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THE FEFERMAN-VAUGHT THEOREM FOR
REDUCED IDEAL-PRODUCTS

Milan Z. Grulović1, Miloš S. Kurilić1

Abstract. The Feferman-Vaught theorem for first order logic is gen-
eralized for reduced ideal-products of topological structures. Roughly,
the theorem connects satisfaction of a topological formula in a reduced
ideal-product of topological structures with the satisfaction of the adjoint
Boolean formula in the corresponding Boolean algebra.
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1. Preliminaries

Throughout the paper {(Si,Oi) | i ∈ I} will be a family of topological
structures of a given first-order language L (in the sense of [5]). By Λ and Ψ we
will denote an ideal and a filter on the index set I respectively. πj :

∏
i∈I Si −→

Sj , j ∈ I, will be the canonical projections.
OΛ is the topology on

∏
i∈I Si with the base BΛ which consists of sets⋂

i∈L π−1
i (Oi), where L ∈ Λ and Oi ∈ Oi, for all i ∈ L. The topological

structure (
∏

i∈I Si,OΛ) will be denoted by
∏Λ Si. The equivalence relation ∼

on
∏

i∈I Si defined by: f ∼ g iff {i ∈ I | fi = gi} ∈ Ψ determines the quo-
tient space (structure)

∏Λ Si/ ∼ which will be called the reduced ideal-product
(shortly r.i. product or just r.i.p.) of the family {(Si,Oi) | i ∈ I}. Such a r.i.p.
will be denoted by

∏Λ
Ψ Si ([7]).

The natural mapping q :
∏

i∈I Si −→
∏

i∈I Si/ ∼ is given by q(f) = [f ],
where [f ] is the equivalence class of f . Since q is an open mapping, BΛ

Ψ =
{q(B) | B ∈ BΛ} is a base for the topology OΛ

Ψ on
∏Λ

Ψ Si.
It is proved in [6] that the r.i.p. preserves separation axioms T0, T1, T2, T3

and T3 1
2

if and only if the following condition holds:

∀A ∈ Ψ ∀B 6∈ Ψ ∃L ∈ Λ(L ⊆ A \B and Lc 6∈ Ψ) (ΛΨ).

Reduced ideal-products which satisfy the above condition were investigated in
[6], [7] and [8]. Special (ΛΨ)-r.i. products are: the Tychonov product (for
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Λ = [I]<ω and Ψ = {I}), the full box product (for Λ = P (I) and Ψ = {I}),
the ultraproduct (for Λ = P (I) and Ψ an arbitrary ultrafilter on I) and the
Knight’s box product (for Λ = [I]<κ and Ψ = {A ⊆ I | Ac ∈ [I]<µ}, where κ
and µ are cardinals satisfying |I| ≥ κ > µ ≥ ω).

By ≡ we will denote the well-known congruence relation on the Boolean
algebra P (I) given by:

A ≡ B iff for some F ∈ Ψ, A ∩ F = B ∩ F.

The equivalence class containing the element A ∈ P (I) will be denoted by [A].
The structure 〈P (I)/≡, +, ·,′ ,0,1〉, where [A] + [B] = [A ∪ B], [A] · [B] =

[A ∩ B], [A]′ = [Ac], 0 = [∅] and 1 = [I], is a Boolean algebra. If Λ is an
ideal on I (more precisely on P (I)), then Λ/≡= {[L] | L ∈ Λ} is an ideal on
P (I)/≡. The structure B def= 〈P (I)/≡,+, ·,′ ,0,1, Λ/≡〉 is a Boolean algebra
with distinguished ideal. Let LB = {+, ·,′ , 0, 1, λ} be the associated first-order
language. The theory we consider, TB, includes all axioms of the theory of
Boolean algebras and the additional axioms:

λ(0); λ(x) ∧ λ(y) =⇒ λ(x + y); λ(x) ∧ y ≤ x =⇒ λ(y).

2. The Feferman-Vaught-type theorem for r.i.p.

The classical theorem of S. Feferman and R. Vaught can be found, for in-
stance, in [4] and [3]. In [5] M. Flum and J. Ziegler gave a topological version
of this theorem concerning Tychonov products. L. Bertossi considered in [2]
the ”D-product” of a family of topological spaces and formulated the Feferman-
Vaught-type theorem for such structures.

Here we extend the above results for any r.i.p. of a family of topological
structures.

Let ϕ be an Lt-formula ([5]) and let Y be a set variable. The formula ϕY

is obtained from ϕ substituting each free occurence of Y of the form t ∈ Y by
t = t.

Lemma 2.1. If ϕ is an Lt-formula and (S,O) a topological structure, then for
each valuation v in (S,O) it holds:

(S,O) |= (ϕ ⇐⇒ ϕY )[v(Y/S)],

where v(Y/S) is the valuation obtained from v substituting the value of Y by S.

Proof. If Y is not free in ϕ, then ϕ ≡ ϕY and the proof is completed. Otherwise,
we proceed by induction on the complexity of the formula ϕ. We omit the case
when ϕ is atomic and the induction steps when ϕ is of the form ψ ∧ θ, ¬ψ
and ∃x ψ. So let ϕ ≡ ∃X(t ∈ X ∧ ψ) and let (S,O) and v be arbitrary while
(S,O) |= ϕ[v(Y/S)]. Then there is U ∈ O such that

(a) (S,O) |= (t ∈ X)[v(Y/S)(X/U)] and (b) (S,O) |= ψ[v(Y/S)(X/U)].
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Y is free in ϕ, so X 6= Y and v(Y/S)(X/U) = v(X/U)(Y/S). By the induction
hypothesis we have (S,O) |= (ψ ⇐⇒ ψY )[v(X/U)(Y/S)] and by (b) (S,O) |=
ψY [v(Y/S)(X/U)]. Now, by (a), (S,O) |= (t ∈ X ∧ ψY )[v(X/U)(Y/S)] for
some U ∈ O, i.e. (S,O) |= ∃X(t ∈ X ∧ ψY )[v(Y/S)], which gives (S,O) |=
(ϕ =⇒ ϕY )[v(Y/S)]. The proof of the converse implication is similar.2

Theorem 2.2. (The Feferman-Vaught-type theorem for r.i. products). For
each Lt-formula ϕ(x1, . . . , xp, X1, . . . , Xq) there is a sequence of formulas
(σ;ψ1, . . . , ψm) satisfying:

(A) for all j ∈ {1, . . . , m}, ψj is an Lt-formula and the free variables of
ψj are among the free variables of ϕ. Moreover, if X is a set variable which is
positive (negative) in ϕ, then X is positive (negative) in ψj;

(B) σ(y1, . . . , ym) is a formula of the language LB which is monotonic, that
is:

TB ` y1 ≤ t1 ∧ . . . ∧ ym ≤ tm ∧ σ(y1, . . . , ym) =⇒ σ(t1, . . . , tm);

(C) for each nonempty set I, any ideal Λ and any filter Ψ on I, for each
family {(Si,Oi) | i ∈ I} of topological structures, each f1, . . . , fp ∈ ∏

Si and
each U1, . . . , U q ∈ BΛ there holds:

∏Λ

Ψ
Si |= ϕ[[f1], . . . , [fp], q(U1), . . . , q(Uq)] iff B |= σ[[Iψ1 ], . . . , [Iψm ]],

where Iψj = {i ∈ I | Si |= ψj [f1
i , . . . , fp

i , U1
i , . . . , Uq

i ]} for j ∈ {1, . . . , m} and B
is the above defined model.

We say that ϕ is determined by the sequence (σ;ψ1, . . . , ψm).

Proof. Our proof follows the proof of the Feferman-Vaught theorem for first-
order logic. Like in [5], the sequences x1, . . . , xp; X1, . . . , Xq; f1, . . . , fp; U1, . . . ,
Uq; [f1], . . . , [fp]; q(U1), . . . , q(Uq); f1

i , . . . , fp
i ; U1

i , . . . , Uq
i and [Iψ1 ], . . . , [Iψm ]

will be denoted respectively by x, X, f , U , [f ], q(U), fi, Ui and [Iψ]. By Fv(ϕ)
we will denote the set of free variables of the formula ϕ and Fv+(ϕ) (Fv−(ϕ))
will be the set of the second order variables which are positive (negative) in ϕ.
The r.i.p.

∏Λ
Ψ Si will be denoted shortly by S.

The proof is based on induction on the complexity of the formula ϕ; the
basic logical connectives will be ¬ and ∧ and the basic quantifier will be ∃. We
omit the (easy) case when ϕ is atomic and the induction steps when ϕ is of the
form: ¬φ, φ ∧ θ and ∃xφ.

Let ϕ ≡ ∃Y (t(x1, . . . , xp) ∈ Y ∧ φ(x1, . . . , xp, X1, . . . , Xq, Y −)). By the
induction hypothesis there is a sequence (τ ; θ1, . . . , θm) determining φ. Let l =
2m and let s1 = {1}, s2 = {2}, . . . , sm = {m}, sm+1, . . . , sl be a list of all subsets
of {1, 2, . . . ,m}. We will prove that the sequence (σ;ψ1, . . . , ψl, η1, . . . , ηm),
where:

σ ≡ ∃z1, . . . , zl(
l∧

k=1

zk ≤ yk∧
∧

si∪sj=sk

zi ·zj = zk∧τ(z1, . . . , zm)∧
m∧

k=1

λ(zk \vk));
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ψk ≡ ∃Y (t ∈ Y ∧
∧

j∈sk

θj), k = 1, . . . , l;

ηj ≡ θY
j , j = 1, . . . ,m,

determines ϕ. θY
j is obtained from θj as in the preceding lemma. By convention,

the empty conjunction is a true sentence (in ”our” notation T ).
(A) By the induction hypothesis, θj , j = 1, . . . ,m, are Lt-formulas and

Y is negative in θj , so ψk and ηj are Lt-formulas. Since Fv(θj) ⊆ Fv(φ),
we have Fv(ψk) ⊆ Fv(ϕ) and Fv(ηj) ⊆ Fv(ϕ). Also, Fv+(ϕ) = Fv+(φ) ⊆⋂m

j=1 Fv+(θj)\{Y } ⊆
⋂l

k=1 Fv+(ψk) ∩ ⋂m
j=1 Fv+(ηj) and the analogous result

holds for Fv−(ϕ).
(B) Since τ is a formula of the language LB so is σ. Suposse y1 ≤ t1, . . . , yl ≤

tl, v1 ≤ w1, . . . , vm ≤ wm and σ(y1, . . . , yl, v1, . . . , vm). Then there exist
z1, . . . , zl satisfying z1 ≤ y1, . . . , zl ≤ yl, thus z1 ≤ t1, . . . , zl ≤ tl. Also, if
si ∪ sj = sk, then zi · zj = zk and it holds τ(z1, . . . , zm). Finally, vk ≤ wk

implies zk \ wk ≤ zk \ vk and from λ(zk \ vk) it follows λ(zk \ wk), for each
k ∈ {1, . . . , m}. Hence σ(t1, . . . , tl, w1, . . . , wm).

(C) Let I, Λ, Ψ, {(Si,Oi) | i ∈ I}, f1, . . . , fp ∈ ∏
Si, U1, . . . , Uq ∈ BΛ be

arbitrary. We will prove that

S |= ∃Y (t ∈ Y ∧ φ(Y ))[[f ], q(U)] iff B |= σ[[Iψ1 ], . . . , [Iηm ]].

(=⇒) Let V =
∏

Vi ∈ BΛ be such that t[[f1], . . . , [fp]] = [t[f ]] ∈ q(V ) and
S |= φ[[f ], q(U), q(V )]. Let

Zk = {i ∈ I | Si |=
∧

j∈sk

θj [fi, Ui, Vi]}, k = 1, . . . , l.

Because of [t[f ]] ∈ q(V ) we have F = {i ∈ I | t[fi] ∈ Vi} ∈ Ψ. Further, for
i ∈ Zk ∩F it holds: Si |= t[fi] ∈ Vi∧

∧
j∈sk

θj [fi, Ui, Vi], whence Si |= ψk[fi, Ui],
i.e. i ∈ Iψk

. Therefore Zk ∩ F ⊆ Iψk
and

[Zk] ≤ [Iψk
], k = 1, . . . , l.

If si ∪ sj = sk then: i ∈ Zi ∩ Zj iff Si |=
∧

j∈sk
θj(fi, Ui, Vi) iff i ∈ Zk.

Thus Zi ∩ Zj = Zk, consequently:

si ∪ sj = sk =⇒ [Zi][Zj ] = [Zk].

For k ∈ {1, . . . , m}, sk = {k}, whence Zk = Iθk
. Since the sequence (τ ; θ1, . . . , θm)

determines the formula φ and S |= φ[[f ], q(U), q(V )], we have B |= τ [[Iθ1 ], . . . ,
[Iθm ]], that is

B |= τ [[Z1], . . . , [Zm]].
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Finally, let k ∈ {1, . . . ,m} and j ∈ Zk \Iηk
= Iθk

\IθY
k

. Then Sj |= θk[fj , Uj , Vj ]
and Sj 6|= θY

k [fj , Uj , Vj ]. V =
∏

Vi ∈ BΛ, so, for some L ∈ Λ, V =
⋂

i∈L π−1(Oi).
Let us suppose that j 6∈ L. Then Vj = Sj , so it holds:

Sj |= θk[fj , Uj , Sj ] and Sj 6|= θY
k [fj , Uj , Sj ],

which is, according to the previous lemma, impossible. Therefore j ∈ L and
Zk \ Iηk

⊆ L ∈ Λ, which implies Zk \ Iηk
∈ Λ. But then [Zk] \ [Iηk

] ∈ Λ/≡, i.e.
λ([Zk] \ [Iηk

]), k = 1, . . . ,m, which proves

B |= σ[[Iψ1 ], . . . , [Iψl
], [Iη1 ], . . . , [Iηm

]].

(⇐=) Let B |= σ[[Iψ1 ], . . . , [Iψl
], [Iη1 ], . . . , [Iηm

]]. Then there exist Z1, . . . , Zl

⊆ I, such that the following conditions are satisfied:
(a) [Zk] ≤ [Iψk

], k = 1, . . . , l;
(b) si ∪ sj = sk =⇒ [Zi][Zj ] = [Zk];
(c) B |= τ([Z1], . . . , [Zm]);
(d) [Zk] \ [Iηk

] ∈ Λ/≡, k = 1, . . . ,m.
Hence, for some sets F k, F ijk, Gk ∈ Ψ it holds:

(a1) Zk ∩ F k ⊆ Iψk
, k = 1, . . . , l;

(b1) si ∪ sj = sk =⇒ Zi ∩ Zj ∩ F ijk = Zk ∩ F ijk;
(d1) Zk \ Iηk

∩Gk ∈ Λ, k = 1, . . . , m.

Let F =
⋂l

k=1 F k ∩ ⋂
si∪sj=sk

F ijk ∩ ⋂m
k=1 Gk. Then F ∈ Ψ and it holds:

(a2) Zk ∩ F ⊆ Iψk
, k = 1, . . . , l;

(b2) si ∪ sj = sk =⇒ Zi ∩ Zj ∩ F = Zk ∩ F ;
(d2) Zk \ Iηk

∩ F ∈ Λ, k = 1, . . . , m.
From (b2) it follows (by a simple inductive argument):

(b3) sj1 ∪ sj2 ∪ . . . ∪ sjr = sh =⇒ Zj1 ∩ Zj2 ∩ . . . ∩ Zjr ∩ F = Zh ∩ F .
For i ∈ ⋃m

k=1(Z
k \ Iηk

∩ F ) = L let

s(i) def= {j ∈ {1, . . . , m} | i ∈ Zj}.
Then, for some h ∈ {1, . . . , l}, it holds:

s(i) = sh = {j1, . . . , jr} = sj1 ∪ . . . ∪ sjr ,

whence, because of (b3) and (a2):

i ∈
⋂

j∈s(i)

Zj ∩ F = Zj1 ∩ . . . ∩ Zjr ∩ F = Zh ∩ F ⊆ Iψh
,

and also Si |= ψh[fi, Ui]. Thus we can choose Vi ∈ Bi so that the following
holds:

t[fi] ∈ Vi and Si |=
∧

j∈s(i)

θj [fi, Ui, Vi].
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For i 6∈ L we define Vi = Si. L is a finite union of elements of Λ, so L ∈ Λ and
V =

∏
Vi ∈ BΛ. Let us prove: S |= φ[[f ], q(U), q(V )]. Let

Iθk
= {i ∈ I | Si |= θk[fi, Ui, Vi]}, k = 1, . . . ,m,

j0 ∈ {1, . . . ,m} and i ∈ Zj0 ∩ F . We discuss the possible cases:
(i) i ∈ L. Now Si |=

∧
j∈s(i) θj [fi, Ui, Vi] and since j0 ∈ s(i) it holds:

Si |= θj0 [fi, Ui, Vi]. Hence i ∈ Iθj0
.

(ii) i 6∈ L. By our agreement Vi = Si. Also i 6∈ (Zj0 ∩ F ) \ Iηj0
, thus

i ∈ Iηj0
= IθY

j0
. Let us assume that i 6∈ Iθj0

. Then:

Si |= θY
j0 [fi, Ui, Si] and Si 6|= θj0 [fi, Ui, Si],

which is impossible because of the previous lemma. So, again i ∈ Iθj0
.

From (i) and (ii) it follows Zj0 ∩ F ⊆ Iθj0
, accordingly:

[Zj ] ≤ [Iθj ], j = 1, . . . ,m.

The condition (c) and the monotonicity of τ imply B |= τ [[Iθ1 ], . . . , [Iθm ]],
whence by induction hypothesis

S |= φ[[f ], q(U), q(V )].

Further, t[f ] ∈ V , thus [t[f ]] ∈ q(V ) ∈ BΛ
Ψ. We conclude: S |= [t[f ]] ∈ q(V ) ∧

φ[[f ], q(U), q(V )], that is

S |= ∃Y (t ∈ Y ∧ φ(Y )[[f ], q(U)].2

Remark. Let us just recall that Lt-formulas are invariant, in other words, for
any Lt-formula χ it holds in general:

(S,O) |= χ iff (S,B) |= χ,

where B is any base for the topology O. In particular, in our case we have:

(
∏Λ

Ψ
Si,OΛ

Ψ) |= ϕ iff (
∏Λ

Ψ
Si,BΛ

Ψ) |= ϕ iff B |= σ[[Iψ1 ], . . . , [Iψm ]].

It is seen from the proof that if ϕ is a sentence, then the formulas ψ1, . . . , ψm

are sentences as well. Hence the following holds.

Corollary 2.3. For any Lt-sentence ϕ there exists a sequence of formulas (σ; ψ1,
. . . , ψm) such that it holds:

(A) for each j ∈ {1, . . . , m}, ψj is an Lt-sentence;
(B) σ is a monotonic formula of the language LB;
(C) for any set I, any ideal Λ, any filter Ψ on I and any family of topological

structures {(Si,Oi) | i ∈ I} it holds:

(
∏Λ

Ψ
Si,OΛ

Ψ) |= ϕ iff B |= σ[[Iψ1 ], . . . , [Iψm ]],

where Iψj = {i ∈ I | (Si,Oi) |= ψj}.2
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Corollary 2.4. Reduced ideal-product of topological spaces preserves Lt-equiva-
lence. 2

Theorem 2.2 enables us to give a short proof of the Los theorem for topo-
logical structures.

Theorem 2.5. Let ϕ(x1, . . . , xp, X1, . . . , Xq) be an Lt-formula. If {(Si,Oi) |
i ∈ I} is a family of topological structures and U an arbitrary ultrafilter on I,
then for aech f1, . . . , fp ∈ ∏

Si and each U1, . . . , Uq ∈ BP (I) it holds

∏P (I)

U
Si |= ϕ[[f ], q(U)] iff {i ∈ I | Si |= ϕ[fi, Ui]} ∈ U(1)

Clearly,
∏P (I)
U Si is the ultraproduct of the given family.

Proof. The condition (1) holds iff the formula ϕ is determined by the sequence
(y1 = 1; ϕ) (that is iff:

∏P (I)
U Si |= ϕ[[f ], q(U)] ⇐⇒ B |= (y = 1)[[Iϕ]). Also,

since U is an ultrafilter, B is the two-element Boolean algebra (i.e. P (I)/≡ =
{0,1}). The theorem is proved by the usual induction. We consider the only
nontrivial case:

ϕ ≡ ∃Y (t(x1, . . . , xp) ∈ Y ∧ φ(x1, . . . , xp, X1, . . . , Xq, Y −)).

By the induction hypothesis, the formula φ is determined by the sequence (y1 =
1; φ). Following the proof of Theorem 2.2, the sequence (σ;ψ1, ψ2, η1), where

σ(y1, y2, v1) ≡ ∃z1, z2(z1 ≤ y1 ∧ z2 ≤ y2 ∧ z1 · z2 = z1 ∧ z1 = 1 ∧ λ(z1 \ v1));

ψ1 ≡ ∃Y (t ∈ Y ∧ ψ), ψ2 ≡ ∃Y (t ∈ Y ∧ T );

η1 ≡ φY ,

determines ϕ. Evidently:

TB ` σ(y1, y2, v1) ⇐⇒ y1 = 1 ∧ y2 = 1 ∧ λ(1 \ v1).

Also, ψ1 ≡ ϕ and ψ2 is a true sentence; thus [Iψ1 ] = [Iϕ] and [Iψ2 ] = [I] = 1.
Now

∏P (I)

U
Si |= ϕ[[f ], q(U)] iff B |= (y1 = 1 ∧ y2 = 1 ∧ λ(v′1))[[Iϕ],1, [Iη1 ]]

iff [Iϕ] = 1 ∧ [Iη1 ]
c ∈ Λ/≡ iff [Iϕ] = 1,

since Λ/≡ = P (I)/≡. So the sequence (y = 1; ϕ) determines ϕ.2
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