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UNIFORM METHODS FOR SEMILINEAR PROBLEMS
WITH AN ATTRACTIVE BOUNDARY TURNING

POINT

Torsten Linß1, Relja Vulanović2

Abstract. Two upwind finite difference schemes are considered for the
numerical solution of a class of semilinear convection-diffusion problems
with a small perturbation parameter ε and an attractive boundary turn-
ing point. We show that for both schemes the maximum nodal error
is bounded by a special weighted `1-type norm of the truncation error.
These results are used to establish ε-uniform pointwise convergence on
Shishkin meshes.
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1. Introduction

In 1995, Andreev and Savin [2] introduced a new type of stability inequality
for a finite difference scheme discretizing a linear singularly perturbed boundary
value problem with a small positive perturbation parameter ε. Their stability
inequality uses two different norms, because of which we refer to this kind of
stability inequalities as the hybrid ones. The result of this is that the maximum
pointwise (`∞) error of the numerical solution is bounded by a weighted `1-
type norm of the truncation error. This approach can be applied to other
types of singular perturbation problems for which only `1 ε-uniform convergence
results were possible to prove previously. For instance, quasilinear problems are
typically analyzed in an `1 norm, see [1] and [11]. ε–uniform convergence in an `1
norm was proved in [11] for a quasilinear convection-diffusion problem without
turning points. This result was recently improved in [4] to the `∞ ε-uniform
convergence due to the use of a hybrid-type stability inequality. Another class
of problems that have so far been treated in an `1 norm is a class of attractive
turning point problems, [10] and [13]. The main purpose of the present paper
is to show that the hybrid stability inequality approach can be applied also to
some problems of this type and that ε-uniform convergence can be proved in
the `∞ norm.
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We consider the singularly perturbed semilinear convection-diffusion prob-
lem

T u := −εu′′−p(x)b(x)u′+c(x, u) = 0 for x ∈ (0, 1), u(0) = γ0, u(1) = γ1,(1)

where 0 < ε ¿ 1,

p(x) > 0 on (0, 1) and is monotonically increasing, while
b(x) ≥ β > 0 and cu(x, u) ≥ 0 for (x, u) ∈ (0, 1)× IR.

(2)

In sections 2 and 3 we analyze two upwind discretization schemes for problem
(1), one first-order and the other a second-order scheme. For those schemes we
derive appropriate hybrid stability inequalities. This is not a trivial generaliza-
tion of the Andreev and Savin [2] result, since it requires a precise problem-
adapted estimate of the discrete Green’s function. We apply those results in
section 4 to some special cases of problem (1). By using a Shishkin-type dis-
cretization mesh we are able to prove ε-uniform pointwise accuracy of order
one or two (both up to logarithmic factors), depending on the scheme and the
conditions on the problem. This is illustrated by numerical experiments.

The special case analyzed in section 4 belongs to the class of single attractive
boundary turning point problems. This class includes the problem

−εu′′ − xu′ + xu = 0, for x ∈ (0, 1), u(0) = γ0, u(1) = γ1,(3)

which models heat flow and mass transport near oceanic rises, [3]. Multiple
boundary turning points (p(0) = p′(0) = 0) are also covered by (1) and they
too arise in applications, see [8].

Our technique does not apply to interior turning point problems, such as the
differential equation in (3) considered on the interval (−1, 1). The aforemen-
tioned paper [10] deals with single interior turning point problems but its result
is also true for the single boundary turning point case. This case is what we im-
prove on in the present paper. An additional improvement is in the simplicity of
the discretization mesh as compared to the complicated mesh of Bakhvalov type
used in [10]. A single interior turning point problem is considered in [13] as well,
but in a more general quasilinear case, that we cannot extend our technique to.

It should be mentioned that Liseikin [5] proves first-order ε-uniform con-
vergence in the `∞ norm for single boundary turning point problems like (3).
His numerical method, however, is too complicated: the differential equation is
transformed using an appropriate substitution for x and then the transformed
problem is discretized on an equidistant mesh. Our method is much simpler,
since we discretize the problem directly on a Shishkin-type mesh.

We would like to point out that problems with a cusp layer (for those, see [9]
and the references therein) usually satisfy cu(x, u) ≥ c∗ > 0. These problems are
stable in the `∞ norm and their numerical analysis requires no hybrid stability
inequality. Nevertheless, our results in sections 2 and 3 apply to them as well.

On numerical methods for singular perturbation problems in general, see [6]
and [7] for instance.
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2 A first-order upwind scheme

Let N , our discretization parameter, be a positive integer. Let ω : 0 = x0 <
x1 < · · · < xN = 1 be an arbitrary mesh and let hi = xi − xi−1, i = 1, . . . , N .
We discretize using the following simple upwind scheme,

[
TN

κ uN
]
i
= 0 for i = 1, . . . , N − 1, uN

0 = γ0, uN
N = γ1,(4)

where

[
TN

κ v
]
i
:= − ε

χi

(
vi+1 − vi

hi+1
− vi − vi−1

hi

)
− pibi

vi+1 − vi

χi
+ c(xi, vi)

with χi = κhi + (1− κ)hi+1 and κ ∈ [0, 1] fixed.
The following Theorem states stability results for the difference operator

TN
κ . The proof uses a linearization technique and a barrier function argument

for the discrete Green’s function of the linear operator obtained. We introduce
the discrete maximum norm

‖v‖∞ := max
i=0,...,N

|vi|.

Theorem 1. Assume (2) and let v and w be two arbitrary mesh functions with
v0 = w0 and vN = wN . Then

‖v − w‖∞ ≤ 1
β

N−1∑

j=1

χj

pj

∣∣∣
[
TN

κ v − TN
κ w

]
j

∣∣∣ .(5)

Proof. Let v and w be the two mesh functions for which we want to prove (5).
Following the usual practice, we define the discrete linear operator

[
LN

κ y
]
i
:= − ε

χi

(
yi+1 − yi

hi+1
− yi − yi−1

hi

)
− pibi

yi+1 − yi

χi
+ c̄iyi, y0 = yN = 0,

where

c̄i =
∫ 1

0

cu

(
xi, wi + s(vi − wi)

)
ds ≥ 0.

The operators LN
κ and TN

κ are related by

LN
κ v − LN

κ w = LN
κ

(
v − w

)
= TN

κ v − TN
κ w.(6)

For the linear operator LN
κ and arbitrary mesh functions y with y0 = yN = 0

we have

yi =
N−1∑

j=1

χjG
j
i

[
LN

κ y
]
j

for i = 1, . . . , N − 1,(7)
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where G is the discrete Green’s function associated with LN
κ . For arbitrary fixed

j, G satisfies
[
LN

κ Gj
]
i
= δN

ij χ−1
i for i = 1, . . . , N − 1, Gj

0 = Gj
N = 0,

with

δN
ij =

{
1 for i = j,

0 for i 6= j.

The operator LN
κ satisfies a discrete comparison principle since the matrix

associated with LN
κ is an M -matrix (an inverse–monotone L-matrix). This is

easily verified using the M -matrix criterion with the test function zi = 1− xi.
We construct a barrier function for G now. Let βi = βpi,

Rj
i :=





1 for i = j + 1,

i−1∏

µ=j+1

(
1 +

βµhµ+1

ε

)−1

for i = j + 2, . . . , N,

Qj
i :=





0 for i = 0, . . . , j,

1
ε + βjhj+1

i∑

ν=j+1

hνRj
ν for i = j + 1, . . . , N,

and

Bj
i :=

{
Qj

N for i = 0, . . . , j,

Qj
N −Qj

i for i = j + 1, . . . , N.

Clearly, Bj
i satisfies

0 ≤ Bj
i ≤ Qj

N for i = 0, . . . , N,(8)

since Qj
i monotonically increases with i. Now we shall show that

[
LN

κ Bj
]
i
≥ δN

ij χ−1
i for i = 1, . . . , N − 1.(9)

We have

Bj
i −Bj

i−1

hi
=





0 for i = 1, . . . , j,

− Rj
i

ε + βjhj+1
for i = j + 1, . . . , N.

Thus
[
LN

κ Bj
]
i

= c̄iB
j
i ≥ 0 for i = 1, . . . , j − 1,

[
LN

κ Bj
]
j

= −ε + bjpjhj+1

χj

Bj
j+1 −Bj

j

hj+1
+ c̄jB

j
j ≥

1
χj

,
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and

[
LN

κ Bj
]
i

= −ε + bipihi+1

χi

Bj
i+1 −Bj

i

hi+1
+

ε

χi

Bj
i −Bj

i−1

hi
+ c̄iB

j
i

≥
(
ε + bipihi+1

)
Rj

i+1 − εRj
i

χi

(
ε + βjhj+1

) ≥ 0 for i = j + 1, . . . , N − 1,

because εRj
i =

(
ε + βihi+1

)
Rj

i+1. This completes the proof of (9).
Since LN

κ satisfies the discrete comparison principle, from (8) and (9), we
get

0 ≤ Gj
i ≤ Bj

i ≤ Qj
N for i, j = 1, . . . , N − 1.(10)

Next we show that

Qj
N ≤ 1

βj
for j = 1, . . . , N − 1.(11)

From the definition of Q we have

QN
N = 0 and Qj−1

N =
1

βj−1
+

ε

βj−1

βj−1Q
j
N − 1

ε + βj−1hj
.

Induction for j = N, N − 1, . . . , 2 yields (11) because of the monotonicity of p.
Finally, combine (10) and (11) with (7) and (6) with y = v − w. 2

Remark 1 For p ≡ 1 we recover the stability results from [2] for linear problems
and from [4, Lemma 2] for quasilinear problems in conservative form.

An immediate consequence of Theorem 1 for the simple upwind scheme is

∥∥u− uN
∥∥
∞ ≤ 1

β

N−1∑

j=1

χj

pj

∣∣∣
[
TN

κ u
]
j

∣∣∣ .

Thus the error of the numerical solution in the maximum norm is bounded by an
`1-type norm of the truncation error weighted with the inverse of the coefficient
of the convection term.

3 A second-order upwind scheme

In this section we consider a second-order upwind scheme for the discretiza-
tion of (1). In addition to (2) we shall assume that there exists a positive
constant α such that

p(x)b(x) ≥ αcu(x, u) for all (x, u) ∈ (0, 1)× IR.(12)

This is a technical condition required by our method of proof. Nevertheless, the
equation (3) satisfies it with α = 1.
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Our scheme is a combination of the standard central difference scheme

[
TN

c v
]
i
:= − ε

~i

(
vi+1 − vi

hi+1
− vi − vi−1

hi

)
− pibi

vi+1 − vi−1

2~i
+ c(xi, vi)

and the midpoint-upwind scheme

[
TN

mpv
]
i
:= − ε

hi+1

(
vi+1 − vi

hi+1
− vi − vi−1

hi

)

−(pb)i+1/2
vi+1 − vi

hi+1
+ c

(
xi+1/2,

vi+1 + vi

2

)
,

where xi+1/2 = xi + hi+1/2. Let I denote the set of indices for which the
central difference discretization is stable, i.e., I =

{
i : hipibi ≤ 2ε

}
. Let I ⊆ I

be arbitrary. The discrete problem reads: find uN ∈ IRN+1 such that
[
TN

σ uN
]
i
= 0 for i = 1, . . . , N − 1, uN

0 = γ0, uN
N = γ1,(13)

where
[
TN

σ v
]
i
:=

{ [
TN

c v
]
i

if i ∈ I,
[
TN

mpv
]
i

otherwise.

Before stating our stability result for TN
σ we have to introduce some more

notation. Let

σi =

{
~i if i ∈ I,

hi+1 otherwise
and βi =

{
2βpi if i ∈ I,

βpi+1/2 otherwise.

Theorem 2. Assume (2), (12), and that hi ≤ 2α for i = 1, . . . , N . Let v and
w be two arbitrary mesh functions with v0 = w0 and vN = wN . Then

‖v − w‖∞ ≤
N−1∑

j=1

σj

βj

∣∣∣
[
TN

σ v − TN
σ w

]
j

∣∣∣ .(14)

Proof. The stability analysis for TN
σ is similar to that for TN

κ . We start by
linearizing TN

σ . Let

[
LN

c y
]
i
:= − ε

~i

(
yi+1 − yi

hi+1
− yi − yi−1

hi

)
− pibi

yi+1 − yi−1

2~i
+ c0

i yi,

[
LN

mpy
]
i
:= − ε

hi+1

(
yi+1 − yi

hi+1
− yi − yi−1

hi

)
− pi+1/2bi+1/2

yi+1 − yi

hi+1

+
c+
i yi+1 + c−i yi

2
,
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and

[
LN

σ v
]
i
:=

{ [
LN

c v
]
i

if i ∈ I,
[
LN

mpv
]
i

otherwise,

where

c0
i =

∫ 1

0

cu

(
xi, wi + s(vi − wi)

)
ds, c−i =

∫ 1

0

cu

(
xi+1/2, wi + s(vi − wi)

)
ds

and

c+
i =

∫ 1

0

cu

(
xi+1/2, wi+1 + s(vi+1 − wi+1)

)
ds.

This construction ensures

LN
σ

(
v − w

)
= TN

σ v − TN
σ w.(15)

The combination of central differencing with the midpoint upwind scheme and
hi ≤ 2α guarantee that LN

σ is an L-matrix. Using the test function zi = 1− xi

on can easily verify LN
σ is also an M -matrix.

The discrete Green’s function associated with LN
σ satisfies

[
LN

σ Gj
]
i
= δN

ij σ−1
i for i = 1, . . . , N − 1, Gj

0 = Gj
N = 0.

The construction of the barrier function of G is only slightly different from that
for the simple upwind operator. Let

Rj
i :=





1 for i = j + 1,

i−1∏

µ=j+1

(
1 +

βµhµ+1

ε

)−1

for i = j + 2, . . . , N,

Qj
i :=





0 for i = 0, . . . , j,

1
ε + βjhj+1

i∑

ν=j+1

hνRj
ν for i = j + 1, . . . , N,

and

Bj
i :=

{
Qj

N for i = 0, . . . , j,

Qj
N −Qj

i for i = j + 1, . . . , N.

This Bj
i is a barrier function for Gj

i . 2
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4 Application to a special problem

We now consider the special case p(x) = x, c(x, u) = xg(x, u), thus we are
interested in the problem

T u := −εu′′−xb(x)u′+xg(x, u) = 0 for x ∈ (0, 1), u(0) = γ0, u(1) = γ1.(16)

We shall derive a uniform maximum-norm error estimates for the first-order
scheme on Shishkin meshes using Theorem 1. We need first some results on the
solution of (16).

Throughout this section we assume the following minimum smoothness con-
ditions

b ∈ C2[0, 1] and g ∈ C2([0, 1]×W ),

where W ⊂ IR is described below. Also, analogously to (2), let

b(x) ≥ β > 0 and gu(x, u) ≥ 0 for (x, u) ∈ (0, 1)×W.(17)

Then we can construct an upper solution ū of (16),

ū(x) = |γ0|+ |γ1|+ G

β
(2− x), G = max

0≤x≤1
|g(x, 0)|,(18)

whereas −ū is a lower solution. This construction can be found in [5]. Since
the operator T is inverse monotone, this means that problem (16) has a unique
solution, u ∈ C4[0, 1], and moreover,

u(x) ∈ W :=
[−ū(0), ū(0)

]
for x ∈ [0, 1].

Let u0 ∈ C3[0, 1] be the unique solution to the reduced problem

−b(x)u′ + g(x, u) = 0, for x ∈ (0, 1), u(1) = γ1.

Let also µ =
√

ε. By C, sometimes subscripted, we denote throughout the
paper a generic positive constant which is independent of ε and N , the number
of steps in the mesh ω.

Lemma 1. Let (17) hold true. Then the solution u of (16) satisfies

∣∣(u− u0)(x)
∣∣ ≤ C

(
µ + e−mx/µ

)
,(19)

∣∣u(i)(x)
∣∣ ≤ C

(
µmin{0,2−i} + µ−ie−mx/µ

)
,(20)

where x ∈ [0, 1], i = 0, 1, 2, 3, and m > 0 is an arbitrary constant independent
of ε.

Proof. See in [10]. Note that the estimates in [5] are less sharp because u0 was
not used in proving them. 2
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4.1 The discretization mesh

We use a slightly generalized Shishkin mesh which we denote by S(L), where
L = L(N) stands for any quantity satisfying L ≤ ln N and

e−L ≤ L

N
.(21)

Let τ = aµL with an arbitrary positive number a. Also, let J = qN be a
positive integer such that q < 1 and q−1 ≤ C. We assume that aµ ln N ≤ q,
since N is unreasonably large otherwise. Therefore, τ ≤ q. Then we form the
mesh S(L) by dividing the interval [0, τ ] into J equidistant subintervals and
the interval [τ, 1] into N − J equidistant subintervals. Note that xJ = τ . The
standard Shishkin mesh uses L = ln N , typically with q = 1

2 . The use of L
instead of ln N is for practical and not theoretical reasons, since any L behaves
like ln N when N → ∞, see [12]. Still, as L may be less than ln N in practice,
with such an L we get a mesh which is denser in the layer. This is very likely
to improve the numerical results.

4.2 Analysis of the first-order upwind scheme

Let us now discretize the problem (16) on the S(L) mesh by using the first-
order upwind scheme (4). It is easy to see that the discrete problem has a
unique solution uN . Its uniqueness follows from (5). To show that (4) has a
solution, we construct its upper and lower solutions in the same way as for the
continuous problem. Indeed, using ū as defined in (18), we get

[
TN

κ ū
]
i
= xi

[
bi

β
· hi+1

χi
G + g(xi, ūi)

]
≥ xi[G + g(xi, 0)] ≥ 0,

where we have used (17) and the fact that S(L) satisfies hi+1 ≥ χi, since
hi+1 ≥ hi being equivalent to τ ≤ q. Similarly, −ū is a lower solution of (4).
The solution uN therefore exists, and moreover, uN

i ∈ W analogously to the
continuous solution.

We are now ready to prove the almost first-order ε-uniform convergence
result. For the technique of proof cf. [4], [11], and [12].

Theorem 3. Let u be the solution of problem (16) satisfying (17). Then the
following ε-uniform convergence result holds true for the solution uN of the
discrete problem (4) on the S(L) mesh

∥∥u− uN
∥∥
∞ ≤ C

L2

N
.

Proof. Let 1 ≤ i ≤ i∗ ≤ N − 1 for some integers i and i∗ and let

Σi∗
i =

i∗∑

j=i

χj

xj
rj , rj =

∣∣[TN
κ u]j

∣∣.
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Because of Remark 1 on (5), it suffices to prove that

Σi∗
i ≤ C

L2

N
(22)

for i = 1 and i∗ = N − 1. We divide this proof into several steps.
Let us first consider the fine part of S(L) on the interval (0, τ) and the

corresponding ΣJ−1
1 . Note that here χj = h and xj = jh where h is the fine

mesh step-size,

h =
τ

J
≤ C

µL

N
.

Expanding the consistency error [TN
κ u]j and using (20), we get

rj ≤ C

[
εh

(
1
µ

+
1
µ3

e−mxj−1/µ

)
+ xjh

(
1 +

1
µ2

e−mxj/µ

)]

and
χj

xj
rj ≤ Ch2

[
1 +

µ

xj
+

(
1

µxj
+

1
µ2

)
e−mxj−1/µ

]
.(23)

From here it follows that

χj

xj
rj ≤ C

(
h2 +

µh

j
+

h

µj
+

h2

µ2

)

and

ΣJ−1
1 ≤ C


L2

N
+

L

N

J−1∑

j=1

1
j


 ≤ C

L2

N
,

since
J−1∑

j=1

1
j
≤ C

∫ J

1

ds

s
≤ C ln J ≤ CL

(the last inequality is satisfied because, as we have mentioned, L behaves like
ln N as N →∞). Thus, (22) holds true for i = 1 and i∗ = J − 1.

Let us now consider the coarse part of S(L) on the interval (τ +H, 1), where
H ≤ C/N is the coarse mesh step-size. The corresponding part of the sum
ΣN−1

1 is ΣN−1
J+2 . We use (23) again but with H instead of h. This time we can

estimate the exponential expression much better,

e−mxj−1/µ ≤ e−m(τ+H)/µ ≤
(

L

N

)am

e−mH/µ,

where we have used (21). From here and xj > τ , we get

χj

xj
rj ≤ C

[
H2 +

(
L

N

)am (
H

µ

)2

e−mH/µ

]
≤ C

[
1

N2
+

(
L

N

)am]
.
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As m is an arbitrary constant, we can set above that m = 2/a. Then (22)
follows in this case, i.e. for i = J + 2 and i∗ = N − 1.

To finish the proof of (22) for i = 1 and i∗ = N −1, we just have to estimate
the two remaining terms,

χj

xj
rj for j = J, J + 1.

When µ ≥ 1/N , we proceed like in the previous case, but using

e−mxj−1/µ ≤ e−m(τ−h)/µ ≤ C

(
L

N

)am

.(24)

Since am = 2, we get

χj

xj
rj ≤ C

[
H2 +

(
L

N

)2 (
1

µN

)2
]
≤ C

(
L

N

)2

≤ C
L2

N
.

On the other hand, if µ ≤ 1/N , we use a different estimate,

χj

xj
rj ≤ 2ε

xj
max

[xj−1,xj+1]

∣∣u′(x)
∣∣ + bj

∣∣uj+1 − uj

∣∣ + χj

∣∣g(xj , uj)
∣∣.(25)

We now make use of (19) as follows,

∣∣uj+1 − uj

∣∣ ≤ ∣∣uj+1 − u0,j+1

∣∣ +
∣∣uj − u0,j

∣∣ + CH ≤ C
(
µ + e−mxj−1/µ + H

)
.

Using (20), (24), xj ≥ τ , and the above estimate in (25), we obtain

χj

xj
rj ≤ C

(
µ + e−mxj−1/µ + H

)
≤ C

N
≤ C

L2

N
,

which completes the proof of the theorem. 2

4.3 Analysis of the second-order upwind scheme

We now consider the second-order scheme TN
σ on the S(L) mesh. For a

special case of problem (16), we prove below an almost second-order ε-uniform
accuracy,

‖u− uN‖∞ ≤ C
L3

N2
.(26)

We assume in this subsection that b ∈ C3[0, 1] and g ∈ C3([0, 1]×W ). Then it
is possible to prove (20) for i = 4, using the same technique as in [10]. However,
that is not enough to prove (26) for the general problem (16). Already the
estimate of |u(3)(x)| makes it difficult to prove (26). The separate 1/µ-term
spoils the proof on the coarse mesh when estimating the truncation error of the
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scheme for xb(x)u′. Also, the technique used in (25) cannot give in general more
than first-order accuracy.

Note that we still may treat TN
σ as a first-order scheme and prove the result

of Theorem 3 for it. This means that TN
σ cannot perform asymptotically worse

than the first-order upwind scheme, but it is reasonable to expect better results
even when a rigorous proof is missing.

We show below that our technique can be applied to a special case of problem
(16) and that we can still prove (26) for that case. In addition to (17), let

g(x, γ1) = 0,(27)

so that the reduced solution is u0 ≡ γ1.

Lemma 2. Let 17 and 27 hold true. Then the solution u of 16 satisfies

|[u(x)− γ1](i)| ≤ Cµ−ie−mx/µ,

where x ∈ [0, 1], i = 0, . . . , 4, and m > 0 is an arbitrary constant independent
of ε.

Proof. We prove the following sharper estimates,

|[u(x)− γ1](i)| ≤ C
(
e−m/µ + µ−ie−B(x)/ε

)
,(28)

where B(x) =
∫ x

0
sb(s)ds. To prove (28) for i = 0, we linearize the operator T ,

Lv := −εv′′ − xb(x)v′ + xf(x)v,

with

f(x) =
∫ 1

0

gu(x, su(x) + (1− s)γ1)ds,

so that
L(u− γ1) = T u− T γ1 = 0.

Since f(x) ≥ 0, L is an inverse monotone operator. We construct the barrier
function

z(x) = C1(2− x)e−η/ε + γ0e
−B(x)/ε

with some positive η independent of ε. We get z(0) ≥ |γ0|, z(1) ≥ 0, and

Lz(x) ≥ xb(x)C1e
−η/ε + γ0[xb(x)]′e−B(x)/ε.

Now there exists a positive constant δ independent of ε, such that [xb(x)]′ ≥ 0
for x ∈ [0, δ]. Therefore, Lz(x) ≥ 0 for x ∈ [0, δ]. On the other hand, even if
[xb(x)]′ < 0 for some x ∈ [δ, 1], the term exp(−B(x)/ε) is exponentially small
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on that interval, and thus we can choose C1 and η so that Lz(x) ≥ 0 on [δ, 1]
as well. Inverse monotonicity implies now that

|u(x)− γ1| ≤ z(x) for x ∈ [0, 1],

which proves (28) for i = 0.
The remaining estimates for i = 1, . . . , 4 can be proved by using the tech-

nique from [10]. 2

We can now prove (26) for this special type of problem.

Theorem 4. Let u be the solution of problem (16) satisfying (12), (17), and
(27). Let also uN be the solution of the discrete problem (13) with {1, . . . , J −
1} ⊆ I ⊆ I, on the S(L) mesh. Then (26) holds true provided N is sufficiently
large but independent of ε.

Proof. For N sufficiently large independently of ε we have hixibi ≤ 2ε, i =
1, . . . , J −1. Thus {1, . . . , J −1} ⊆ I ⊆ I and the central scheme TN

c is used on
the fine mesh. Furthermore if N is sufficiently large then hi ≤ 2α, i = 1, . . . , N .
Therefore, Theorem 2 can be applied.

Using the technique of proof of Theorem 3 it is easy to show that

J−1∑

j=1

σj

βj
|[TN

c u]j | = 1
2β

J−1∑

j=1

1
j
|[TN

c u]j | ≤ C
L3

N2
.(29)

Let us now consider xj ≥ τ . Regardless of whether TN
c or TN

mp is used at xj , we
can apply the same approach as in the estimate (25) to get

σj

βj
|[TN

σ u]j | ≤ C

[
ε

xj
max

[xj−1,xj+1]
|u′(x)|+ Rj

]
,

where
Rj = |uj+1 − ũj |+ N−1g̃j ,

and where ũj stands for either uj−1 or uj and g̃j is either g(xj , uj) or g(xj+1/2,
(uj+1 + uj)/2), depending on what scheme is used at xj . Because of (27),
u0 ≡ γ1, and Lemma 2, we get

Rj ≤ C
(
1 + N−1

)
e−mxj−1/µ.

This implies

N−1∑

j=J

σj

βj
|[TN

σ u]j | ≤ C

N−1∑

j=J

(
ε

τµ
+ 1 +

1
N

)
e−mxj−1/µ ≤ C

L3

N2
,(30)

where in the last step we used (24) with m = a/3. The assertion now follows
from (29), (30), and (14). 2
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4.4 Numerical results

In this section we verify experimentally our convergence result for the first-
order scheme. Our test problem is

−εu′′ − x(2− x)u′ + xeu = 0 for x ∈ (0, 1), u(0) = u(1) = 0.(31)

This problem satisfies (17) with β = 1. The exact solution of this problem is
not available. We therefore estimate the accuracy of the numerical solution by
comparing it to the numerical solution on a finer mesh. For our tests we take
τ =

√
εL(N) and q = 1/2.

Indicating by uN
ε that the numerical approximation of (31) depends on both

N and ε, we estimate the uniform error by

ηN := max
ε=1,10−1,...,10−12

∥∥uN
ε − ũ8N

ε

∥∥
∞,

where ũ8N
ε is the approximate solution of the first-order scheme on a mesh

obtained by bisecting the original mesh three times, i. e., a mesh that is 8 times
finer. The rates of convergence are computed using the standard formula rN =
ln

(
ηN

/
η2N

) /
ln 2.

Shishkin mesh SE(L) mesh
N error rate error rate
64 2.437e-2 0.85 2.152e-2 0.88
128 1.352e-2 0.87 1.173e-2 0.89
256 7.408e-3 0.88 6.350e-3 0.89
512 4.015e-3 0.90 3.418e-3 0.90
1024 2.158e-3 0.90 1.830e-3 0.91
2048 1.153e-3 0.91 9.760e-4 0.91
4096 6.126e-4 0.92 5.187e-4 0.92
8192 3.242e-4 — 2.748e-4 —

Table 1: First-order upwind scheme, κ = 1.00

Shishkin mesh SE(L) mesh
N error rate error rate
64 4.165e-3 1.55 2.233e-3 1.54
128 1.419e-3 1.62 7.701e-4 1.59
256 4.625e-4 1.66 2.561e-4 1.63
512 1.462e-4 1.70 8.273e-5 1.67
1024 4.512e-5 1.72 2.608e-5 1.69
2048 1.365e-5 1.75 8.055e-6 1.72
4096 4.061e-6 1.77 2.445e-6 1.74
8192 1.192e-6 — 7.308e-7 —

Table 2: Second-order upwind scheme
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The results of our test computations are given in Table 1. They are clear
illustrations of the almost first-order convergence proved in Theorem 3. We
also see that the SE(L) mesh (the mesh with an L(N) that satisfies (21) with
equality) performs slightly better than the standard Shishkin mesh.

In Table 2 we present numerical results for the second-order scheme with
I = {1, . . . , J−1} when applied to our test problem. We observe almost second-
order convergence although Theorem 4 does not apply since (27) is not satisfied
by our test problem.
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[4] Linß, T., Roos, H.-G., Vulanović, R., Uniform pointwise convergence on Shishkin-
type meshes for quasilinear convection-diffusion problems, SIAM J. Numer. Anal.
38 (2000), 897-912.

[5] Liseikin, V. D., Application of special transformations for numerical solution
of problems with boundary layers, Zh. Vychisl. Mat. Mat. Fiz. 30 (1990), 58-
71 (Russian), English translation in USSR Comput. Math. and Math. Phys. 30
(1990), 45-53 (1991).

[6] Miller, J. J. H., O’Riordan, E., Shishkin, G., Solution of singularly perturbed
problems with ε-uniform numerical methods — Introduction to the theory of
linear problems in one and two dimensions, Singapore: World Scientific 1996.

[7] Roos, H.-G., Stynes, M., Tobiska, L., Numerical Methods for Singularly Per-
turbed Differential Equations. Springer Series in Computational Mathematics,
vol. 24., Berlin: Springer 1996.

[8] Schlichting, H., Boundary–Layer Theory, New York: McGraw-Hill 1979.

[9] Sun, G., Stynes, M., Finite element methods on piecewise equidistant meshes for
interior turning point problems, Numer. Algorithms 8 (1994), 111-129.
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