\Lambda}$ there holds:

$$
\prod_{\Psi}^{\Lambda} \mathcal{S}_{i} \models \varphi\left[\left[f^{1}\right], \ldots,\left[f^{p}\right], q\left(U^{1}\right), \ldots, q\left(U^{q}\right)\right] \quad \text { iff } \quad \mathbf{B} \models \sigma\left[\left[I_{\psi_{1}}\right], \ldots,\left[I_{\psi_{m}}\right]\right],
$$

where $I_{\psi_{j}}=\left\{i \in I \mid \mathcal{S}_{i} \models \psi_{j}\left[f_{i}^{1}, \ldots, f_{i}^{p}, U_{i}^{1}, \ldots, U_{i}^{q}\right]\right\}$ for $j \in\{1, \ldots, m\}$ and \mathbf{B} is the above defined model.

We say that φ is determined by the sequence $\left(\sigma ; \psi_{1}, \ldots, \psi_{m}\right)$.
Proof. Our proof follows the proof of the Feferman-Vaught theorem for firstorder logic. Like in [5], the sequences $x^{1}, \ldots, x^{p} ; X^{1}, \ldots, X^{q} ; f^{1}, \ldots, f^{p} ; U^{1}, \ldots$, $U^{q} ;\left[f^{1}\right], \ldots,\left[f^{p}\right] ; q\left(U^{1}\right), \ldots, q\left(U^{q}\right) ; f_{i}^{1}, \ldots, f_{i}^{p} ; U_{i}^{1}, \ldots, U_{i}^{q}$ and $\left[I_{\psi_{1}}\right], \ldots,\left[I_{\psi_{m}}\right]$ will be denoted respectively by $\bar{x}, \bar{X}, \bar{f}, \bar{U}, \overline{[f]}, \overline{q(U)}, \overline{f_{i}}, \overline{U_{i}}$ and $\overline{\left[I_{\psi}\right]}$. By $F v(\varphi)$ we will denote the set of free variables of the formula φ and $F v^{+}(\varphi)\left(F v^{-}(\varphi)\right)$ will be the set of the second order variables which are positive (negative) in φ. The r.i.p. $\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}$ will be denoted shortly by \mathcal{S}.

The proof is based on induction on the complexity of the formula φ; the basic logical connectives will be \neg and \wedge and the basic quantifier will be \exists. We omit the (easy) case when φ is atomic and the induction steps when φ is of the form: $\neg \phi, \phi \wedge \theta$ and $\exists x \phi$.

Let $\varphi \equiv \exists Y\left(t\left(x^{1}, \ldots, x^{p}\right) \in Y \wedge \phi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}, Y^{-}\right)\right)$. By the induction hypothesis there is a sequence $\left(\tau ; \theta_{1}, \ldots, \theta_{m}\right)$ determining ϕ. Let $l=$ 2^{m} and let $s_{1}=\{1\}, s_{2}=\{2\}, \ldots, s_{m}=\{m\}, s_{m+1}, \ldots, s_{l}$ be a list of all subsets of $\{1,2, \ldots, m\}$. We will prove that the sequence $\left(\sigma ; \psi_{1}, \ldots, \psi_{l}, \eta_{1}, \ldots, \eta_{m}\right)$, where:
$\sigma \equiv \exists z_{1}, \ldots, z_{l}\left(\bigwedge_{k=1}^{l} z_{k} \leq y_{k} \wedge \bigwedge_{s_{i} \cup s_{j}=s_{k}} z_{i} \cdot z_{j}=z_{k} \wedge \tau\left(z_{1}, \ldots, z_{m}\right) \wedge \bigwedge_{k=1}^{m} \lambda\left(z_{k} \backslash v_{k}\right)\right) ;$

$$
\begin{gathered}
\psi_{k} \equiv \exists Y\left(t \in Y \wedge \bigwedge_{j \in s_{k}} \theta_{j}\right), k=1, \ldots, l \\
\eta_{j} \equiv \theta_{j}^{Y}, \quad j=1, \ldots, m
\end{gathered}
$$

determines $\varphi . \theta_{j}^{Y}$ is obtained from θ_{j} as in the preceding lemma. By convention, the empty conjunction is a true sentence (in "our" notation T).
(A) By the induction hypothesis, $\theta_{j}, j=1, \ldots, m$, are \mathcal{L}_{t}-formulas and Y is negative in θ_{j}, so ψ_{k} and η_{j} are \mathcal{L}_{t}-formulas. Since $F v\left(\theta_{j}\right) \subseteq F v(\phi)$, we have $F v\left(\psi_{k}\right) \subseteq F v(\varphi)$ and $F v\left(\eta_{j}\right) \subseteq F v(\varphi)$. Also, $F v^{+}(\varphi)=F v^{+}(\phi) \subseteq$ $\bigcap_{j=1}^{m} F v^{+}\left(\theta_{j}\right) \backslash\{Y\} \subseteq \bigcap_{k=1}^{l} F v^{+}\left(\psi_{k}\right) \cap \bigcap_{j=1}^{m} F v^{+}\left(\eta_{j}\right)$ and the analogous result holds for $F v^{-}(\varphi)$.
(B) Since τ is a formula of the language $\mathcal{L}_{\mathbf{B}}$ so is σ. Suposse $y_{1} \leq t_{1}, \ldots, y_{l} \leq$ $t_{l}, v_{1} \leq w_{1}, \ldots, v_{m} \leq w_{m}$ and $\sigma\left(y_{1}, \ldots, y_{l}, v_{1}, \ldots, v_{m}\right)$. Then there exist z_{1}, \ldots, z_{l} satisfying $z_{1} \leq y_{1}, \ldots, z_{l} \leq y_{l}$, thus $z_{1} \leq t_{1}, \ldots, z_{l} \leq t_{l}$. Also, if $s_{i} \cup s_{j}=s_{k}$, then $z_{i} \cdot z_{j}=z_{k}$ and it holds $\tau\left(z_{1}, \ldots, z_{m}\right)$. Finally, $v_{k} \leq w_{k}$ implies $z_{k} \backslash w_{k} \leq z_{k} \backslash v_{k}$ and from $\lambda\left(z_{k} \backslash v_{k}\right)$ it follows $\lambda\left(z_{k} \backslash w_{k}\right)$, for each $k \in\{1, \ldots, m\}$. Hence $\sigma\left(t_{1}, \ldots, t_{l}, w_{1}, \ldots, w_{m}\right)$.
(C) Let $I, \Lambda, \Psi,\left\{\left(\mathcal{S}_{i}, \mathcal{O}_{i}\right) \mid i \in I\right\}, f^{1}, \ldots, f^{p} \in \prod S_{i}, U^{1}, \ldots, U^{q} \in \mathcal{B}^{\Lambda}$ be arbitrary. We will prove that

$$
\mathcal{S} \models \exists Y(t \in Y \wedge \phi(Y))[\overline{[f]}, \overline{q(U)}] \text { iff } \mathbf{B}=\sigma\left[\left[I_{\psi_{1}}\right], \ldots,\left[I_{\eta_{m}}\right]\right] .
$$

(\Longrightarrow) Let $V=\prod V_{i} \in \mathcal{B}^{\Lambda}$ be such that $t\left[\left[f^{1}\right], \ldots,\left[f^{p}\right]\right]=[t \overline{[f]}] \in q(V)$ and $\mathcal{S} \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]$. Let

$$
Z^{k}=\left\{i \in I \mid \mathcal{S}_{i} \models \bigwedge_{j \in s_{k}} \theta_{j}\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]\right\}, \quad k=1, \ldots, l
$$

Because of $[t[\bar{f}]] \in q(V)$ we have $F=\left\{i \in I \mid t\left[\overline{f_{i}}\right] \in V_{i}\right\} \in \Psi$. Further, for $i \in Z^{k} \cap F$ it holds: $\mathcal{S}_{i} \models t\left[\overline{f_{i}}\right] \in V_{i} \wedge \bigwedge_{j \in s_{k}} \theta_{j}\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]$, whence $\mathcal{S}_{i} \models \psi_{k}\left[\overline{f_{i}}, \overline{U_{i}}\right]$, i.e. $i \in I_{\psi_{k}}$. Therefore $Z^{k} \cap F \subseteq I_{\psi_{k}}$ and

$$
\left[Z^{k}\right] \leq\left[I_{\psi_{k}}\right], \quad k=1, \ldots, l
$$

If $s_{i} \cup s_{j}=s_{k}$ then: $i \in Z^{i} \cap Z^{j}$ iff $\mathcal{S}_{i} \models \bigwedge_{j \in s_{k}} \theta_{j}\left(\overline{f_{i}}, \overline{U_{i}}, V_{i}\right)$ iff $i \in Z^{k}$. Thus $Z^{i} \cap Z^{j}=Z^{k}$, consequently:

$$
s_{i} \cup s_{j}=s_{k} \Longrightarrow\left[Z^{i}\right]\left[Z^{j}\right]=\left[Z^{k}\right]
$$

For $k \in\{1, \ldots, m\}, s_{k}=\{k\}$, whence $Z^{k}=I_{\theta_{k}}$. Since the sequence $\left(\tau ; \theta_{1}, \ldots, \theta_{m}\right)$ determines the formula ϕ and $\mathcal{S} \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]$, we have $\mathbf{B} \models \tau\left[\left[I_{\theta_{1}}\right], \ldots\right.$, $\left[I_{\theta_{m}}\right]$, that is

$$
\mathbf{B} \models \tau\left[\left[Z^{1}\right], \ldots,\left[Z^{m}\right]\right] .
$$

Finally, let $k \in\{1, \ldots, m\}$ and $j \in Z^{k} \backslash I_{\eta_{k}}=I_{\theta_{k}} \backslash I_{\theta_{k}^{Y}}$. Then $\mathcal{S}_{j} \models \theta_{k}\left[\overline{f_{j}}, \overline{U_{j}}, V_{j}\right]$ and $\mathcal{S}_{j} \not \vDash \theta_{k}^{Y}\left[\overline{f_{j}}, \overline{U_{j}}, V_{j}\right] . V=\prod V_{i} \in \mathcal{B}^{\Lambda}$, so, for some $L \in \Lambda, V=\bigcap_{i \in L} \pi^{-1}\left(O_{i}\right)$. Let us suppose that $j \notin L$. Then $V_{j}=S_{j}$, so it holds:

$$
\mathcal{S}_{j} \models \theta_{k}\left[\overline{f_{j}}, \overline{U_{j}}, S_{j}\right] \quad \text { and } \quad \mathcal{S}_{j} \not \vDash \theta_{k}^{Y}\left[\overline{f_{j}}, \overline{U_{j}}, S_{j}\right],
$$

which is, according to the previous lemma, impossible. Therefore $j \in L$ and $Z^{k} \backslash I_{\eta_{k}} \subseteq L \in \Lambda$, which implies $Z^{k} \backslash I_{\eta_{k}} \in \Lambda$. But then $\left[Z^{k}\right] \backslash\left[I_{\eta_{k}}\right] \in \Lambda / \equiv$, i.e. $\lambda\left(\left[Z^{k}\right] \backslash\left[I_{\eta_{k}}\right]\right), k=1, \ldots, m$, which proves

$$
\mathbf{B} \models \sigma\left[\left[I_{\psi_{1}}\right], \ldots,\left[I_{\psi_{l}}\right],\left[I_{\eta_{1}}\right], \ldots,\left[I_{\eta_{m}}\right]\right] .
$$

(\Longleftarrow) Let $\mathbf{B} \models \sigma\left[\left[I_{\psi_{1}}\right], \ldots,\left[I_{\psi_{l}}\right],\left[I_{\eta_{1}}\right], \ldots,\left[I_{\eta_{m}}\right]\right]$. Then there exist Z^{1}, \ldots, Z^{l} $\subseteq I$, such that the following conditions are satisfied:
(a) $\left[Z^{k}\right] \leq\left[I_{\psi_{k}}\right], k=1, \ldots, l$;
(b) $s_{i} \cup s_{j}=s_{k} \Longrightarrow\left[Z^{i}\right]\left[Z^{j}\right]=\left[Z^{k}\right]$;
(c) $\mathbf{B} \models \tau\left(\left[Z^{1}\right], \ldots,\left[Z^{m}\right]\right)$;
(d) $\left[Z^{k}\right] \backslash\left[I_{\eta_{k}}\right] \in \Lambda / \equiv, k=1, \ldots, m$.

Hence, for some sets $F^{k}, F^{i j k}, G^{k} \in \Psi$ it holds:
(a1) $Z^{k} \cap F^{k} \subseteq I_{\psi_{k}}, \quad k=1, \ldots, l$;
(b1) $s_{i} \cup s_{j}=s_{k} \Longrightarrow Z^{i} \cap Z^{j} \cap F^{i j k}=Z^{k} \cap F^{i j k}$;
(d1) $Z^{k} \backslash I_{\eta_{k}} \cap G^{k} \in \Lambda, k=1, \ldots, m$.
Let $F=\bigcap_{k=1}^{l} F^{k} \cap \bigcap_{s_{i} \cup s_{j}=s_{k}} F^{i j k} \cap \bigcap_{k=1}^{m} G^{k}$. Then $F \in \Psi$ and it holds:
(a2) $\quad Z^{k} \cap F \subseteq I_{\psi_{k}}, \quad k=1, \ldots, l ;$
(b2) $s_{i} \cup s_{j}=s_{k} \Longrightarrow Z^{i} \cap Z^{j} \cap F=Z^{k} \cap F$;
(d2) $\quad Z^{k} \backslash I_{\eta_{k}} \cap F \in \Lambda, \quad k=1, \ldots, m$.
From ($b 2$) it follows (by a simple inductive argument):
(b3) $s_{j_{1}} \cup s_{j_{2}} \cup \ldots \cup s_{j_{r}}=s_{h} \Longrightarrow Z^{j_{1}} \cap Z^{j_{2}} \cap \ldots \cap Z^{j_{r}} \cap F=Z_{h} \cap F$.
For $i \in \bigcup_{k=1}^{m}\left(Z^{k} \backslash I_{\eta_{k}} \cap F\right)=L$ let

$$
s(i) \stackrel{\text { def }}{=}\left\{j \in\{1, \ldots, m\} \mid i \in Z^{j}\right\} .
$$

Then, for some $h \in\{1, \ldots, l\}$, it holds:

$$
s(i)=s_{h}=\left\{j_{1}, \ldots, j_{r}\right\}=s_{j_{1}} \cup \ldots \cup s_{j_{r}},
$$

whence, because of $(b 3)$ and $(a 2)$:

$$
i \in \bigcap_{j \in s(i)} Z^{j} \cap F=Z^{j_{1}} \cap \ldots \cap Z^{j_{r}} \cap F=Z^{h} \cap F \subseteq I_{\psi_{h}}
$$

and also $\mathcal{S}_{i} \models \psi_{h}\left[\overline{f_{i}}, \overline{U_{i}}\right]$. Thus we can choose $V_{i} \in \mathcal{B}_{i}$ so that the following holds:

$$
t\left[\overline{f_{i}}\right] \in V_{i} \quad \text { and } \quad \mathcal{S}_{i} \models \bigwedge_{j \in s(i)} \theta_{j}\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]
$$

For $i \notin L$ we define $V_{i}=S_{i} . L$ is a finite union of elements of Λ, so $L \in \Lambda$ and $V=\prod V_{i} \in \mathcal{B}^{\Lambda}$. Let us prove: $\mathcal{S} \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]$. Let

$$
I_{\theta_{k}}=\left\{i \in I \mid \mathcal{S}_{i} \models \theta_{k}\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]\right\}, \quad k=1, \ldots, m
$$

$j_{0} \in\{1, \ldots, m\}$ and $i \in Z^{j_{0}} \cap F$. We discuss the possible cases:
(i) $i \in L$. Now $\mathcal{S}_{i} \models \bigwedge_{j \in s(i)} \theta_{j}\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]$ and since $j_{0} \in s(i)$ it holds: $\mathcal{S}_{i} \models \theta_{j_{0}}\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]$. Hence $i \in I_{\theta_{j_{0}}}$.
(ii) $i \notin L$. By our agreement $V_{i}=S_{i}$. Also $i \notin\left(Z^{j_{0}} \cap F\right) \backslash I_{\eta_{j_{0}}}$, thus $i \in I_{\eta_{j_{0}}}=I_{\theta_{j_{0}}^{Y}}$. Let us assume that $i \notin I_{\theta_{j_{0}}}$. Then:

$$
\mathcal{S}_{i} \models \theta_{j_{0}}^{Y}\left[\overline{f_{i}}, \overline{U_{i}}, S_{i}\right] \quad \text { and } \quad \mathcal{S}_{i} \not \vDash \theta_{j_{0}}\left[\overline{f_{i}}, \overline{U_{i}}, S_{i}\right]
$$

which is impossible because of the previous lemma. So, again $i \in I_{\theta_{j_{0}}}$.
From (i) and (ii) it follows $Z^{j_{0}} \cap F \subseteq I_{\theta_{j_{0}}}$, accordingly:

$$
\left[Z^{j}\right] \leq\left[I_{\theta_{j}}\right], \quad j=1, \ldots, m
$$

The condition (c) and the monotonicity of τ imply $\mathbf{B} \vDash \tau\left[\left[I_{\theta_{1}}\right], \ldots,\left[I_{\theta_{m}}\right]\right]$, whence by induction hypothesis

$$
\mathcal{S} \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]
$$

Further, $t[\bar{f}] \in V$, thus $[t[\bar{f}]] \in q(V) \in \mathcal{B}_{\Psi}^{\Lambda}$. We conclude: $\mathcal{S} \models[t[\bar{f}]] \in q(V) \wedge$ $\phi[\overline{[f]}, \overline{q(U)}, q(V)]$, that is

$$
\mathcal{S} \models \exists Y(t \in Y \wedge \phi(Y)[\overline{[f]}, \overline{q(U)}] . \sqsubset
$$

Remark. Let us just recall that \mathcal{L}_{t}-formulas are invariant, in other words, for any \mathcal{L}_{t}-formula χ it holds in general:

$$
(\mathcal{S}, \mathcal{O}) \models \chi \quad \text { iff } \quad(\mathcal{S}, \mathcal{B}) \models \chi
$$

where \mathcal{B} is any base for the topology \mathcal{O}. In particular, in our case we have:

$$
\left(\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}, \mathcal{O}_{\Psi}^{\Lambda}\right) \models \varphi \quad \text { iff } \quad\left(\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}, \mathcal{B}_{\Psi}^{\Lambda}\right) \models \varphi \quad \text { iff } \quad \mathbf{B} \models \sigma\left[\left[I_{\psi_{1}}\right], \ldots,\left[I_{\psi_{m}}\right]\right]
$$

It is seen from the proof that if φ is a sentence, then the formulas $\psi_{1}, \ldots, \psi_{m}$ are sentences as well. Hence the following holds.

Corollary 2.3. For any \mathcal{L}_{t}-sentence φ there exists a sequence of formulas $\left(\sigma ; \psi_{1}\right.$, $\left.\ldots, \psi_{m}\right)$ such that it holds:
(A) for each $j \in\{1, \ldots, m\}, \psi_{j}$ is an \mathcal{L}_{t}-sentence;
(B) σ is a monotonic formula of the language $\mathcal{L}_{\mathbf{B}}$;
(C) for any set I, any ideal Λ, any filter Ψ on I and any family of topological structures $\left\{\left(\mathcal{S}_{i}, \mathcal{O}_{i}\right) \mid i \in I\right\}$ it holds:

$$
\left(\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}, \mathcal{O}_{\Psi}^{\Lambda}\right) \models \varphi \quad \text { iff } \quad \mathbf{B} \models \sigma\left[\left[I_{\psi_{1}}\right], \ldots,\left[I_{\psi_{m}}\right]\right]
$$

where $I_{\psi_{j}}=\left\{i \in I \mid\left(\mathcal{S}_{i}, \mathcal{O}_{i}\right) \models \psi_{j}\right\}$.

Corollary 2.4. Reduced ideal-product of topological spaces preserves \mathcal{L}_{t}-equivalence.

Theorem 2.2 enables us to give a short proof of the Los theorem for topological structures.

Theorem 2.5. Let $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$ be an \mathcal{L}_{t}-formula. If $\left\{\left(\mathcal{S}_{i}, \mathcal{O}_{i}\right) \mid\right.$ $i \in I\}$ is a family of topological structures and \mathcal{U} an arbitrary ultrafilter on I, then for aech $f^{1}, \ldots, f^{p} \in \prod S_{i}$ and each $U^{1}, \ldots, U^{q} \in \mathcal{B}^{P(I)}$ it holds

$$
\begin{equation*}
\prod_{\mathcal{U}}^{P(I)} \mathcal{S}_{i} \models \varphi[\overline{[f]}, \overline{q(U)}] \quad \text { iff } \quad\left\{i \in I \mid \mathcal{S}_{i} \models \varphi\left[\overline{f_{i}}, \overline{U_{i}}\right]\right\} \in \mathcal{U} \tag{1}
\end{equation*}
$$

Clearly, $\prod_{\mathcal{U}}{ }^{(I)} \mathcal{S}_{i}$ is the ultraproduct of the given family.
Proof. The condition (1) holds iff the formula φ is determined by the sequence $\left(y_{1}=\mathbf{1} ; \varphi\right)$ (that is iff: $\prod_{\mathcal{U}}^{P(I)} \mathcal{S}_{i} \models \varphi[\overline{[f]}, \overline{q(U)}] \Longleftrightarrow \mathbf{B} \models(y=\mathbf{1})\left[\left[I_{\varphi}\right]\right)$. Also, since \mathcal{U} is an ultrafilter, \mathbf{B} is the two-element Boolean algebra (i.e. $P(I) / \equiv=$ $\{\mathbf{0}, \mathbf{1}\})$. The theorem is proved by the usual induction. We consider the only nontrivial case:

$$
\varphi \equiv \exists Y\left(t\left(x^{1}, \ldots, x^{p}\right) \in Y \wedge \phi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}, Y^{-}\right)\right)
$$

By the induction hypothesis, the formula ϕ is determined by the sequence ($y_{1}=$ $\mathbf{1} ; \phi)$. Following the proof of Theorem 2.2 , the sequence $\left(\sigma ; \psi_{1}, \psi_{2}, \eta_{1}\right)$, where

$$
\begin{gathered}
\sigma\left(y_{1}, y_{2}, v_{1}\right) \equiv \exists z_{1}, z_{2}\left(z_{1} \leq y_{1} \wedge z_{2} \leq y_{2} \wedge z_{1} \cdot z_{2}=z_{1} \wedge z_{1}=\mathbf{1} \wedge \lambda\left(z_{1} \backslash v_{1}\right)\right) \\
\psi_{1} \equiv \exists Y(t \in Y \wedge \psi), \\
\eta_{2} \equiv \exists Y(t \in Y \wedge T)
\end{gathered}
$$

determines φ. Evidently:

$$
T_{\mathbf{B}} \vdash \sigma\left(y_{1}, y_{2}, v_{1}\right) \Longleftrightarrow y_{1}=\mathbf{1} \wedge y_{2}=\mathbf{1} \wedge \lambda\left(\mathbf{1} \backslash v_{1}\right)
$$

Also, $\psi_{1} \equiv \varphi$ and ψ_{2} is a true sentence; thus $\left[I_{\psi_{1}}\right]=\left[I_{\varphi}\right]$ and $\left[I_{\psi_{2}}\right]=[I]=\mathbf{1}$. Now

$$
\begin{gathered}
\prod_{\mathcal{U}}^{P(I)} \mathcal{S}_{i} \models \varphi[\overline{[f]}, \overline{q(U)}] \quad \text { iff } \quad \mathbf{B} \models\left(y_{1}=\mathbf{1} \wedge y_{2}=\mathbf{1} \wedge \lambda\left(v_{1}^{\prime}\right)\right)\left[\left[I_{\varphi}\right], \mathbf{1},\left[I_{\eta_{1}}\right]\right] \\
\text { iff } \quad\left[I_{\varphi}\right]=\mathbf{1} \wedge\left[I_{\eta_{1}}\right]^{c} \in \Lambda / \equiv \quad \text { iff } \quad\left[I_{\varphi}\right]=\mathbf{1}
\end{gathered}
$$

since $\Lambda / \equiv=P(I) / \equiv$. So the sequence $(y=\mathbf{1} ; \varphi)$ determines φ.

References

[1] Bankston P., Ultraproducts in topology, Gen. Topology Appl. 7(1977), 283-308.
[2] Bertossi L. E., The formal language L_{t} and topological products, Zeitschr. f. Math. Logik und Grundlagen d. Math. 36(1990), 89-94.
[3] Chang C. C., Keisler H. J., Model Theory, North-Holland, Amsterdam, 1973.
[4] Feferman S., Vaught R. L., The first - order properties of algebraic systems, Fund. Math. 47 (1959), 57-103.
[5] Flum J., Ziegler M., Topological Model Theory, Lecture Notes in Mathematics 769, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[6] Grulović M. Z., Kurilić M. S., On preservation of separation axioms in products, Comment. Math. Univ. Carol. 33.4 (1992), 713-721.
[7] Kurilić M. S., Disconnectedness of the reduced ideal-product, Indian J. Pure Appl. Math., 23(9)(1992), 619-624.
[8] Kurilić M. S., Openness od the reduced ideal-product, Math. Japonica 39, No 2 (1994), 305-308.

Received by the editors November 25, 1995

[^0]: ${ }^{1}$ Institute of Mathematics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia

