QUASI-NORMED OPERATOR IDEALS ON BANACH SPACES AND INTERPOLATION

Dobrinca Mihailov ${ }^{1}$, Ilie Stan ${ }^{1}$

Abstract

We prove that applying real methods of interpolation, more exactly the K-method, to the couples and triples of quasi-normed operator ideals on the Banach space, new operator ideals are obtained. Extending the results of C. Bennett and R. Sharpley (see [1]) from the function spaces to ideals, we present a variant of reiteration theorem for the couples of quasi-normed operator ideals.

AMS Mathematics Subject Classification (2000): 46M35, 47D25
Key words and phrases: operator ideals, interpolation methods

1. Introduction

We denote by \mathcal{L} the class of all linear continuous operators acting between the Banach spaces and by $\mathcal{L}(E, F)$ those which act from Banach space E to F. It is known that $\mathcal{L}(E, F)$ is a Banach space with the usual operator norm.

Recall (after Pietsch [7]) that a subclass $\mathcal{A} \subset \mathcal{L}$ is an operator ideal on Banach spaces if its components $\mathcal{A}(E, F):=\mathcal{A} \cap \mathcal{L}(E, F)$ satisfy the following conditions:
(O.I.0) $I_{\mathbf{K}} \in \mathcal{A}(\mathbf{K}, \mathbf{K})$, where $I_{\mathbf{K}}$ is the identity on the scalar field \mathbf{K}.
(O.I.1) It follows from $S_{1}, S_{2} \in \mathcal{A}(E, F)$ that $S_{1}+S_{2} \in \mathcal{A}(E, F)$.
(O.I.2) $T \in \mathcal{L}(X, E), S \in \mathcal{A}(E, F), R \in \mathcal{L}(F, Y)$ then $R S T \in \mathcal{A}(X, Y)$.

A positive function A defined on an operator ideal which satisfies the conditions:
(Q.O.I.0) $A\left(I_{\mathbf{K}}\right)=1$.
(Q.O.I.1) There exists a constant $\lambda \geq 1$ such that

$$
A\left(S_{1}+S_{2}\right) \leq \lambda\left[A\left(S_{1}\right)+A\left(S_{2}\right)\right], \text { for } S_{1}, S_{2} \in \mathcal{A}(E, F)
$$

(Q.O.I.2) If $T \in \mathcal{L}(X, E), S \in \mathcal{A}(E, F)$ and $R \in \mathcal{L}(F, Y)$ then

$$
A(R S T) \leq\|R\| A(S)\|T\|
$$

will be called a quasi-norm on \mathcal{A}. It is clear that $\mathcal{A}(E, F)$ endowed with the quasi-norm A is a linear topological Hausdorff space. The couple (\mathcal{A}, A) will be

[^0]called a quasi-normed operator ideal on Banach spaces if, for each pair (E, F), $\mathcal{A}(E, F)$ is complete.

Recall that a Banach couple $\bar{X}=\left(X_{1}, X_{2}\right)$ means two Banach spaces X_{j} $(j=1,2)$ continuously embedded in some linear topological Hausdorff space.

For a Banach couple \bar{X} we define the spaces $X_{\Delta}=X_{1} \cap X_{2}$ and $X_{\Sigma}=$ $=X_{1}+X_{2}$, which are Banach spaces with respect to the norms:

$$
\begin{equation*}
\|x\|_{\Delta}:=\max \left\{\|x\|_{X_{1}},\|x\|_{X_{2}}\right\}, \quad\left(x \in X_{\Delta}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{\Sigma}:=\inf \left\{\left\|x_{1}\right\|_{X_{1}}+\left\|x_{2}\right\|_{X_{2}}: x=x_{1}+x_{2}, x_{i} \in X_{i}\right\}, \quad\left(x \in E_{\Sigma}\right) \tag{1.2}
\end{equation*}
$$

For a Banach couple $\bar{X}=\left(X_{1}, X_{2}\right)$ and $t>0$ we define the functional

$$
K(t, a)=K(t, a ; \bar{X})=\inf _{a=a_{1}+a_{2}}\left\{\left\|a_{1}\right\|_{X_{1}}+t\left\|a_{2}\right\|_{X_{2}}\right\}
$$

which is an equivalent norm on X_{Σ}, for every $t>0$, fixed.
Let $\bar{X}=\left(X_{1}, X_{2}\right)$ be a given Banach couple. Then a Banach space X will be called an intermediate space between X_{1} and X_{2} (or with respect to \bar{X}) if $X_{\Delta} \hookrightarrow X \hookrightarrow X_{\Sigma}$.

Definition 1.1. Let $\bar{X}=\left(X_{1}, X_{2}\right)$ be a Banach couple and $0<\theta<1$, $1 \leq q<\infty$ or $0 \leq \theta \leq 1, q=\infty$. The space

$$
\bar{X}_{\theta, q}=\left(X_{1}, X_{2}\right)_{\theta, q}
$$

consists of all elements $f \in X_{1}+X_{2}$ for which

$$
\|f\|_{\theta, q}:=\alpha\left(\begin{array}{ll}
\left(\int_{0}^{\infty}\left[t^{-\theta} K(t, f, \bar{X})\right]^{q} \frac{d t}{t}\right)^{1 / q} & , \quad \text { if } 0<\theta<1,1 \leq q<\infty \\
\sup _{t>0} t^{-\theta} K(t, f, \bar{X}) & , \quad \text { if } 0 \leq \theta \leq 1, q=\infty
\end{array}\right.
$$

is finite.
Theorem 1.1. (T. Holmstedt's (see [1])). Let $\bar{X}=\left(X_{1}, X_{2}\right)$ be a Banach couple and the interpolation spaces $\bar{X}_{\theta_{0}}=\left(X_{1}, X_{2}\right)_{\theta_{0}, q_{0}}, \bar{X}_{\theta_{1}}=\left(X_{1}, X_{2}\right)_{\theta_{1}, q_{1}}$, where $0<\theta_{0}<\theta_{1}<1$ and $1 \leq q_{0}, q_{1} \leq \infty$.

Denoting by

$$
K(t, f)=K\left(t, f, X_{1}, X_{2}\right), \quad \bar{K}(t, f)=K\left(t, f, \bar{X}_{\theta_{0}}, \bar{X}_{\theta_{1}}\right)
$$

and $\delta=\theta_{1}-\theta_{0}$, we have

$$
\begin{equation*}
\bar{K}\left(t^{\delta}, f\right) \sim\left\{\int_{0}^{t}\left[s^{-\theta_{0}} K(s, f)\right]^{q_{0}} \frac{d s}{s}\right\}^{1 / q_{0}}+t^{\delta}\left\{\int_{t}^{\infty}\left[s^{-\theta_{1}} K(s, f)\right]^{q_{1}} \frac{d s}{s}\right\}^{1 / q_{1}} \tag{1.3}
\end{equation*}
$$

for any $f \in \bar{X}_{\theta_{0}}+\bar{X}_{\theta_{1}}$ and any $t>0$; if q_{0} or q_{1} are infinites the right-hand side of the relation (1.3) will be modified in a suitable way.

Definition 1.2. Let \bar{X} be a given Banach couple and X an intermediate space with respect to \bar{X}. Then we say that $X \in \mathcal{C}_{K}(\theta, \bar{X})$ if $K(t, a, \bar{X}) \leq$ $\leq c \cdot t^{\theta}\|a\|_{X}, a \in X$.

Theorem 1.2 Suppose that $0<\theta<1$. Then:
(a) $X \in \mathcal{C}_{K}(\theta, \bar{X})$ iff $X_{\Delta} \hookrightarrow X \hookrightarrow \bar{X}_{\theta, \infty}$.
(b) $X \in \mathcal{C}_{K}(\theta, \bar{X})$ if $\left(X_{1}, X_{2}\right)_{\theta, 1} \hookrightarrow X \hookrightarrow\left(X_{1}, X_{2}\right)_{\theta, \infty}$.

Obviously, $\bar{X}_{\theta, 1} \hookrightarrow \bar{X}_{\theta, p} \hookrightarrow \bar{X}_{\theta, \infty}$.
Lemma 1.1. (G. H. Hardy's). Let ψ be a measurable non-negative function on $(0, \infty),-\infty<\lambda<1$ and $1 \leq q<\infty$. Then:

$$
\left\{\int_{0}^{\infty}\left(t^{\lambda} \cdot \frac{1}{t} \int_{0}^{t} \psi(s) d s\right)^{q} \frac{d t}{t}\right\}^{1 / q} \leq \frac{1}{1-\lambda}\left\{\int_{0}^{\infty}\left(t^{\lambda} \psi(t)\right)^{q} \frac{d t}{t}\right\}^{1 / q}
$$

and

$$
\left\{\int_{0}^{\infty}\left(t^{1-\lambda} \int_{t}^{\infty} \psi(s) \frac{d s}{s}\right)^{q} \frac{d t}{t}\right\}^{1 / q} \leq \frac{1}{1-\lambda}\left\{\int_{0}^{\infty}\left(t^{1-\lambda} \psi(t)\right)^{q} \frac{d t}{t}\right\}^{1 / q}
$$

2. Interpolation of operator ideals

Considering two quasi-normed operator ideals on Banach spaces we define a new operator ideal in the following way:

Definition 2.1. Let $(\mathcal{A}, a),(\mathcal{B}, b)$ be two quasi-normed operator ideals on $B a$ nach spaces. For $1 \leq p<\infty, 0<\theta<1$ we define:

$$
\mathcal{C}_{\theta, p}:=(\mathcal{A}, \mathcal{B})_{\theta, p}
$$

in the following way: for an arbitrary pair of Banach spaces (E, F)

$$
\begin{gathered}
\mathcal{C}_{\theta, p}(E, F):=(\mathcal{A}(E, F), \mathcal{B}(E, F))_{\theta, p}= \\
=\left\{T \in \mathcal{A}(E, F)+\mathcal{B}(E, F) \left\lvert\, \int_{0}^{\infty}\left(\frac{K(t, T, \mathcal{A}(E, F), \mathcal{B}(E, F))}{t^{\theta}}\right)^{p} \frac{d t}{t}<\infty\right.\right\},
\end{gathered}
$$

where $K(t, T, \mathcal{A}(E, F), \mathcal{B}(E, F))=\inf _{T=T_{1}+T_{2}}\left\{a\left(T_{1}\right)+t \cdot b\left(T_{2}\right)\right\}, t>0$ (it will be denoted by $K(t, T))$.

Theorem 2.1. $\mathcal{C}_{\theta, p}$ is an operator ideal on Banach spaces.
Proof. We prove that the three conditions of the definition of ideals are satisfied. (OI.0) $I_{\mathbf{K}} \in \mathcal{C}_{\theta, p}(\mathbf{K}, \mathbf{K})$.
This condition is satisfied because $I_{\mathbf{K}} \in \mathcal{A}(\mathbf{K}, \mathbf{K})$ and $I_{\mathbf{K}} \in \mathcal{B}(\mathbf{K}, \mathbf{K})$, $K\left(1, I_{\mathbf{K}}\right) \leq \min (1, t)$ involves

$$
\begin{gathered}
\int_{0}^{\infty}\left(\frac{K\left(t, I_{\mathbf{K}}\right)}{t^{\theta}}\right)^{p} \frac{d t}{t} \leq \int_{0}^{\infty}\left(\frac{\min (1, t)}{t^{\theta}}\right)^{p} \frac{d t}{t}=\int_{0}^{1}\left(\frac{t}{t^{\theta}}\right)^{p} \frac{d t}{t}+\int_{1}^{\infty}\left(\frac{1}{t^{\theta}}\right)^{p} \frac{d t}{t}= \\
=\frac{1}{p(1-\theta)}+\frac{1}{p \theta}<\infty
\end{gathered}
$$

(OI.1) It follows from $T_{1}, T_{2} \in \mathcal{C}_{\theta, p}(E, F)$ that $T_{1}+T_{2} \in \mathcal{C}_{\theta, p}(E, F)$.
Obviously, we have $T_{1}+T_{2} \in \mathcal{A}(E, F)+\mathcal{B}(E, F)$ (being linear spaces) and $K\left(t, T_{1}+T_{2}\right) \leq \lambda_{1} \max \left(1, \frac{\lambda_{2}}{\lambda_{1}}\right)\left[K\left(t, T_{1}\right)+K\left(t, T_{2}\right)\right]$ implies

$$
\begin{gathered}
\int_{0}^{\infty}\left(\frac{K\left(t, T_{1}+T_{2}\right)}{t^{\theta}}\right)^{p} \frac{d t}{t} \leq\left[\lambda_{1} \max \left(1, \frac{\lambda_{2}}{\lambda_{1}}\right)\right]^{p} \int_{0}^{\infty}\left(\frac{K\left(t, T_{1}\right)+K\left(t, T_{2}\right)}{t^{\theta}}\right)^{p} \frac{d t}{t} \leq \\
\leq c \int_{0}^{\infty}\left(\frac{\max \left(K\left(t, T_{1}\right), K\left(t, T_{2}\right)\right)}{t^{\theta}}\right)^{p} \frac{d t}{t}<\infty
\end{gathered}
$$

because $T_{1}, T_{2} \in \mathcal{C}_{\theta, p}(E, F)$.
(OI.2) If $T \in \mathcal{L}\left(E_{0}, E\right), S \in \mathcal{C}_{\theta, p}(E, F), R \in \mathcal{L}\left(F, F_{0}\right)$, then $R S T \in$ $\in \mathcal{C}_{\theta, p}\left(E_{0}, F_{0}\right)$.

It follows from $R S T \in \mathcal{A}\left(E_{0}, F_{0}\right)+\mathcal{B}\left(E_{0}, F_{0}\right)$, and $K(t, R S T) \leq$ $\leq\|R\| K(t, S)\|T\|$ that

$$
\int_{0}^{\infty}\left(\frac{K(t, R S T)}{t^{\theta}}\right)^{p} \frac{d t}{t} \leq(\|R\| \cdot\|T\|)^{p} \int_{0}^{\infty}\left(\frac{K(t, S)}{t^{\theta}}\right)^{p} \frac{d t}{t}<\infty
$$

Theorem 2.2. The couple $\left(\mathcal{C}_{\theta, p}, c_{\theta, p}\right)$, where $c_{\theta, p}$ is defined by:

$$
c_{\theta, p}(T):=[p \theta(1-\theta)]^{1 / p}\left(\int_{0}^{\infty}\left(\frac{K(t, T)}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{1 / p}, 1 \leq p<\infty, 0<\theta<1
$$

is a quasi-normed operator ideal on Banach spaces.

Proof. (QOI.0) $c_{\theta, p}\left(I_{\mathbf{K}}\right)=1$.
By definition we have

$$
\begin{equation*}
\left(c_{\theta, p}\left(I_{\mathbf{K}}\right)\right)^{p}=p \theta(1-\theta) \int_{0}^{\infty}\left(\frac{K\left(t, I_{\mathbf{K}}\right)}{t^{\theta}}\right)^{p} \frac{d t}{t} \leq \tag{2.1}
\end{equation*}
$$

$\leq p \theta(1-\theta) \int_{0}^{\infty}\left(\frac{\min (1, t)}{t^{\theta}}\right)^{p} \frac{d t}{t}=p \theta(1-\theta)\left[\int_{0}^{1}\left(\frac{t}{t^{\theta}}\right)^{p} \frac{d t}{t}+\int_{1}^{\infty}\left(\frac{1}{t^{\theta}}\right)^{p} \frac{d t}{t}\right]=$
$=p \theta(1-\theta)\left[\frac{1}{p(1-\theta)}+\frac{1}{p \theta}\right]=1$, so $c_{\theta, p}\left(I_{\mathbf{K}}\right) \leq 1$.
Let $I_{\mathbf{K}}=T_{1}+T_{2}$, where $T_{1} \in \mathcal{A}(\mathbf{K}, \mathbf{K})$ and $T_{2} \in \mathcal{B}(\mathbf{K}, \mathbf{K})$. Then

$$
1=\left\|I_{\mathbf{K}}\right\|=\left\|T_{1}+T_{2}\right\| \leq\left\|T_{1}\right\|+\left\|T_{2}\right\| \leq a\left(T_{1}\right)+b\left(T_{2}\right)
$$

Taking the infimum after all decompositions of $I_{\mathbf{K}}$, we obtain:

$$
1 \leq K\left(1, I_{\mathbf{K}}\right)
$$

But $K\left(t, I_{\mathbf{K}}\right) \geq \min (1, t) K\left(1, I_{\mathbf{K}}\right) \geq \min (1, t)$; we conclude that

$$
\begin{gather*}
c_{\theta, p}\left(I_{\mathbf{K}}\right)=[p \theta(1-\theta)]^{\frac{1}{p}}\left(\int_{0}^{\infty}\left(\frac{K\left(t, I_{\mathbf{K}}\right)}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{\frac{1}{p}} \geq \tag{2.2}\\
\geq[p \theta(1-\theta)]^{\frac{1}{p}}\left(\int_{0}^{\infty}\left(\frac{\min (1, t)}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{\frac{1}{p}}=1
\end{gather*}
$$

Using (2.1) and (2.2) we obtain $c_{\theta, p}\left(I_{\mathbf{K}}\right)=1$.
(QOI.1) There exists a constant $\lambda \geq 1$ such that

$$
c_{\theta, p}\left(T_{1}+T_{2}\right) \leq \lambda\left[c_{\theta, p}\left(T_{1}\right)+c_{\theta, p}\left(T_{2}\right)\right]
$$

for every $T_{1}, T_{2} \in C_{\theta, p}(E, F)$.
Because $(\mathcal{A}, a),(\mathcal{B}, b)$ are two quasi-normed operator ideals, there are $\lambda_{1}, \lambda_{2} \geq$ 1 so that

$$
a\left(T_{1}+T_{2}\right) \leq \lambda_{1}\left[a\left(T_{1}\right)+a\left(T_{2}\right)\right]
$$

and

$$
b\left(T_{1}+T_{2}\right) \leq \lambda_{2}\left[b\left(T_{1}\right)+b\left(T_{2}\right)\right] .
$$

But

$$
c_{\theta, p}\left(T_{1}+T_{2}\right)=[p \theta(1-\theta)]^{1 / p}\left(\int_{0}^{\infty}\left(\frac{K\left(t, T_{1}+T_{2}\right)}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{1 / p}
$$

Let $T_{1}=S_{1}+R_{1}, T_{2}=S_{2}+R_{2}$, where $S_{i} \in \mathcal{A}(E, F), R_{i} \in \mathcal{B}(E, F), i=1,2$. Then:

$$
\begin{aligned}
K\left(t, T_{1}+T_{2}\right) & \leq a\left(S_{1}+S_{2}\right)+t b\left(R_{1}+R_{2}\right) \leq \lambda_{1}\left[a\left(S_{1}\right)+a\left(S_{2}\right)\right]+t \lambda_{2}\left[b\left(R_{1}\right)+b\left(R_{2}\right)\right]= \\
& =\lambda_{1}\left\{\left[a\left(S_{1}\right)+t \frac{\lambda_{2}}{\lambda_{1}} b\left(R_{1}\right)\right]+\left[a\left(S_{2}\right)+t \frac{\lambda_{2}}{\lambda_{1}} b\left(R_{2}\right)\right]\right\}
\end{aligned}
$$

and passing to infimum for all decompositions of T_{1}, T_{2}, we obtain:

$$
\begin{gathered}
K\left(t, T_{1}+T_{2}\right) \leq \lambda_{1}\left[K\left(\frac{\lambda_{2}}{\lambda_{1}} t, T_{1}\right)+K\left(\frac{\lambda_{2}}{\lambda_{1}} t, T_{2}\right)\right] \leq \\
\quad \leq \lambda_{1} \max \left(1, \frac{\lambda_{2}}{\lambda_{1}}\right)\left[K\left(t, T_{1}\right)+K\left(t, T_{2}\right)\right]
\end{gathered}
$$

Then

$$
\leq[p \theta(1-\theta)]^{1 / p}\left\{\int_{0}^{\infty}\left(\lambda_{1} \max \left(1, \frac{\lambda_{2}}{\lambda_{1}}\right)\right)^{p}\left(\frac{K\left(t, T_{1}\right)+K\left(t, T_{2}\right)}{t^{\theta}}\right)^{p} \frac{d t}{t}\right\}^{1 / p}
$$

and applying Minkowski's inequality, we have

$$
c_{\theta, p}\left(T_{1}+T_{2}\right) \leq \lambda_{1} \max \left(1, \frac{\lambda_{2}}{\lambda_{1}}\right)\left[c_{\theta, p}\left(T_{1}\right)+c_{\theta, p}\left(T_{2}\right)\right]
$$

where $\lambda=\lambda_{1} \max \left(1, \frac{\lambda_{2}}{\lambda_{1}}\right) \geq 1$.
(QOI.2) Let $T \in \mathcal{L}\left(E_{0}, E\right), S \in \mathcal{C}_{\theta, p}(E, F), R \in \mathcal{L}\left(F, F_{0}\right)$.
Then $c_{\theta, p}(R S T)=[p \theta(1-\theta)]^{1 / p}\left(\int_{0}^{\infty}\left(\frac{K(t, R S T)}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{1 / p}$.
But $K(t, R S T) \leq a\left(R S_{1} T\right)+t b\left(R S_{2} T\right) \leq\|R\| a\left(S_{1}\right)\|T\|+t\|R\| b\left(S_{2}\right)\|T\|$ for $S=S_{1}+S_{2}, S_{1} \in \mathcal{A}(E, F), S_{2} \in \mathcal{B}(E, F)$.

So

$$
K(t, R S T) \leq\|R\|\left(a\left(S_{1}\right)+t b\left(S_{2}\right)\right)\|T\|
$$

and by passing to infimum for all decompositions of S, it follows

$$
K(t, R S T) \leq\|R\| \cdot K(t, S)\|T\|
$$

and

$$
\begin{aligned}
c_{\theta, p}(R S T) & \leq[p \theta(1-\theta)]^{1 / p}\|R\|\left(\int_{0}^{\infty}\left(\frac{K(t, S)}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{1 / p}\|T\|= \\
& =\|R\| c_{\theta, p}(S) \cdot\|T\|
\end{aligned}
$$

and the proof is complete.

Definition 2.2. Let $(\mathcal{A}, a),(\mathcal{B}, b),(\mathcal{C}, c)$ be three quasi-normed operator ideals on Banach spaces. For $1 \leq p<\infty, 0<\theta_{1}, \theta_{2} ; \theta_{1}+\theta_{2}<1$, we define

$$
\mathcal{D}_{\theta_{1}, \theta_{2}, p}:=(\mathcal{A}, \mathcal{B}, \mathcal{C})_{\theta_{1}, \theta_{2}, p}
$$

as follows: for an arbitrary pair of Banach spaces (E, F), the component

$$
\begin{gathered}
\mathcal{D}_{\theta_{1}, \theta_{2}, p}(E, F):=(\mathcal{A}(E, F), \mathcal{B}(E, F), \mathcal{C}(E, F))_{\theta_{1}, \theta_{2}, p}= \\
=\left\{T \in \mathcal{A}(E, F)+\mathcal{B}(E, F)+\mathcal{C}(E, F) \left\lvert\, \int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{K\left(t_{1}, t_{2}, T\right)}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}<\infty\right.\right\},
\end{gathered}
$$

where

$$
K\left(t_{1}, t_{2}, T\right)=\inf _{T=T_{1}+T_{2}+T_{3}}\left(a\left(T_{1}\right)+t_{1} b\left(T_{2}\right)+t_{2} c\left(T_{3}\right)\right), \quad\left(t_{1}, t_{2}\right) \in \mathbf{R}_{+}^{2}
$$

Theorem 2.3. $\mathcal{D}_{\theta_{1}, \theta_{2}, p}$ is an operator ideal on Banach spaces.
Proof. (OI.0) $I_{\mathbf{K}} \in \mathcal{D}_{\theta_{1}, \theta_{2}, p}(\mathbf{K}, \mathbf{K})$.
Obviously, $I_{\mathbf{K}} \in \mathcal{A}(\mathbf{K}, \mathbf{K})+\mathcal{B}(\mathbf{K}, \mathbf{K})+\mathcal{C}(\mathbf{K}, \mathbf{K})$

$$
\int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{K\left(t_{1}, t_{2}, I_{\mathbf{K}}\right.}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}} \leq \int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{\min \left(1, t_{1}, t_{2}\right)}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}=I
$$

Decomposing \mathbf{R}_{+}^{2} in the following way:

we have:

$$
\begin{gathered}
I=\iint_{D_{1}}\left(\frac{\min \left(t_{1}, t_{2}\right)}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}+\iint_{D_{2}}\left(\frac{t_{2}}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}+ \\
+\iint_{D_{3}}\left(\frac{1}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}+\iint_{D_{4}}\left(\frac{t_{1}}{t_{1}^{\theta_{1}} \cdot t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}=I_{1}+I_{2}+I_{3}+I_{4} .
\end{gathered}
$$

I_{1} is convergent, because it is a Riemann integral

$$
I_{2}=\int_{0}^{1} t_{2}^{p-\theta_{2} p-1}\left(\int_{1}^{\infty} t_{1}^{-\theta_{1} p-1} d t_{1}\right) d t_{2}=\frac{1}{p^{2} \theta_{1}\left(1-\theta_{2}\right)}
$$

Analogously,

$$
I_{3}=\frac{1}{p^{2} \theta_{1} \theta_{2}} ; \quad I_{4}=\frac{1}{p^{2} \theta_{2}\left(1-\theta_{1}\right)}
$$

Decomposing D_{1} and computing the integral, we obtain:

$$
I_{1}=\frac{2-\theta_{1}-\theta_{2}}{p^{2}\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)\left(1-\theta_{1}-\theta_{2}\right)}
$$

therefore I is convergent, whence it results that $I_{\mathbf{K}} \in \mathcal{D}_{\theta_{1}, \theta_{2}, p}$.
(OI.1) Let $S, T \in \mathcal{D}_{\theta_{1}, \theta_{2}, p}(E, F)$. We prove that $S+T \in \mathcal{D}_{\theta_{1}, \theta_{2}, p}(E, F)$. Obviously, $S+T \in \mathcal{A}(E, F)+\mathcal{B}(E, F)+\mathcal{C}(E, F)$. Let $S=S_{1}+S_{2}+S_{3}$, $T=T_{1}+T_{2}+T_{3}$

$$
\begin{gathered}
K\left(t_{1}, t_{2}, S+T\right) \leq a\left(S_{1}+T_{1}\right)+t_{1} b\left(S_{2}+T_{2}\right)+t_{2} c\left(S_{3}+T_{3}\right) \leq \\
\leq \lambda_{1}\left[a\left(S_{1}\right)+a\left(T_{1}\right)\right]+t_{1} \lambda_{2}\left[b\left(S_{2}\right)+b\left(T_{2}\right)\right]+t_{3} \lambda_{3}\left[c\left(S_{3}\right)+c\left(T_{3}\right)\right]= \\
=\left[\lambda_{1} a\left(S_{1}\right)+t_{1} \lambda_{2} b\left(S_{2}\right)+t_{3} \lambda_{3} c\left(S_{3}\right)\right]+\left[\lambda_{1} a\left(T_{1}\right)+t_{1} \lambda_{2} b\left(T_{2}\right)+t_{2} \lambda_{3} c\left(T_{3}\right)\right]= \\
=\lambda_{1}\left\{\left[a\left(S_{1}\right)+t_{1} \frac{\lambda_{2}}{\lambda_{1}} b\left(S_{2}\right)+t_{2} \frac{\lambda_{3}}{\lambda_{1}} c\left(S_{3}\right)\right]+\left[a\left(T_{1}\right)+t_{1} \frac{\lambda_{2}}{\lambda_{1}} b\left(T_{2}\right)+t_{2} \frac{\lambda_{3}}{\lambda_{1}} c\left(T_{3}\right)\right]\right\}
\end{gathered}
$$

whence it results:

$$
\begin{gathered}
K\left(t_{1}, t_{2}, S+T\right) \leq \lambda_{1}\left[K\left(\frac{\lambda_{2}}{\lambda_{1}} t_{1}, \frac{\lambda_{3}}{\lambda_{1}} t_{2}, S\right)+K\left(\frac{\lambda_{2}}{\lambda_{1}} t_{1}, \frac{\lambda_{3}}{\lambda_{1}} t_{2}, T\right)\right] \leq \\
\leq \lambda_{1} \max \left(1, \frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{3}}{\lambda_{1}}\right)\left[K\left(t_{1}, t_{2}, S\right)+K\left(t_{1}, t_{2}, T\right)\right]
\end{gathered}
$$

and

$$
\begin{gathered}
\int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{K\left(t_{1}, t_{2}, S+T\right)}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}} \leq \\
\leq c \cdot \int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{\max \left(\left(K\left(t_{1}, t_{2}, S\right), K\left(t_{1}, t_{2}, T\right)\right)\right.}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}
\end{gathered}
$$

which is finite. Therefore $S+T \in \mathcal{D}_{\theta_{1}, \theta_{2}, p}(E, F)$.
(OI.2) If $T \in \mathcal{L}\left(E_{0}, F\right), S \in \mathcal{D}_{\theta_{1}, \theta_{2}, p}(E, F), R \in \mathcal{L}\left(F, F_{0}\right)$, then

$$
R S T \in \mathcal{A}\left(E_{0}, F_{0}\right)+B\left(E_{0}, F_{0}\right)+\mathcal{C}\left(E_{0}, F_{0}\right)
$$

and

$$
K\left(t_{1}, t_{2}, R S T\right) \leq\|R\| K\left(t_{1}, t_{2}, S\right)\|T\|
$$

involves

$$
\int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{K\left(t_{1}, t_{2}, R S T\right)}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}} \leq\|R\|^{p} \cdot\|T\|^{p} \int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{K\left(t_{1}, t_{2}, S\right)}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}<\infty
$$

Whence it results $R S T \in \mathcal{D}_{\theta_{1}, \theta_{2}, p}\left(E_{0}, F_{0}\right)$.
We define the function

$$
d_{\theta_{1}, \theta_{2}, p}: \mathcal{D}_{\theta_{1}, \theta_{2}, p} \rightarrow \mathbf{R}_{+}
$$

by

$$
\begin{equation*}
d_{\theta_{1}, \theta_{2}, p}(T):=\left(\lambda \int_{0}^{\infty} \int_{0}^{\infty}\left(\frac{K\left(t_{1}, t_{2}, T\right)}{t_{1}^{\theta_{1}} t_{2}^{\theta_{2}}}\right)^{p} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{t_{2}}\right)^{1 / p} \tag{2.3}
\end{equation*}
$$

where $1 \leq p<\infty, 0<\theta_{1}, \theta_{2} ; \theta_{1}+\theta_{2}<1$, and

$$
\lambda=\left(\frac{1-\theta_{1}-\theta_{2}+\theta_{1} \theta_{2}}{\left(p^{2} \theta_{1} \theta_{2}\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)\left(1-\theta_{1}-\theta_{2}\right)\right.}\right)^{-1}
$$

Theorem 2.4. The couple $\left(\mathcal{D}_{\theta_{1}, \theta_{2}, p}, d_{\theta_{1}, \theta_{2}, p}\right)$, where $1 \leq p<\infty, 0<$ $<\theta_{1}, \theta_{2} ; \theta_{1}+\theta_{2}<1$, is a quasi-normed operator ideal on Banach spaces.

Proof. It is shown that the function defined by (2.3) satisfies the three conditions of the definition of quasi-norm.
Remark. The results obtained in Theorems 2.2, 2.4 can be extended to the n-operator ideals on Banach spaces, with a suitable change of the constant that appears in the definition of quasinorm.

Theorem 2.5. The reiteration theorem). Let $(\mathcal{A}, a),(\mathcal{B}, b)$ be two quasi-normed operator ideals on Banach spaces, and $\mathcal{C}_{\theta_{0}, p_{0}}=(\mathcal{A}, \mathcal{B})_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}=$ $=(\mathcal{A}, \mathcal{B})_{\theta_{1}, p_{1}}$, where $0<\theta_{i}<1,1 \leq p_{i}<\infty,(i=0,1)$. Then:

$$
\left(\mathcal{C}_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}\right)_{\eta, p}=\mathcal{C}_{\theta, p},
$$

with equivalent norms, where $\theta=(1-\eta) \theta_{0}+\eta \theta_{1}, 0<\eta<1,1 \leq p<\infty$.
Proof. We remark that the ideal $\mathcal{C}_{\theta_{0}, p_{0}}$ is of class $\mathcal{C}\left(\theta_{0}, \mathcal{A}, \mathcal{B}\right)$ (namely for any pair of Banach spaces (E, F), the component $\mathcal{C}_{\theta_{0}, p_{0}}(E, F) \in \mathcal{C}\left(\theta_{0}, \mathcal{A}(E, F), \mathcal{B}(E, F)\right)$, and $\mathcal{C}_{\theta_{1}, p_{1}} \in \mathcal{C}\left(\theta_{1}, \mathcal{A}, \mathcal{B}\right)$.

Let $T \in\left(\mathcal{C}_{\theta_{0}, p_{0}} ; \mathcal{C}_{\theta_{1}, p_{1}}\right)_{\eta, p}(E, F)$. Then

$$
\int_{0}^{\infty}\left(\frac{K\left(s, T, \mathcal{C}_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}\right.}{s^{\eta}}\right)^{p} \frac{d s}{s}<\infty
$$

If $T=T_{0}+T_{1}, T_{0} \in \mathcal{A}(E, F), T_{1} \in \mathcal{B}(E, F)$, then

$$
\begin{gathered}
K(t, T, \mathcal{A}, \mathcal{B}) \leq K\left(t, T_{0}, \mathcal{A}, \mathcal{B}\right)+K\left(t, T_{1}, \mathcal{A}, \mathcal{B}\right) \leq \\
\leq c\left[t^{\theta_{0}} c_{\theta_{0}, p_{0}}\left(T_{0}\right)+t^{\theta_{1}} c_{\theta_{1}, p_{1}}\left(T_{1}\right)\right]=c t^{\theta_{0}}\left[c_{\theta_{0}, p_{0}}\left(T_{0}\right)+t^{\theta_{1}-\theta_{0}} c_{\theta_{1}, p_{1}}\left(T_{1}\right)\right] \leq \\
\leq c \cdot t^{\theta_{0}} K\left(t^{\theta_{1}-\theta_{0}}, T, \mathcal{C}_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}\right)
\end{gathered}
$$

So,

$$
\begin{gathered}
c_{\theta, p}(T)=c\left(\int_{0}^{\infty}\left(\frac{K(t, T, \mathcal{A}, \mathcal{B})}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{1 / p} \leq \\
\leq c^{\prime}\left(\int_{0}^{\infty}\left(t^{-\left(\theta-\theta_{0}\right)} K\left(t^{\theta_{1}-\theta_{0}}, T, \mathcal{C}_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}\right)\right)^{p} \frac{d t}{t}\right)^{1 / p}= \\
=c^{\prime \prime}\left(\int_{0}^{\infty}\left[s^{-\eta} K\left(s, T, \mathcal{C}_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}\right)\right]^{p} \frac{d s}{s}\right)^{1 / p}=c^{\prime \prime} \cdot c_{\eta, p}(T)<\infty
\end{gathered}
$$

where $s=t^{\theta_{1}-\theta_{0}}$ and $\eta=\frac{\theta-\theta_{0}}{\theta_{1}-\theta_{0}}$.
It follows that $T \in(\mathcal{A}, \mathcal{B})_{\theta, p}$ and so

$$
\left(\mathcal{C}_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}\right)_{\eta, p} \hookrightarrow(\mathcal{A}, \mathcal{B})_{\theta, p}
$$

In order to prove the converse inclusion, we remark that for an arbitrary Banach couple $\bar{X}=\left(X_{0}, X_{1}\right)$ we have

$$
\begin{equation*}
\bar{X}_{\theta_{j}, 1} \hookrightarrow \bar{X}_{\theta_{j}, q_{j}} \hookrightarrow \bar{X}_{\theta_{j}, \infty}, \quad(j=\overline{0,1}) \tag{2.4}
\end{equation*}
$$

and

$$
\|x\|_{\theta_{j}, q_{j}} \leq c \cdot\|x\|_{\theta_{j}, 1}
$$

We intend to show that

$$
c_{\eta, p}(T) \leq c \cdot c_{\theta, p}(T)
$$

Using the first inclusion of the relation (2.4) and Holmstedt's theorem for $q_{0}=q_{1}=1$ and $\delta=\theta_{1}-\theta_{0}$, we have:
$\bar{K}\left(t^{\delta}, T\right)=K\left(t^{\delta}, T,(\mathcal{A}, \mathcal{B})_{\theta_{0}, q_{0}},(\mathcal{A}, \mathcal{B})_{\theta_{1}, q_{1}}\right) \leq c \cdot K\left(t^{\delta}, T,(\mathcal{A}, \mathcal{B})_{\theta_{0}, 1},(\mathcal{A}, \mathcal{B})_{\theta_{1}, 1}\right) \leq$

$$
\leq c\left\{\int_{0}^{t}\left[s^{-\theta_{0}} \cdot K(s, T, \mathcal{A}, \mathcal{B})\right] \frac{d s}{s}+t^{\delta} \int_{t}^{\infty}\left[s^{-\theta_{1}} K(s, T, \mathcal{A}, \mathcal{B})\right] \frac{d s}{s}\right\}
$$

for any $T \in(\mathcal{A}, \mathcal{B})_{\theta_{0}, q_{0}}+(\mathcal{A}, \mathcal{B})_{\theta_{1}, q_{1}}$ and any $t>0$.
Using the above inequality, making the change of the variable $t=s^{\delta}$ and applying Minkowski's inequality, we obtain:

$$
\begin{aligned}
& \left(\int_{0}^{\infty}\left[t^{-\eta} \bar{K}(t, T)\right]^{p} \frac{d t}{t}\right)^{1 / p}=c^{\prime}\left(\int_{0}^{\infty}\left[t^{-\eta \delta} \bar{K}\left(t^{\delta}, T\right)\right]^{p} \frac{d t}{t}\right)^{1 / p} \leq \\
& \quad \leq c^{\prime \prime}\left\{\left(\int_{0}^{\infty}\left[t^{-\eta \delta} \int_{0}^{t} s^{-\theta_{0}} K(s, T) \frac{d s}{s}\right]^{p} \frac{d t}{t}\right)^{1 / p}+\right. \\
& \left.\quad+\left(\int_{0}^{\infty}\left[t^{\delta(1-\eta)} \int_{t}^{\infty} s^{-\theta_{1}} K(s, T) \frac{d s}{s}\right]^{p} \frac{d t}{t}\right)^{1 / p}\right\}
\end{aligned}
$$

Applying Hardy's inequalities for the two integrales of the right side, we obtain:

$$
\begin{gathered}
I_{1}=\left(\int_{0}^{\infty}\left[t^{-\eta \delta} \int_{0}^{t} s^{-\theta_{0}} K(s, T) \frac{d s}{s}\right]^{p} \frac{d t}{t}\right)^{1 / p}= \\
=\left(\int_{0}^{\infty}\left[t^{-\eta \delta+1} \cdot \frac{1}{t} \int_{0}^{t} s^{-\theta_{0}} K(s, T) \frac{d s}{s}\right]^{p} \frac{d t}{t}\right)^{1 / p} \leq \\
\leq \frac{1}{\eta \delta}\left\{\int_{0}^{\infty}\left(t^{1-\eta\left(\theta_{1}-\theta_{0}\right)} \cdot t^{-\theta_{0}-1} \cdot K(t, T)\right)^{p} \frac{d t}{t}\right\}^{1 / p}=c^{\prime}\left\{\int_{0}^{\infty}\left(t^{-\theta} K(t, T)\right)^{p} \frac{d t}{t}\right\}^{1 / p}
\end{gathered}
$$

where $\theta=(1-\eta) \theta_{0}+\eta \theta_{1}$.
Analogously,

$$
I_{2}=\left(\int_{0}^{\infty}\left[t^{\delta(1-\eta)} \int_{t}^{\infty} s^{-\theta_{1}} K(s, T) \frac{d s}{s}\right]^{p} \frac{d t}{t}\right)^{1 / p} \leq c^{\prime \prime}\left\{\int_{0}^{\infty}\left(t^{-\theta} K(t, T)\right)^{p} \frac{d t}{t}\right\}^{1 / p}
$$

Therefore:

$$
c_{\eta, p}(T)=\left(\int_{0}^{\infty}\left[t^{-\eta} \bar{K}(t, T)\right]^{p} \frac{d t}{t}\right)^{1 / p} \leq c\left\{\int_{0}^{\infty}\left[t^{-\theta} K(t, T)\right]^{p} \frac{d t}{t}\right\}^{1 / p}=c \cdot c_{\theta, p}(T)
$$

It follows that

$$
(\mathcal{A}, \mathcal{B})_{\theta, p} \hookrightarrow\left(\mathcal{C}_{\theta_{0}, p_{0}}, \mathcal{C}_{\theta_{1}, p_{1}}\right)_{\eta, p}
$$

and the theorem is proved.

References

[1] Bennett, C., Sharpley, R., Interpolation of operators, Pure and Applied Math. 129, Academic Press, Boston (1988).
[2] Berg, J., Löfström, J., Interpolation spaces, An introduction, Springer-Verlag, Berlin-Heidelberg-New York, (1976).
[3] Ceauşu, T., Cofan, N., Găvruţă, P., Stan, I., Real interpolation with a parameter function of Banach triples, SLOHA No.1, (1988), Univ. Timişoara, 1-35.
[4] Gustavsson, J., A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289-305.
[5] Nilsson, P., Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura. Appl. (4), 131-132 (1982), 291-330.
[6] Persson, L.E., Interpolation with parameter function, Math. Scand. 39 (1986), 199-222.
[7] Pietsch, A., Operator ideals, VEB Deutscher Verlag der Wissenschaften Berlin (1978).
[8] Stan, I., Real interpolation methods for finite families of Banach spaces, SLOHA No. 2 (1990), Univ. Timişoara, 1-18.

Received by the editors October 31, 2000

[^0]: ${ }^{1}$ Department of Mathematics, "Politehnica" University of Timişoara, Piaţa Victoriei Nr. 2, Timişoara 1900, România

