THE FEFERMAN-VAUGHT THEOREM FOR REDUCED IDEAL-PRODUCTS

Milan Z. Grulović¹, Miloš S. Kurilić¹

Abstract. The Feferman-Vaught theorem for first order logic is generalized for reduced ideal-products of topological structures. Roughly, the theorem connects satisfaction of a topological formula in a reduced ideal-product of topological structures with the satisfaction of the adjoint Boolean formula in the corresponding Boolean algebra.

AMS Mathematics Subject Classification (1991): Primary 54B10, 54B15, 03C85, Secondary 03C65

Key words and phrases: Topological products, Reduced ideal-product, Feferman-Vaught theorem

1. Preliminaries

Throughout the paper $\{(\mathcal{S}_i, \mathcal{O}_i) \mid i \in I\}$ will be a family of topological structures of a given first-order language \mathcal{L} (in the sense of [5]). By Λ and Ψ we will denote an ideal and a filter on the index set I respectively. $\pi_j : \prod_{i \in I} S_i \longrightarrow S_i, j \in I$, will be the canonical projections.

 \mathcal{O}^{Λ} is the topology on $\prod_{i \in I} S_i$ with the base \mathcal{B}^{Λ} which consists of sets $\bigcap_{i \in L} \pi_i^{-1}(O_i)$, where $L \in \Lambda$ and $O_i \in \mathcal{O}_i$, for all $i \in L$. The topological structure $(\prod_{i \in I} \mathcal{S}_i, \mathcal{O}^{\Lambda})$ will be denoted by $\prod^{\Lambda} \mathcal{S}_i$. The equivalence relation \sim on $\prod_{i \in I} S_i$ defined by: $f \sim g$ iff $\{i \in I \mid f_i = g_i\} \in \Psi$ determines the quotient space (structure) $\prod^{\Lambda} \mathcal{S}_i / \sim$ which will be called the reduced ideal-product (shortly r.i. product or just r.i.p.) of the family $\{(\mathcal{S}_i, \mathcal{O}_i) \mid i \in I\}$. Such a r.i.p. will be denoted by $\prod_{\Psi}^{\Lambda} \mathcal{S}_i$ ([7]).

will be denoted by $\prod_{\Psi}^{\Lambda} S_i$ ([7]). The natural mapping $q : \prod_{i \in I} S_i \longrightarrow \prod_{i \in I} S_i / \sim$ is given by q(f) = [f], where [f] is the equivalence class of f. Since q is an open mapping, $\mathcal{B}_{\Psi}^{\Lambda} = \{q(B) \mid B \in \mathcal{B}^{\Lambda}\}$ is a base for the topology $\mathcal{O}_{\Psi}^{\Lambda}$ on $\prod_{\Psi}^{\Lambda} S_i$.

It is proved in [6] that the r.i.p. preserves separation axioms T_0 , T_1 , T_2 , T_3 and $T_{3\frac{1}{2}}$ if and only if the following condition holds:

 $\forall A \in \Psi \,\forall B \notin \Psi \,\exists L \in \Lambda(L \subseteq A \setminus B \text{ and } L^c \notin \Psi) \tag{A\Psi}.$

Reduced ideal-products which satisfy the above condition were investigated in [6], [7] and [8]. Special $(\Lambda \Psi)$ -r.i. products are: the Tychonov product (for

 $^{^1 \}mathrm{Institute}$ of Mathematics, University of Novi Sad, Tr
g D. Obradovića 4, 21000 Novi Sad, Yugoslavia

 $\Lambda = [I]^{<\omega}$ and $\Psi = \{I\}$), the full box product (for $\Lambda = P(I)$ and $\Psi = \{I\}$), the ultraproduct (for $\Lambda = P(I)$ and Ψ an arbitrary ultrafilter on I) and the Knight's box product (for $\Lambda = [I]^{<\kappa}$ and $\Psi = \{A \subseteq I \mid A^c \in [I]^{<\mu}\}$, where κ and μ are cardinals satisfying $|I| \ge \kappa > \mu \ge \omega$).

By \equiv we will denote the well-known congruence relation on the Boolean algebra P(I) given by:

$$A \equiv B$$
 iff for some $F \in \Psi$, $A \cap F = B \cap F$.

The equivalence class containing the element $A \in P(I)$ will be denoted by [A]. The structure $\langle P(I)/\equiv, +, \cdot, ', \mathbf{0}, \mathbf{1} \rangle$, where $[A] + [B] = [A \cup B], \ [A] \cdot [B] = [A \cap B], \ [A]' = [A^c], \ \mathbf{0} = [\emptyset]$ and $\mathbf{1} = [I]$, is a Boolean algebra. If Λ is an ideal on I (more precisely on P(I)), then $\Lambda/\equiv = \{[L] \mid L \in \Lambda\}$ is an ideal on $P(I)/\equiv$. The structure $\mathbf{B} \stackrel{\text{def}}{=} \langle P(I)/\equiv, +, \cdot, ', \mathbf{0}, \mathbf{1}, \Lambda/\equiv \rangle$ is a Boolean algebra with distinguished ideal. Let $\mathcal{L}_{\mathbf{B}} = \{+, \cdot, ', 0, 1, \lambda\}$ be the associated first-order language. The theory we consider, $T_{\mathbf{B}}$, includes all axioms of the theory of Boolean algebras and the additional axioms:

$$\lambda(0); \qquad \lambda(x) \wedge \lambda(y) \Longrightarrow \lambda(x+y); \qquad \lambda(x) \wedge y \le x \Longrightarrow \lambda(y).$$

2. The Feferman-Vaught-type theorem for r.i.p.

The classical theorem of S. Feferman and R. Vaught can be found, for instance, in [4] and [3]. In [5] M. Flum and J. Ziegler gave a topological version of this theorem concerning Tychonov products. L. Bertossi considered in [2] the "D-product" of a family of topological spaces and formulated the Feferman-Vaught-type theorem for such structures.

Here we extend the above results for any r.i.p. of a family of topological structures.

Let φ be an \mathcal{L}_t -formula ([5]) and let Y be a set variable. The formula φ^Y is obtained from φ substituting each free occurence of Y of the form $t \in Y$ by t = t.

Lemma 2.1. If φ is an \mathcal{L}_t -formula and $(\mathcal{S}, \mathcal{O})$ a topological structure, then for each valuation v in $(\mathcal{S}, \mathcal{O})$ it holds:

$$(\mathcal{S}, \mathcal{O}) \models (\varphi \Longleftrightarrow \varphi^Y)[v(Y/S)],$$

where v(Y/S) is the valuation obtained from v substituting the value of Y by S.

Proof. If Y is not free in φ , then $\varphi \equiv \varphi^Y$ and the proof is completed. Otherwise, we proceed by induction on the complexity of the formula φ . We omit the case when φ is atomic and the induction steps when φ is of the form $\psi \land \theta$, $\neg \psi$ and $\exists x \psi$. So let $\varphi \equiv \exists X(t \in X \land \psi)$ and let $(\mathcal{S}, \mathcal{O})$ and v be arbitrary while $(\mathcal{S}, \mathcal{O}) \models \varphi[v(Y/S)]$. Then there is $U \in \mathcal{O}$ such that

(a)
$$(\mathcal{S}, \mathcal{O}) \models (t \in X)[v(Y/S)(X/U)]$$
 and (b) $(\mathcal{S}, \mathcal{O}) \models \psi[v(Y/S)(X/U)].$

Y is free in φ , so $X \neq Y$ and v(Y/S)(X/U) = v(X/U)(Y/S). By the induction hypothesis we have $(\mathcal{S}, \mathcal{O}) \models (\psi \iff \psi^Y)[v(X/U)(Y/S)]$ and by $(b) (\mathcal{S}, \mathcal{O}) \models \psi^Y[v(Y/S)(X/U)]$. Now, by $(a), (\mathcal{S}, \mathcal{O}) \models (t \in X \land \psi^Y)[v(X/U)(Y/S)]$ for some $U \in \mathcal{O}$, i.e. $(\mathcal{S}, \mathcal{O}) \models \exists X(t \in X \land \psi^Y)[v(Y/S)]$, which gives $(\mathcal{S}, \mathcal{O}) \models (\varphi \Longrightarrow \varphi^Y)[v(Y/S)]$. The proof of the converse implication is similar. \Box

Theorem 2.2. (The Feferman-Vaught-type theorem for r.i. products). For each \mathcal{L}_t -formula $\varphi(x^1, \ldots, x^p, X^1, \ldots, X^q)$ there is a sequence of formulas $(\sigma; \psi_1, \ldots, \psi_m)$ satisfying:

(A) for all $j \in \{1, ..., m\}$, ψ_j is an \mathcal{L}_t -formula and the free variables of ψ_j are among the free variables of φ . Moreover, if X is a set variable which is positive (negative) in φ , then X is positive (negative) in ψ_j ;

(B) $\sigma(y_1, \ldots, y_m)$ is a formula of the language $\mathcal{L}_{\mathbf{B}}$ which is monotonic, that is:

 $T_{\mathbf{B}} \vdash y_1 \leq t_1 \land \ldots \land y_m \leq t_m \land \sigma(y_1, \ldots, y_m) \Longrightarrow \sigma(t_1, \ldots, t_m);$

(C) for each nonempty set I, any ideal Λ and any filter Ψ on I, for each family $\{(S_i, \mathcal{O}_i) \mid i \in I\}$ of topological structures, each $f^1, \ldots, f^p \in \prod S_i$ and each $U^1, \ldots, U^q \in \mathcal{B}^{\Lambda}$ there holds:

$$\prod_{\Psi}^{\Lambda} \mathcal{S}_i \models \varphi[[f^1], \dots, [f^p], q(U^1), \dots, q(U^q)] \quad iff \quad \mathbf{B} \models \sigma[[I_{\psi_1}], \dots, [I_{\psi_m}]],$$

where $I_{\psi_j} = \{i \in I \mid S_i \models \psi_j[f_i^1, \dots, f_i^p, U_i^1, \dots, U_i^q]\}$ for $j \in \{1, \dots, m\}$ and **B** is the above defined model.

We say that φ is determined by the sequence $(\sigma; \psi_1, \ldots, \psi_m)$.

Proof. Our proof follows the proof of the Feferman-Vaught theorem for firstorder logic. Like in [5], the sequences $x^1, \ldots, x^p; X^1, \ldots, X^q; f^1, \ldots, f^p; U^1, \ldots, U^q; [f^1], \ldots, [f^p]; q(U^1), \ldots, q(U^q); f^1_i, \ldots, f^p_i; U^1_i, \ldots, U^q_i \text{ and } [I_{\psi_1}], \ldots, [I_{\psi_m}]$ will be denoted respectively by $\overline{x}, \overline{X}, \overline{f}, \overline{U}, [\overline{f}], \overline{q(U)}, \overline{f_i}, \overline{U_i} \text{ and } [\overline{I_{\psi_1}}]$. By $Fv(\varphi)$ we will denote the set of free variables of the formula φ and $Fv^+(\varphi)$ ($Fv^-(\varphi)$) will be the set of the second order variables which are positive (negative) in φ . The r.i.p. $\prod_{i=1}^{\Lambda} S_i$ will be denoted shortly by \mathcal{S} .

The proof is based on induction on the complexity of the formula φ ; the basic logical connectives will be \neg and \land and the basic quantifier will be \exists . We omit the (easy) case when φ is atomic and the induction steps when φ is of the form: $\neg \phi$, $\phi \land \theta$ and $\exists x \phi$.

Let $\varphi \equiv \exists Y(t(x^1, \ldots, x^p) \in Y \land \phi(x^1, \ldots, x^p, X^1, \ldots, X^q, Y^-))$. By the induction hypothesis there is a sequence $(\tau; \theta_1, \ldots, \theta_m)$ determining ϕ . Let $l = 2^m$ and let $s_1 = \{1\}, s_2 = \{2\}, \ldots, s_m = \{m\}, s_{m+1}, \ldots, s_l$ be a list of all subsets of $\{1, 2, \ldots, m\}$. We will prove that the sequence $(\sigma; \psi_1, \ldots, \psi_l, \eta_1, \ldots, \eta_m)$, where:

$$\sigma \equiv \exists z_1, \dots, z_l(\bigwedge_{k=1}^l z_k \le y_k \land \bigwedge_{s_i \cup s_j = s_k} z_i \cdot z_j = z_k \land \tau(z_1, \dots, z_m) \land \bigwedge_{k=1}^m \lambda(z_k \setminus v_k));$$

$$\psi_k \equiv \exists Y(t \in Y \land \bigwedge_{j \in s_k} \theta_j), \ k = 1, \dots, l;$$
$$\eta_j \equiv \theta_j^Y, \ j = 1, \dots, m,$$

determines φ . θ_j^Y is obtained from θ_j as in the preceding lemma. By convention, the empty conjunction is a true sentence (in "our" notation T).

(A) By the induction hypothesis, θ_j , $j = 1, \ldots, m$, are \mathcal{L}_t -formulas and Y is negative in θ_j , so ψ_k and η_j are \mathcal{L}_t -formulas. Since $Fv(\theta_j) \subseteq Fv(\phi)$, we have $Fv(\psi_k) \subseteq Fv(\varphi)$ and $Fv(\eta_j) \subseteq Fv(\varphi)$. Also, $Fv^+(\varphi) = Fv^+(\phi) \subseteq \bigcap_{j=1}^m Fv^+(\theta_j) \setminus \{Y\} \subseteq \bigcap_{k=1}^l Fv^+(\psi_k) \cap \bigcap_{j=1}^m Fv^+(\eta_j)$ and the analogous result holds for $Fv^-(\varphi)$.

(B) Since τ is a formula of the language $\mathcal{L}_{\mathbf{B}}$ so is σ . Suppose $y_1 \leq t_1, \ldots, y_l \leq t_l, v_1 \leq w_1, \ldots, v_m \leq w_m$ and $\sigma(y_1, \ldots, y_l, v_1, \ldots, v_m)$. Then there exist z_1, \ldots, z_l satisfying $z_1 \leq y_1, \ldots, z_l \leq y_l$, thus $z_1 \leq t_1, \ldots, z_l \leq t_l$. Also, if $s_i \cup s_j = s_k$, then $z_i \cdot z_j = z_k$ and it holds $\tau(z_1, \ldots, z_m)$. Finally, $v_k \leq w_k$ implies $z_k \setminus w_k \leq z_k \setminus v_k$ and from $\lambda(z_k \setminus v_k)$ it follows $\lambda(z_k \setminus w_k)$, for each $k \in \{1, \ldots, m\}$. Hence $\sigma(t_1, \ldots, t_l, w_1, \ldots, w_m)$.

(C) Let $I, \Lambda, \Psi, \{(\mathcal{S}_i, \mathcal{O}_i) \mid i \in I\}, f^1, \ldots, f^p \in \prod S_i, U^1, \ldots, U^q \in \mathcal{B}^{\Lambda}$ be arbitrary. We will prove that

$$\mathcal{S} \models \exists Y(t \in Y \land \phi(Y))[\overline{[f]}, \overline{q(U)}] \text{ iff } \mathbf{B} \models \sigma[[I_{\psi_1}], \dots, [I_{\eta_m}]].$$

 (\Longrightarrow) Let $V = \prod V_i \in \mathcal{B}^{\Lambda}$ be such that $t[[f^1], \ldots, [f^p]] = [t\overline{[f]}] \in q(V)$ and $\mathcal{S} \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]$. Let

$$Z^{k} = \{i \in I \mid S_{i} \models \bigwedge_{j \in s_{k}} \theta_{j}[\overline{f_{i}}, \overline{U_{i}}, V_{i}]\}, \ k = 1, \dots, l$$

Because of $[t[\overline{f}]] \in q(V)$ we have $F = \{i \in I \mid t[\overline{f_i}] \in V_i\} \in \Psi$. Further, for $i \in Z^k \cap F$ it holds: $S_i \models t[\overline{f_i}] \in V_i \land \bigwedge_{j \in s_k} \theta_j[\overline{f_i}, \overline{U_i}, V_i]$, whence $S_i \models \psi_k[\overline{f_i}, \overline{U_i}]$, i.e. $i \in I_{\psi_k}$. Therefore $Z^k \cap F \subseteq I_{\psi_k}$ and

$$[Z^k] \le [I_{\psi_k}], \ k = 1, \dots, l.$$

If $s_i \cup s_j = s_k$ then: $i \in Z^i \cap Z^j$ iff $\mathcal{S}_i \models \bigwedge_{j \in s_k} \theta_j(\overline{f_i}, \overline{U_i}, V_i)$ iff $i \in Z^k$. Thus $Z^i \cap Z^j = Z^k$, consequently:

$$s_i \cup s_j = s_k \implies [Z^i][Z^j] = [Z^k].$$

For $k \in \{1, \ldots, m\}$, $s_k = \{k\}$, whence $Z^k = I_{\theta_k}$. Since the sequence $(\tau; \theta_1, \ldots, \theta_m)$ determines the formula ϕ and $S \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]$, we have $\mathbf{B} \models \tau[[I_{\theta_1}], \ldots, [I_{\theta_m}]]$, that is

$$\mathbf{B} \models \tau[[Z^1], \dots, [Z^m]].$$

The Feferman-Vaught theorem for reduced ideal-products

Finally, let $k \in \{1, \ldots, m\}$ and $j \in Z^k \setminus I_{\eta_k} = I_{\theta_k} \setminus I_{\theta_k^Y}$. Then $S_j \models \theta_k[\overline{f_j}, \overline{U_j}, V_j]$ and $\mathcal{S}_i \not\models \theta_k^Y[\overline{f_j}, \overline{U_j}, V_j]$. $V = \prod V_i \in \mathcal{B}^{\Lambda}$, so, for some $L \in \Lambda$, $V = \bigcap_{i \in L} \pi^{-1}(O_i)$. Let us suppose that $j \notin L$. Then $V_j = S_j$, so it holds:

 $S_i \models \theta_k[\overline{f_i}, \overline{U_i}, S_i]$ and $S_i \not\models \theta_k^Y[\overline{f_i}, \overline{U_i}, S_i]$,

which is, according to the previous lemma, impossible. Therefore $j \in L$ and $Z^k \setminus I_{\eta_k} \subseteq L \in \Lambda$, which implies $Z^k \setminus I_{\eta_k} \in \Lambda$. But then $[Z^k] \setminus [I_{\eta_k}] \in \Lambda =$, i.e. $\lambda([Z^k] \setminus [I_{\eta_k}]), \ k = 1, \dots, m,$ which proves

$$\mathbf{B} \models \sigma[[I_{\psi_1}], \dots, [I_{\psi_l}], [I_{\eta_1}], \dots, [I_{\eta_m}]].$$

 (\Leftarrow) Let $\mathbf{B} \models \sigma[[I_{\psi_1}], \ldots, [I_{\psi_l}], [I_{\eta_1}], \ldots, [I_{\eta_m}]]$. Then there exist Z^1, \ldots, Z^l $\subseteq I$, such that the following conditions are satisfied:

- (a) $[Z^k] \leq [I_{\psi_k}], \ k = 1, \dots, l;$ (b) $s_i \cup s_j = s_k \Longrightarrow [Z^i][Z^j] = [Z^k];$ (c) $\mathbf{B} \models \tau([Z^1], \dots, [Z^m]);$
- (d) $[Z^k] \setminus [I_{\eta_k}] \in \Lambda / \equiv, \ k = 1, \dots, m.$

Hence, for some sets $F^k, F^{ijk}, G^k \in \Psi$ it holds:

- $\begin{array}{ll} (a1) & Z^k \cap F^k \subseteq I_{\psi_k}, \ k = 1, \dots, l; \\ (b1) & s_i \cup s_j = s_k \Longrightarrow Z^i \cap Z^j \cap F^{ijk} = Z^k \cap F^{ijk}; \\ (d1) & Z^k \setminus I_{\eta_k} \cap G^k \in \Lambda, \ k = 1, \dots, m. \end{array}$

Let $F = \bigcap_{k=1}^{l} F^k \cap \bigcap_{s_i \cup s_j = s_k} F^{ijk} \cap \bigcap_{k=1}^{m} G^k$. Then $F \in \Psi$ and it holds:

- $\begin{array}{l} (a2) \quad Z^k \cap F \subseteq I_{\psi_k}, \quad k = 1, \dots, l; \\ (b2) \quad s_i \cup s_j = s_k \Longrightarrow Z^i \cap Z^j \cap F = Z^k \cap F; \end{array}$
- (d2) $Z^k \setminus I_{\eta_k} \cap F \in \Lambda, \ k = 1, \dots, m.$

From (b2) it follows (by a simple inductive argument):

 $(b3) \ s_{j_1} \cup s_{j_2} \cup \ldots \cup s_{j_r} = s_h \implies Z^{j_1} \cap Z^{j_2} \cap \ldots \cap Z^{j_r} \cap F = Z_h \cap F.$ For $i \in \bigcup_{k=1}^{m} (Z^k \setminus I_{\eta_k} \cap F) = L$ let

$$s(i) \stackrel{\text{def}}{=} \{j \in \{1, \dots, m\} \mid i \in Z^j\}.$$

Then, for some $h \in \{1, \ldots, l\}$, it holds:

$$s(i) = s_h = \{j_1, \dots, j_r\} = s_{j_1} \cup \dots \cup s_{j_r},$$

whence, because of (b3) and (a2):

$$i \in \bigcap_{j \in s(i)} Z^j \cap F = Z^{j_1} \cap \ldots \cap Z^{j_r} \cap F = Z^h \cap F \subseteq I_{\psi_h},$$

and also $S_i \models \psi_h[\overline{f_i}, \overline{U_i}]$. Thus we can choose $V_i \in \mathcal{B}_i$ so that the following holds:

$$t[\overline{f_i}] \in V_i$$
 and $\mathcal{S}_i \models \bigwedge_{j \in s(i)} \theta_j[\overline{f_i}, \overline{U_i}, V_i].$

For $i \notin L$ we define $V_i = S_i$. L is a finite union of elements of Λ , so $L \in \Lambda$ and $V = \prod V_i \in \mathcal{B}^{\Lambda}$. Let us prove: $\mathcal{S} \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]$. Let

$$I_{\theta_k} = \{ i \in I \mid S_i \models \theta_k[\overline{f_i}, \overline{U_i}, V_i] \}, \ k = 1, \dots, m_k$$

 $j_0 \in \{1, \ldots, m\}$ and $i \in Z^{j_0} \cap F$. We discuss the possible cases:

(i) $i \in L$. Now $S_i \models \bigwedge_{j \in s(i)} \theta_j[\overline{f_i}, \overline{U_i}, V_i]$ and since $j_0 \in s(i)$ it holds: $S_i \models \theta_{j_0}[\overline{f_i}, \overline{U_i}, V_i]$. Hence $i \in I_{\theta_{j_0}}$.

(*ii*) $i \notin L$. By our agreement $V_i = S_i$. Also $i \notin (Z^{j_0} \cap F) \setminus I_{\eta_{j_0}}$, thus $i \in I_{\eta_{j_0}} = I_{\theta_{j_0}^Y}$. Let us assume that $i \notin I_{\theta_{j_0}}$. Then:

$$\mathcal{S}_i \models \theta_{j_0}^Y[\overline{f_i}, \overline{U_i}, S_i]$$
 and $\mathcal{S}_i \not\models \theta_{j_0}[\overline{f_i}, \overline{U_i}, S_i],$

which is impossible because of the previous lemma. So, again $i \in I_{\theta_{i_0}}$.

From (i) and (ii) it follows $Z^{j_0} \cap F \subseteq I_{\theta_{j_0}}$, accordingly:

$$[Z^j] \le [I_{\theta_j}], \quad j = 1, \dots, m$$

The condition (c) and the monotonicity of τ imply $\mathbf{B} \models \tau[[I_{\theta_1}], \ldots, [I_{\theta_m}]]$, whence by induction hypothesis

$$\mathcal{S} \models \phi[\overline{[f]}, \overline{q(U)}, q(V)]$$

Further, $t[\overline{f}] \in V$, thus $[t[\overline{f}]] \in q(V) \in \mathcal{B}_{\Psi}^{\Lambda}$. We conclude: $\mathcal{S} \models [t[\overline{f}]] \in q(V) \land \phi[[\overline{f}], \overline{q(U)}, q(V)]$, that is

$$\mathcal{S} \models \exists Y (t \in Y \land \phi(Y)[\overline{[f]}, \overline{q(U)}]. \Box$$

Remark. Let us just recall that \mathcal{L}_t -formulas are invariant, in other words, for any \mathcal{L}_t -formula χ it holds in general:

$$(\mathcal{S}, \mathcal{O}) \models \chi$$
 iff $(\mathcal{S}, \mathcal{B}) \models \chi$,

where \mathcal{B} is any base for the topology \mathcal{O} . In particular, in our case we have:

$$(\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}, \mathcal{O}_{\Psi}^{\Lambda}) \models \varphi \quad \text{iff} \quad (\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}, \mathcal{B}_{\Psi}^{\Lambda}) \models \varphi \quad \text{iff} \quad \mathbf{B} \models \sigma[[I_{\psi_{1}}], \dots, [I_{\psi_{m}}]].$$

It is seen from the proof that if φ is a sentence, then the formulas ψ_1, \ldots, ψ_m are sentences as well. Hence the following holds.

Corollary 2.3. For any \mathcal{L}_t -sentence φ there exists a sequence of formulas $(\sigma; \psi_1, \ldots, \psi_m)$ such that it holds:

(A) for each $j \in \{1, \ldots, m\}$, ψ_j is an \mathcal{L}_t -sentence;

(B) σ is a monotonic formula of the language $\mathcal{L}_{\mathbf{B}}$;

(C) for any set I, any ideal Λ , any filter Ψ on I and any family of topological structures $\{(S_i, \mathcal{O}_i) \mid i \in I\}$ it holds:

$$(\prod_{\Psi}^{\Lambda} \mathcal{S}_{i}, \mathcal{O}_{\Psi}^{\Lambda}) \models \varphi \qquad iff \qquad \mathbf{B} \models \sigma[[I_{\psi_{1}}], \dots, [I_{\psi_{m}}]],$$

where $I_{\psi_j} = \{i \in I \mid (\mathcal{S}_i, \mathcal{O}_i) \models \psi_j\}.\square$

The Feferman-Vaught theorem for reduced ideal-products

Corollary 2.4. Reduced ideal-product of topological spaces preserves \mathcal{L}_t -equivalence. \Box

Theorem 2.2 enables us to give a short proof of the Los theorem for topological structures.

Theorem 2.5. Let $\varphi(x^1, \ldots, x^p, X^1, \ldots, X^q)$ be an \mathcal{L}_t -formula. If $\{(\mathcal{S}_i, \mathcal{O}_i) \mid i \in I\}$ is a family of topological structures and \mathcal{U} an arbitrary ultrafilter on I, then for aech $f^1, \ldots, f^p \in \prod S_i$ and each $U^1, \ldots, U^q \in \mathcal{B}^{P(I)}$ it holds

(1)
$$\prod_{\mathcal{U}}^{P(I)} \mathcal{S}_i \models \varphi[\overline{[f]}, \overline{q(U)}] \qquad iff \qquad \{i \in I \mid \mathcal{S}_i \models \varphi[\overline{f_i}, \overline{U_i}]\} \in \mathcal{U}$$

Clearly, $\prod_{\mathcal{U}}^{P(I)} S_i$ is the ultraproduct of the given family.

Proof. The condition (1) holds iff the formula φ is determined by the sequence $(y_1 = \mathbf{1}; \varphi)$ (that is iff: $\prod_{\mathcal{U}}^{P(I)} S_i \models \varphi[\overline{[f]}, \overline{q(U)}] \iff \mathbf{B} \models (y = \mathbf{1})[[I_{\varphi}])$. Also, since \mathcal{U} is an ultrafilter, **B** is the two-element Boolean algebra (i.e. $P(I)/\equiv = \{\mathbf{0}, \mathbf{1}\}$). The theorem is proved by the usual induction. We consider the only nontrivial case:

$$\varphi \equiv \exists Y(t(x^1, \dots, x^p) \in Y \land \phi(x^1, \dots, x^p, X^1, \dots, X^q, Y^-)).$$

By the induction hypothesis, the formula ϕ is determined by the sequence $(y_1 = \mathbf{1}; \phi)$. Following the proof of Theorem 2.2, the sequence $(\sigma; \psi_1, \psi_2, \eta_1)$, where

$$\sigma(y_1, y_2, v_1) \equiv \exists z_1, z_2(z_1 \le y_1 \land z_2 \le y_2 \land z_1 \cdot z_2 = z_1 \land z_1 = \mathbf{1} \land \lambda(z_1 \setminus v_1));$$

$$\psi_1 \equiv \exists Y(t \in Y \land \psi), \qquad \qquad \psi_2 \equiv \exists Y(t \in Y \land T);$$

$$\eta_1 \equiv \phi^Y,$$

determines φ . Evidently:

$$T_{\mathbf{B}} \vdash \sigma(y_1, y_2, v_1) \iff y_1 = \mathbf{1} \land y_2 = \mathbf{1} \land \lambda(\mathbf{1} \setminus v_1).$$

Also, $\psi_1 \equiv \varphi$ and ψ_2 is a true sentence; thus $[I_{\psi_1}] = [I_{\varphi}]$ and $[I_{\psi_2}] = [I] = \mathbf{1}$. Now

$$\begin{split} \prod_{\mathcal{U}}^{P(I)} \mathcal{S}_i &\models \varphi[\overline{[f]}, \overline{q(U)}] \quad \text{iff} \quad \mathbf{B} \models (y_1 = \mathbf{1} \land y_2 = \mathbf{1} \land \lambda(v_1'))[[I_{\varphi}], \mathbf{1}, [I_{\eta_1}]] \\ \text{iff} \quad [I_{\varphi}] = \mathbf{1} \land [I_{\eta_1}]^c \in \Lambda / \equiv \quad \text{iff} \quad [I_{\varphi}] = \mathbf{1}, \end{split}$$

since $\Lambda \equiv P(I) \equiv .$ So the sequence $(y = 1; \varphi)$ determines $\varphi \square$

References

- [1] Bankston P., Ultraproducts in topology, Gen. Topology Appl. 7(1977), 283-308.
- [2] Bertossi L. E., The formal language L_t and topological products, Zeitschr. f. Math. Logik und Grundlagen d. Math. 36(1990), 89-94.
- [3] Chang C. C., Keisler H. J., Model Theory, North-Holland, Amsterdam, 1973.
- [4] Feferman S., Vaught R. L., The first order properties of algebraic systems, Fund. Math. 47 (1959), 57-103.
- [5] Flum J., Ziegler M., Topological Model Theory, Lecture Notes in Mathematics -769, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [6] Grulović M. Z., Kurilić M. S., On preservation of separation axioms in products, Comment. Math. Univ. Carol. 33.4 (1992), 713-721.
- [7] Kurilić M. S., Disconnectedness of the reduced ideal-product, Indian J. Pure Appl. Math., 23(9)(1992), 619-624.
- [8] Kurilić M. S., Openness of the reduced ideal-product, Math. Japonica 39, No 2 (1994), 305-308.

Received by the editors November 25, 1995

8