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Abstract. The main purpose of the present paper is to impose one-
sided Lipschitz condition for differential inclusions on a closed and con-
vex domain of a uniformly convex Banach space. Both differential inclu-
sions with almost upper demicontinuous and almost lower semicontinuous
right–hand sides are considered. The existence theorems are proved and
it is shown that the set of solutions is connected.
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1. Introduction

In the paper we examine the solution set of the following Cauchy problem

(CP ) ẋ ∈ F (t, x), x(0) = x0, x(t) ∈ D.

We prove that it is nonempty and connected, when F is Almost Lower Semi-
Continuous (ALSC), satisfying the one sided Lipschitz condition. The solutions
of (CP) are AC (absolutely continuous) functions such that (CP) holds almost
everywhere in t ∈ I = [0, 1]. The multifunction (multimap) F is defined on
I×D and has nonempty compact values. Here E is a uniformly convex Banach
space with uniformly convex dual E∗, D ⊂ E is locally closed convex. First we
consider (CP) with almost Upper Demi–Continuous (UDC) right-hand side with
convex compact values. In this case we show that the solution set of (CP) is Rδ

set. Afterwards we consider the ALSC case and using theorem 2 of [2] we prove
that the solution set of (CP) is nonempty and connected. We only note that the
results for differential inclusions with state constrains known in the literature are
obtained under additional compactness assumptions. For differential equations
with state constrain, satisfying dissipative type assumptions we refer to [8].
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We avoid the problem of continuation of local solution by imposing the growth
condition:

|F (t, x)| = max{|y| : y ∈ F (t, x) ≤ λ(t)(1 + |x|) on I ×D,(1)

where λ(·) is an L1 function. In the paper we extend the techniques used in
[5] and our main results (theorems 1 and 2) improve Theorems 1 and 2 of that
article.

We will use the following notes and notations:
– 2E is the set of all nonempty subsets of E,
– Br(x) is the open ball centered at x with radius r,
– clA, coA is the closed, respectively the convex hull of A ∈ 2E ,
– ρ(x, A) = inf

y∈A
|x− y| is the distance from x to the set A,

– DH(A,B) = max{sup
a∈A

ρ(a,B), sup
b∈B

ρ(b, A)} is the Hausdorff distance between

the bounded sets A,B ∈ 2E ,
– D+

H(A,B) = sup
a∈A

ρ(a,B) is the one-sided Hausdorff distance between the

bounded sets A,B ∈ 2E ,
– ProjD(a) = {a ∈ D : |a− d| = ρ(a,D)} is the metric projection of the point
a to the set D,
– σ(x,A) = sup

a∈A

〈
x, a

〉
is the support function of A ∈ 2E for every x ∈ E∗.

– J(x) = {x∗ ∈ E∗ :
〈
x∗, x

〉
= |x|2 = |x∗|2} is the duality map. When E∗ is

uniformly convex J(·) is single valued and uniformly continuous on the bounded
sets (see [3] for details).
– χA(x) is the characteristic function, i.e. χA(x) = 1 for x ∈ A and 0 elsewhere,
– ω(δ, x) is the modulus of continuity of the duality map J(·) at the point x, i.e.

ω(δ, x) = sup
|y|≤δ

|J(x)− J(x + y)|.

According to [3] (proposition 4.5) lim
δ→0

sup
x∈D

ω(x, δ) = 0.

We call F (·, ·) one-sided Lipschitz continuous iff there exists L1 function k(·)
such that for every x, y ∈ D

σ(J(x− y), F (t, x))− σ(J(x− y), F (t, y)) ≤ k(t)|x− y|2(2)

To avoid problems with measurability we suppose E is separable. The set
D ∈ 2E is said to be locally closed if for every x ∈ D there exists a neighborhood
Ux such that Ux

⋂
D is closed. In the sequel we suppose that D is locally closed.

Now we recall some definitions and notations and note that all the concepts
not discussed in the sequel can be found in [3].

Definition 1. The multimap F is called almost LSC iff there exists a sequence
{Jm}∞m=1 of mutually disjoint compact subsets of I such that
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meas(I\
∞⋃

i=1

Ji) = 0 and F is LSC on Ji × Y for every i. F is LSC at (t, x)

when to ε > 0 there exists δ > 0 such that F (s, y) + εU ⊃ F (t, x) for all (s, y)
with |t− s|+ |x− y| < δ. Here U = {x ∈ E| |x| ≤ 1}.

Since F admits compact values this definition is equivalent to:
For every u0 ∈ F (t, x) and every ti → t, xi → x there exist ui ∈ F (ti, xi)

with ui → u0.
The multimap F (t, ·) is called UDC when σ(l, F (t, ·)) is USC as a real val-
ued function for all l ∈ E∗. Similarly, F is called almost UDC iff there ex-
ists a sequence {Jm}∞m=1 of mutually disjoint compact subsets of I such that

meas(I\
∞⋃

i=1

Ji) = 0 and F is UDC on Ji × Y for all i.

Given M > 0 we define the cone ΓM := {(t, x) ∈ I × E : t ≥ 0; |x| ≤ Mt}.

Definition 2. Let A ⊂ I×E. The map f : A → E is said to be ΓM continuous
at (t0, x0) if for ε > 0 there exists δ > 0 such that

|f(t, x)− f(t0, x0)| < ε, whenever (t, x) ∈ Bδ(t0, x0)
⋂

A
⋂

[t0, x0) + ΓM ].

The Bouligand contingent cone for x ∈ D is

TD(x) = {y ∈ E lim
λ→0+

λ−1ρ(x + λy, D) = 0} = cl{λ(y − x), λ ≥ 0, y ∈ D}

because D is locally closed and convex. To obtain the existence of the solutions
we need of the subtangential condition

F (t, x) ⊂ TD(x) for all x ∈ D(3)

The following lemma, proved in [2] will play a crucial role in the sequel.

Lemma 1. For every M > 0 and Ω ⊂ I × E the LSC multimap F : Ω → 2E

with closed values admits ΓM continuous selection.

2. Main results

First we will prove the existence result for UDC multimaps. We use (with
essential modifications) the main idea of [7]. We need two auxiliary lemmas.

Lemma 2. Suppose F is almost UDC convex compact valued. If F satisfies (1)
and if W (t, x) = F (t, x)

⋂
TD(x) 6= ∅ satisfies (2) then one can reduce (1) and

(2) to the case λ(t) ≡ k(t) ≡ 1 preserving the other hypotheses.
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Proof. Define ϕ(t) = max{1, k(t), λ(t)} > 0. The map t →
∫ t

0

ϕ(s) ds is

continuous and strongly monotonely increasing, i.e. invertible. Let Φ(·) be

its inverse, i.e. Φ
(∫ t

0

ϕ(s) ds
)

= t. Define F̃ (t, x) =
1

ϕ(Φ(t))
F (Φ(t), x) for

(t, x) ∈ I × D. Evidently, F̃ satisfies all the conditions mentioned above with
k(t) ≡ λ(t) = 1. Moreover the set of trajectories, as curves in the phase space,
is preserved (see also [6]). 2

Let x(·), x(0) = x0 be AC with ρ(ẋ(t), F (t, x(t)+B1(0)) ≤ 1. Then the Gronwall
inequality and (1) imply the existence of the constants M and N such that
|x(t)| ≤ N , |F (t, x(t))| ≤ M . So we suppose F (·, ·) is bounded. Moreover the
solution set of (CP) coincides with the solution set of

(SP ) ẋ(t) ∈ W (t, x(t)) = F (t, x)
⋂

TD(x), x(0) = x0, x(t) ∈ D

Indeed, if x(t) ∈ D then ẋ(t) = lim
h→0

x(t + h)− x(t)
h

∈ TD(x).

Definition 3. The function y(·) is called quasipolygonal µ–solution of (SP) with
y(0) = x0 iff:

1) There exists a countable pairwise disjoint family Ik = [τk, ηk) of

semiopen intervals for which [0, 1) =
∞⋃

k=1

Ik.

2) y(t) = y(τk) +
∫ t

τk

f(τ) dτ , where f(t) ∈ W (t, y(τk)) on [τk, ηk).

3) y(τk) ∈ D, ρ(y(t), D) ≤ µ/2 and y(ηk) = ProjD

(
y(τk) +

∫ ηk

τk

f(τ) dτ
)
.

. The quasipolygonal µ–solutions y(·) are right–hand side continuous, M–Lipschitz
continuous on every interval Ik and possibly jump on the right ends of Ik.

Definition 4. The M–Lipschitz continuous function x(·) is said to be (ε, µ)–
solution iff:

1) x(t) = ProjD(y(t)) for some quasipolygonal solution µ–solution y(·).
2) |J(x(τi)− J(x(t))| ≤ ε

3M
and |x(t)− x(τi)| ≤ ε

2
for every t ∈ Ii.

Lemma 3. Suppose F is almost UDC convex and compact valued. If W (·, ·) is
nonempty valued satisfying (1), (2) and W (I, ·) maps compact sets into relatively
compact ones.

Then for any fixed µ > 0, ε > 0 there exist a subdivision P of I and its
respective (ε, µ)–solution x(·). Furthermore, the set of all (ε, µ)–solutions is
C(I, E) compact.
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Proof. Suppose the needed x(·) exists on [0, T ] (the interval is closed since x(t)
is M–Lipschitz continuous), T < 1, T is an end point of the subdivision P . Let
x(T ) ∈ A ⊂ D, where A is a compact set. As long as cl(W (I, a)) is compact for
every a ∈ A there exists λ(µ, a) > 0 such that λ−1D+

H(a+λcl(W (I, a)), D) ≤ µ

2
for every 0 < λ ≤ λ(µ, a) and, obviously, for every integrable selection f(t) ∈
W (t, a) one has λ−1ρ(a +

∫ T+λ

T

f(t) dt,D) ≤ µ

2
whenever 0 < λ ≤ λ(µ, a).

Furthermore inf
a∈A

λ(µ, a) = λµ > 0 because A is a compact set and ρ(b,D) is

continuous in b. Hence for every x ∈ A and every measurable selector f(t) ∈
W (t, x) the following inequality holds λ−1ρ(x +

∫ T+λ

T

f(t) dt,D) ≤ µ/2 for

every 0 < λ < λµ. We set y(t) = x(T ) +
∫ T+t

T

f(τ) dτ and x(t) = ProjD(y(t)).

The latter is well defined and single valued since D is locally closed and
convex in a uniformly convex Banach space. Obviously, there exists λ > 0 such
that so defined x(·) is (ε, µ)–solution on [0, T + λ].

We add the subinterval [T, T + λ) in P .
Therefore, by simple application of the Zorn lemma x(·) exists on the whole

I. It remains to show that the set of all such x(·) is C(I, E) compact.
The set of (ε, µ)–solutions is bounded (|x(·)| ≤ M) and every solution is

M–Lipschitz continuous. By virtue of Arzela theorem we have to show that the
attainable set X(t) of all such x(·) is a precompact set for every t ∈ I. X(0) ≡ x0

is obviously compact. On the first interval I1 of P , Y (t) = x0 +
∫ t

0

W (τ, y0) dτ

is compact for every t ∈ I1. Thus, X(t) = ProjD(Y (t)) is also compact.
By induction one can choose the intervals Ik so small that |x(t)−x(τk)| ≤ ε

2
for every t ∈ Ik. The duality map J(·) is uniformly continuous on the bounded
sets and E is uniformly convex Banach space. Therefore for an appropriate
choice of the length of Ik we can write |J(x(τi)− J(x(t))| ≤ ε

3M
, t ∈ Ik.

One has only to apply the Zorn lemma to obtain the result. 2

Recall ([3] p. 83) that A is said to be a (metric) absolute retract if, given
any metric space Ω and closed B ⊂ Ω and a continuous f : B → A, there exists
a continuous extension f̃ : Ω → A of f . A is said to be a (metric) Rδ if A is
compact and A =

⋂

k≥1

Ak for decreasing sequence of compact (metric) absolute

retracts Ak. However, the following conception is more convenient.
The set B is said to be contractible iff there is x0 ∈ B and continuous

h : [0, 1] × B → B such that h(0, x) = x and h(1, x) = x0 on B. From
Proposition 5.1 of [1] we know that A is Rδ iff A =

⋂

n≥1

Bn with decreasing

sequence of closed contractible with α(Bn) → 0, where α is the Kuratovski
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measure of noncompactness.

Theorem 1. Suppose F (·, ·) is almost UDC convex compact valued. Let for ev-
ery ε > 0 there exist Iε ⊂ I with measIε > 1−ε such that F (Iε, X) is precompact
for every compact X ⊂ D. If F satisfies (1) and W (t, x) = F (t, x)

⋂
TD(x) 6= ∅

satisfies (2) then the solution set of (CP) is nonempty Rδ set.

Proof. First we prove the existence of solutions. Let {εi}∞i=1 and {µi}∞i=1 be two

sequences of positive numbers such that the series
∞∑

i=1

√
εi + µi converges. We

claim there exist sequences {xi}∞i=1 of M–Lipschitz continuous functions and
{Pj}∞j=1 of partitions of I such that

a) There exists integrable αi(t) such that ρ(αi(t),W (t, xi(t) + Bεi(0)) ≤ εi

and |xi(t)−
∫ t

τ

αi(s) ds− xi(τ)| ≤ µi for a.a. t ∈ I.

b) |xi(t) − xi+1(t)|2 ≤ ri(t), where ṙi(t) ≤ ri(t) + 2(εi + εi+1 + µi + µi+1),
r(0) = 0.

c) |J(x)− J(x + y)| ≤ εi/(3M) for |x| ≤ N |y| ≤ (τ i
j − ki

j), where τ i
j , ki

j are
two successive points of Pj .

d) |xi(τ i
j)− xi(t)| ≤ εi, for every t ∈ [τ i

j , k
i
j ].

Due to Lemma 3 for (ε1, µ1) there exists a (ε1, µ1) solution x1(t) of (SP) and
a respective partition P1. Of course, c) and d) are fulfilled. As is done in
the proof of Lemma 3 we can choose an integrable selection α1(t) for which
α1(t) ∈ W (t, x1(τ)) and

|x1(t)−x1(τ)−
∫ t

τ

α1(s) ds| ≤ |x1(t)−x1(τ)|+ |
∫ t

τ

α1(s) ds| ≤ ε1(M +1) < µ1,

where τ is any end point of the intervals of P1. Thus, x1(t) and P1 satisfy a),

c) and d). We set y1(t) = x1(τk) +
∫ t

τk

α1(s) ds for every t ∈ [0, 1]. Now we are

going to construct xi+1 if xi is known.
First we consider the compact sets Iδi such that meas(I\Iδi) ≤ δi, F (Iδi , x)

is compact for every x ∈ D and Iδi ⊃ Iδi+1 . Moreover, we define δi such that
Mδi ≤ µi/4. We show the existence of xi+1(·) satisfying a) - d) if xi(·) already
exists. Extend F (·, ·) on Iδi+1×D so that the extension has compact range on I
for every fixed x ∈ D and satisfies (1). Suppose as in the previous step that the
needed xi+1 exists on [0, T ]. If T < 1 then it belongs to some interval [tij , t

i
j+1),

where the end points are two successive ones for which yi(τ) = xi(τ). Here τ
is an arbitrary end point of the above interval. If T ∈ Iδi we get a measurable
selector f(t) ∈ W (t, xi+1(T )) such that

〈
J(yi(t)− yi+1(T )), αi(t)− f(t)

〉 ≤ {|yi(t)− yi+1(T )|+ εi}2.
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If T /∈ Iδi
we choose f(t) ∈ W (t, xi+1(T )) arbitrary. Let yi+1(t) = xi+1(T ) +∫ t

T

f(s) ds and let xi+1(t) = ProjD(yi+1(t)). Therefore there exists τ > T such

that |xi+1(t)− yi+1(t)| ≤ µi+1 for all t ∈ [T, τ ] and
〈
J(yi(t)− yi+1(t)), αi(t)− f(t)

〉 ≤ {|yi(t)− yi+1(T )|+ εi + εi+1

}2
.

When T /∈ Iδi we choose τ = min{t ∈ Iδi : t > T}. Denote |yi(t) − yi+1(t)|2 =
ri(t). One can show that ṙi(t) ≤ ri+2(εi+εi+1)+mi(t), for a.a. t ∈ [T, τ ], where
mi(t) = 0 for t ∈ Iδi and mi(t) = M elsewhere. Therefore |xi(t) − xi+1|2 ≤
r(t) + µi + µi+1. Thus xi+1(·) can be defined on the all I. The claim is proved.

We finish the proof using the sequence {xi(·)}∞i=1. By the Gronwall inequality
there exists a constant C, with |xi(t)− xi+1(t)| ≤ C

√
εi + εi+1 + µi + µi+1.

Therefore
∞∑

i=1

√
εi + µi + εi+1 + µi+1 converges and hence {xi(·)}∞i=1 is a

Cauchy sequence in C(I, E). If x(t) is its limit, then it is routine to prove that
x(·) is in fact a solution of (CP).

Let Ri(t) be the reachable set of all εi- solutions, satisfying a), c), d). The
latter is compact for every t ∈ I. Furthermore, taking the sequence {xi(t)}∞i=1

of arbitrary εi-solutions (satisfying a), b), c), d)) one has that it is C(I, E)
precompact. Thus passing to subsequences if necessary xi(t) → x(t) as i →∞,
where x(·) is a solution of (CP).

Let x(·) be a solution of (CP). Consider the corresponding to εi subdivision
{τ i

j}∞i=1 of the interval I = [0, 1] such that xi(·) satisfies a), c), d). We get
fi(t) ∈ W (t, x(τ i

j)) such that
〈
J(x(t)− xi(τ i

j)), ẋ(t)− fi(t)
〉 ≤ (M + N)|x(t)− xi(τ i

j)|2

consequently,
〈
J(x(t)− xi(t)), ẋ(t)− αi(t)

〉 ≤ C{|x(t)− xi(t)|2 + εi + (τ i
j+1 − τ i

j)},
where C is a constant, dependent on M,N , but not on ε. Thus lim

i→∞
DH(RCP , Ri) =

0. Here X1 is as in step 1. As in the proof of Theorem 5.2 of [1] we consider
the sequence of the locally Lipschitz Fn(t, x) ⊃ F (t, x) on I × D. Denote
F̃n(t, x) = Fn(t, x) + Bcn(0), where cn = 2−n. The solution set Sn of (CP)
with F̃n instead of F is closed contractible and

⋂

n≥1

Sn = S the solution set of

(CP) is compact and lim
n→∞

α(Sn) = 0, where α is the Kuratowski measure for

noncompactness. Hence S is nonempty Rδ (see [1] for details). 2

Now we are ready to prove the main result of the paper.

Theorem 2. Let F (·, ·) be an ALSC compact valued multimap satisfying (1),
(2) and (3). Suppose moreover that for every δ > 0 there exists Iδ ⊂ I such that
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H(Iδ, X) is precompact for every compact X ⊂ D, where the map Hi(t, x) :=

clco

(⋂
ε>0

F (t, Bε(x)
⋂

D)

)
. Then the solution set of (CP) is nonempty and

connected.

Proof. Consider the differential inclusion

ẋ(t) ∈ H(t, x), x(t) = x0; x(t) ∈ D(4)

Where H(t, x) = Hi(t, x) for t ∈ Ai. Obviously H(·, ·) satisfies all the conditions
of Theorem 1. Let now fi(t, x) be ΓM+1 continuous selection of F (t, x) on Ai×D.
Denote hi(t, x) := cl co

⋂
ε>0

f(Ai

⋂
[t − ε, t + ε], Bε(x)

⋂
D). We set h(t, x) =

hi(t, x) for t ∈ AI . Thus h(t, x) ⊂ H(t, x). Obviously, h(t, ·) is UDC, h(·, x) is
measurable (see the proof of Theorem 6.2 of [3]) and h(t, x)

⋂
TD(x) 6= ∅. One

can consider the sequences {εi}∞i=i and {xi(·)}∞i=i (as in the proof of Theorem 1)
such that xi(·) satisfies a), c), d) in the proof of the claim but F (t, x) is replaced
by h(t, x). As shown {xi(·)}∞i=i is C(I, E) precompact. Therefore passing to
subsequences if needed one obtains the existence of lim

i→∞
xi(t) = x0(t) which is

a solution of (CP) with F (t, x) replaced by h(t, x). As in the proof of Theorem
6.1 of [3] ẋ0(t) ∈ f(t, x0(t)). Thus (CP) admits a solution.

Let u2, u2 be two solutions of (CP). Let fi(·) be a measurable selection of
F (·, ui(·)) i = 1, 2. For i = 1, 2 consider the map

F i(t, x) :=
{

fi(t) for x = ui(t)
F (t, x) otherwise.

Since F is ALSC by the Lusin theorem there exists a sequence of mutually
disjoint compacts Jn ⊂ I with meas(I\⋃

Jn) = 0 such that u̇i(·) are continuous
on Jn and F i(·, ·) is LSC on Jn×E. Thus there exists ΓM+1 continuous selection
f i

n(t, x) ∈ F i(t, x), t ∈ Jn, n = 1, 2, ...,∞. Define hi(t, x) = f i
n(t, x) t ∈ Jn.

Set F i
n(t, x) =

⋂
ε>0

cl co{f i
n(s, y) for |x− y| < ε; s ∈ [t, t + ε)

⋂
Jn}. Also define

Hi(t, x) = F i
n(t, x), t ∈ Jn. For λ ∈ [0, 1] consider:

rλ(t, x) = χ[0,λ)(t)h1(t, x) + χ[λ,1](t)h2(t, x)(5)

Rλ(t, x) = χ[0,λ)(t)H1(t, x) + χ[λ,1](t)H2(t, x).

First note that Rλ(t, x) ⊂ H(t, x). Let Sλ be the solution set of (CP) with
Rλ(·, ·) instead of F (·, ·). From Theorem 1 Sλ is compact and connected. Ob-
viously, Sλ is also the solution set of (5). Moreover λ → Sλ is USC. Thus⋃

λ∈[0,1]

Sλ ⊂ S(x) is compact and connected containing u1 and u2. Therefore

RCP is connected itself. 2

Remark 1. The conditions of Theorem 2 are natural except for the require-
ment of the precompactness of H(Iδ, X) for every compact X ⊂ D. The latter
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obviously holds when H(·, ·) is almost USC or clco F (·, ·) is almost continuous
and hence H(t, x) ≡ clco F (t, x).

Remark 2. The main difficulties here come from the fact that the right-hand
side F is defined only on D. If F is defined on the whole space E the convexity
of D can be dispensed with. Furthermore, one can relax the assumptions to

A1. F (·, ·) is almost LSC and H maps compact sets into relatively compact
ones.

A2. F (t, x) ≤ λ(t){1 + |x|} and F satisfies (2).
A3. F (t, x) ⊂ TD(x) for every x ∈ D (D is locally closed not necessarily

convex).

Theorem 3. If A1-A3 hold, then the differential inclusion (CP) admits nonempty
solution set. (When D is convex the solution set is also connected)

Proof. We claim that under A1-A3 the Cauchy problem

ẋ(t) ∈ H(t, x), x(0) = x0(6)

admits a compact solution set and any sequence of approximated solutions ad-
mits an accumulation point.

We use with modifications the method of [4] to prove the claim. Indeed,

consider the subdivision ∆ = {ti}N
i=0; ti − ti−1 = hy =

1
N

. Let

ẏ(t) ∈ H(t, y(ti)), t ∈ [ti, ti+1), i = 0, · · · ,K − 1(7)

For small hz consider

(8) ż(τ) ∈ H(τ, z(τj)), τ ∈ [τj , τj+1), j = 0, · · · ,K − 1, hz =
1
K

such that
〈
J(z(tj) − y(τi)), ż(t) − ẏ(t)

〉 ≤ ω(t, z(tj) − y(τi))|z(tj) − y(τi)| for
τj ∈ [ti, ti+1). In this case

〈
J(z(t)− y(t)), ż(t)− ẏ(t)

〉 ≤ ω(t, z(t)− y(t))|z(t)− y(t)|
+|ω(t, z(t)− y(t))|z(t)− y(t)| − ω(t, z(tj)− y(τi))|z(tj)− y(τi)|
+|J(z(tj)− y(τi))||ż(t)− ẏ(t)|

Since H is bounded and since ω and J are continuous one has that for every
ε1 > 0 and ε2 > 0 there exist hz and hy such that

〈
J(z(t)− y(t)), ż(t)− ẏ(t)

〉 ≤ u(t, |z(t)− y(t)|)|z(t)− y(t)|+ ε1 + ε2.

Denote by {yj(·)}∞j=1 the sequence of solutions of (7) with ti replaced by tji and
K – by Kj . So it is not difficult to show using the same arguments as in the
proof of Theorem 1 in [5] that there exist {εj}∞j=1 and {yj(·)}∞j=1 is a Cauchy
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sequence in C(I, E). It is also routine to prove that if yj(t) → y(t) then y(·) is
a solution of (6). Let x(·) be a solution of (6). Consider the solution z(·) of (8)
with z(0) = x0 and

〈
J(x(t)− z(ti)), ẋ(t)− f(t)

〉 ≤ ω(t, x(t)− z(ti))|x(t)− z(ti)|
on [ti, ti+1] and z(t) = z(ti) +

∫ t

ti

f(s) ds, for i = 0, 1, · · · , N − 1. Therefore

〈
J(z(t)− x(t)), f(t)− ẋ(t)

〉 ≤ ω(t, z(t)− x(t))|z(t)− x(t)|
+|ω(t, z(t)− x(t))|z(t)− x(t)| − ω(t, z(ti)− x(t))|z(ti)− x(t)|+
|J(z(ti)− x(t))||f(t)− ẏ(t)|

Obviously, one has that lim
K→∞

DH(RK , RCh) = 0 where we have denoted the

solution set of (6) by RCh and the solution set of (8) by RK . Therefore the
claim is proved.

Let f(t, x) ∈ F (t, x) be as in the proof of Theorem 2. Consider the differen-
tial inclusion

ẋ(t) ∈ h(t, x), x(0) = x0, x(t) ∈ D

One can continue as in the proof of Theorem 4.1 of [1]. 2

Remark 3. Suppose (2) holds with k(t) ≡ k (constant). Then one can replace
(1) by

F (·, ·) is bounded on bounded sets.
Indeed, in this case one can easily show that the map x → F (t, x + B1(0))

is also one-sided Lipschitz with a constant k.
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