ON UPPER AND LOWER WEAKLY α -CONTINUOUS MULTIFUNCTIONS

Valeriu Popa¹, Takashi Noiri²

Abstract. In this paper, the authors defined a multifunction $F: X \to Y$ to be upper (resp. lower) weakly α -continuous if for each $x \in X$ and each open set V of Y such that $F(x) \subset V$ (resp. $F(x) \cap V \neq \emptyset$), there exists an α -open set U of X containing x such that $U \subset F^+(\operatorname{Cl}(V))$ (resp. $U \subset F^-(\operatorname{Cl}(V))$). They give some characterizations and several properties concerning upper (lower) weakly α -continuous multifunctions.

AMS Mathematics Subject Classification (2000): 54C60

Key words and phrases: α -open, weakly α -continuous, α -continuous, multifunctions

1. Introduction

In 1965, Njåstad [13] introduced a weak form of open sets called α - sets. Mashhour et al. [11] defined a function to be α -continuous if the inverse image of each set is an α -set. Noiri [16] called α -continuous functions strongly semicontinuous and in [17] he further investigated α -continuous functions. In [18], Noiri introduced a class of functions called weakly α -continuous functions. Some properties of weakly α -continuous functions are studied in [25], [31] and [32].

In 1986, Neubrunn [12] introduced and investigated the notion of upper (lower) α -continuous multifunctions. These multifunctions are further investigated by the present authors [26]. In [27], the present authors introduced a class of multifunctions called weakly α -continuous multifunctions. Some properties of weakly α -continuous multifunctions are investigated in [4] and [27].

The purpose of the present paper is to obtain some characterizations of upper (lower) weakly α -continuous multifunctions and several properties of such multifunctions.

2. Preliminaries

Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be α -open (or α -set) [13] (resp. semi-open [8], preopen [10]) if $A \subset$

¹Department of Mathematics, University of Bacau, 5500 Bacau, Romania

 $^{^{2}\}mathrm{Department}$ of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-5801 Japan

Int(Cl(Int(A))) (resp. $A \subset Cl(Int(A)), A \subset Int(Cl(A)))$. The family of all α open (resp. semi-open, preopen) sets of X containing a point $x \in X$ is denoted by $\alpha(X, x)$, PO(X, x). The family of all α -open (resp. semi-open, preopen) sets in X is denoted by $\alpha(X)$ (resp.SO(X), PO(X)). For these three families, it is shown in [17, Lemma 3.1] that $SO(X) \cap PO(X) = \alpha(X)$. Since $\alpha(X)$ is a topology for X [13, Proposition 2], by $\alpha Cl(A)$ (resp. $\alpha Int(A)$) we denote the closure (resp. interior) of A with respect to $\alpha(X)$. The complement of a semi-open (resp. preopen, α -open) set is said to be semi-closed (resp. preclosed, α -closed). The intersection of all semi-closed sets of X containing A is called the semi- closure [5] of A and is denoted by sCl(A). The union of all semiopen (resp. preopen) sets of X contained in A is called the semi-interior (resp. X) preinterior) of A and is denoted by sInt(A) (resp. pInt(A)). A subset A of a space X is said to be regular-open (resp. regular closed) if A = Int(Cl(A)(resp. $A = \operatorname{Cl}(\operatorname{Int}(A))$. The family of regular open (resp. regular closed) sets of X is denoted by RO(X) (resp. RC(X)). The θ -closure [35] of A, denoted by $\operatorname{Cl}_{\mathfrak{g}}(A)$, is defined to be the set of all $x \in X$ such that $A \cap \operatorname{Cl}(U) \neq \emptyset$ for every open neighborhood U of x. It is shown in [35] that $\operatorname{Cl}_{\theta}(A)$ is closed in X and $\operatorname{Cl}(U) = \operatorname{Cl}_{\theta}(U)$ for each open set U of X.

Lemma 1. The following properties hold for a subset A of a topological space X:

(1) If A is open in X, then sCl(A)=Int(Cl(A)).

(2) A is α -open in X if and only if $U \subset A \subset sCl(U)$ for some open set U of X.

(3) $\alpha Cl(A) = A \cup Cl(A))$.

Proof. This follows from [17, Lemma 4.12] and [1, Theorem 2.2].

Throughout this paper, spaces (X, τ) and (X, σ) (or simply X and Y) always mean topological spaces and $F: X \to Y(resp.f: X \to Y)$ represents a multivalued (resp. single valued) function. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set G of Y of $F^+(G)$ and $F^-(G)$ [3], respectively, that is

$$F^+(G) = \{x \in X : F(x) \subset G\} \quad \text{and} \quad F^-(G) = \{x \in X : F(x) \cap G \neq \emptyset\}. \quad \Box$$

Definition 1. A multifunction $F: X \to Y$ is said to be

- (1) upper weakly continuous [22, 34] if for each $x \in X$ and each open set V of Y containing F(x), there exists an open set U of X containing x such that $F(U) \subset Cl(V)$,
- (2) upper weakly quasi continuous [19] if for each $x \in X$ and each open set U containing x and each open set V containing F(x), there exists a nonempty open set G of X such that $G \subset U$ and $F(G) \subset Cl(V)$,

(3) upper almost weakly continuous if for each $x \in X$ and each open set V containing F(x), $x \in Int(Cl(F^+(Cl(V))))$.

Definition 2. A multifunction $F: X \to Y$ is said to be

- (1) upper α -continuous [26] at a point x in X if for each open set V of Y containing F(x), there exists $U \in \alpha(X, x)$ such that $F(U) \subset V$,
- (2) lower α -continuous [26] at $x \in X$ if for each open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists $U \in \alpha(X, x)$ such that $F(u) \cap V \neq \emptyset$ for every $u \in U$,
- (3) upper(lower) α-continuous [12] if it is upper (lower) α-continuous at every point of X.

Definition 3. A multifunction $F: X \to Y$ is said to be

- (1) upper almost α -continuous [27] at a point $x \in X$ if for each $U \in SO(X, x)$ and each open set V containing F(x), there exists a nonempty open set $G \subset U$ such that $F(G) \subset sCl(V)$,
- (2) lower almost α -continuous [27] at a point $x \in X$ if for each $U \in SO(X, x)$ and each open set V such that $F(x) \cap V = \emptyset$, there exists a nonempty open set $G \subset U$ such that $F(g) \cap sCl(V) \neq \emptyset$ for every $g \in G$,
- (3) upper (lower) α -continuous if F has this property at every point of X.

Definition 4. A multifunction $F: X \to Y$ is said to be

- (1) upper weakly α -continuous (briefly u.w. $\alpha.c.$) at a point $x \in X$ if for each $U \in SO(X, x)$ and each open set V containing F(x), there exists a nonempty open set $G \subset U$ such that $F(G) \subset Cl(V)$,
- (2) lower weakly α -continuous (briefly l.w. α .c.) at a point $x \in X$ if for each $U \in SO(X, x)$ and each open set V such that $F(x) \cap V = \emptyset$, there exists a nonempty open set $G \subset U$ such that $F(g) \cap Cl(V) \neq \emptyset$ for every $g \in G$,
- (3) upper (lower) weakly α -continuous if F has this property at every point of X.

For the properties of multifunctions defined above we have the following diagram:

upper weakly quasicontinuous

↑

upper α -continuous \rightarrow upper almost α -continuous \rightarrow upper weakly α -continuous

upper almost weakly continuous

3. Characterizations

In [4,Theorem 7], Cao and Dontchev have stated several characterizations of upper weakly α -continuous multifunctions without the proof. In this section, we obtain many characterizations of upper weakly α -continuous (lower weakly α -continuous) multifunctions.

Theorem 1. The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is u.w. α .c. at a point $x \in X$;
- (2) for any open set V of Y containing F(x), there exists $S \in \alpha(X, x)$ such that $F(S) \subset Cl(V)$;
- (3) $x \in \alpha Int(F^+(Cl(V)))$ for every open set V containing F(x);
- (4) $x \in Int(Cl(Int(F^+(Cl(V)))))$ for every open set V containg F(x).

Proof. (1) \rightarrow (2): Let V be any open set of Y containing F(x). For each $U \in SO(X, x)$, there exists a nonempty open set G_U such that $G_U \subset U$ and $F(G_U) \subset Cl(V)$. Let $W = \bigcup \{G_U : U \in SO(X, x)\}$. Put $S = W \cup \{x\}$, then W is open in X, $x \in sCl(W)$ and $F(W) \subset Cl(V)$. Therefore, we have $S \in \alpha(X, x)$ by Lemma 1 and $F(S) \subset Cl(V)$.

 $(2) \to (3)$: Let V be any open set of Y containing F(x). Then there exists $S \in \alpha(X, x)$ such that $F(S) \subset \operatorname{Cl}(V)$. Thus we obtain $x \in S \subset F^+(\operatorname{Cl}(V))$ and hence $x \in \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V)))$.

(3) \rightarrow (4): Let V be any open set of Y containing F(x). Now put $\alpha \operatorname{Int}(F^+(\operatorname{Cl}(V)))$. Then $U \in \alpha(X)$ and $x \in U \subset F^+(\operatorname{Cl}(V))$. Thus we have $x \in U \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^+(\operatorname{Cl}(V)))))$.

 $(4) \to (1)$: Let $U \in SO(X, x)$ and V be any open set of Y containing F(x). Then we have $x \in Int(Cl(Int(F^+(Cl(V))))) = sCl(Int(F^+(Cl(V)))))$. It follows from [15, Lemma 3] and [14, Lemma 1] that $\emptyset \neq U \cap Int(F^+(Cl(V))) \in SO(X)$. Put $G = Int(U \cap Int(F^+(Cl(V))))$. Then G is a nonempty open set of Y [14, Lemma 4], $G \subset U$ and $F(G) \subset Cl(V)$.

Theorem 2. The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is $l.w.\alpha.c.$ at a point x of X;
- (2) for any open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists $U \in \alpha(X, x)$ such that $F(u) \cap Cl(V) \neq \emptyset$ for every $u \in U$;
- (3) $x \in \alpha Int(F^{-}(Cl(V)))$ for every open set V of Y such that $F(x) \cap V \neq \emptyset$;
- (4) $x \in Int(Cl(Int(F^{-}(Cl(V)))))$ for every open set V of Y such that $F(x) \cap V \neq \emptyset$.

The following theorem is stated by Cao and Dontchev [4] without the proof. We shall give the proof since it is important.

Theorem 3. The following are equivalent for a multifunction $F : X \to Y$: (1) F is $u.w.\alpha.c.$;

- (2) for each $x \in X$ and each open set V of Y containing F(x), there exists $U \in \alpha(X, x)$ such that $F(U) \subset Cl(V)$;
- (3) $F^+(V) \subset Int(Cl(Int(F^+(Cl(V)))))$ for every open set V of Y;
- (4) $Cl(Int(Cl(F^{-}(Int(K))))) \subset F^{-}(K)$ for every closed set K of Y;
- (5) $\alpha Cl(F^{-}(Int(K))) \subset F^{-}(K)$ for every closed set K of Y;
- (6) $\alpha Cl(F^{-}(Int(Cl(B)))) \subset F^{-}(Cl(B))$ for every subset B of Y;
- (7) $F^+(Int(B)) \subset \alpha Int(F^+(Cl(Int(B))))$ for every subset B of Y;
- (8) $F^+(V) \subset \alpha Int(F^+(Cl(V)))$ for enery open set V of Y;
- (9) $\alpha Cl(F^{-}(Int(K))) \subset F^{-}(K)$ for every regular closed set K of Y;
- (10) $\alpha Cl(F^{-}(V)) \subset F^{-}(Cl(V))$ for every open set V of Y;
- (11) $\alpha Cl(F^{-}(Cl_{\theta}(B)))) \subset F^{-}(Cl_{\theta}(B))$ for every subset B of Y.

Proof. $(1) \rightarrow (2)$: The proof follows immediately from Theorem 1.

 $(2) \to (3)$: Let V be any open set of Y and $x \in F^+(V)$. Then $F(x) \subset V$ and there exists $U \in \alpha(X, x)$ such that $F(U) \subset \operatorname{Cl}(V)$. Therefore, we have $x \in U \subset$ $F^+(\operatorname{Cl}(V))$. Since $U \in \alpha(X, x)$, we have $x \in U \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^+(\operatorname{Cl}(V)))))$.

 $(3) \rightarrow (4)$: Let K be any closed set of Y. Then Y - K is an open set in Y. By (3), we have $F^+(Y - K) \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^+(\operatorname{Cl}(Y - K)))))$. By the straightforward calculations, we obtain

$$\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(F^{-}(\operatorname{Int}(K))))) \subset F^{-}(K).$$

 $(4) \to (5)$: Let K be any closed set of Y. Then, we have $\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(F^{-}(\operatorname{Int}(K))))) \subset f^{-}(K)$ and hence $\alpha \operatorname{Cl}(F^{-}(\operatorname{Int}(K))) \subset F^{-}(K)$ by Lemma 1.

(5) \rightarrow (6): Let *B* be an arbitrary subset of *Y*, then Cl(*B*) is closed in *Y*. Therefore, by (5) we have α Cl($F^-(Int(Cl(B)))) \subset F^-(Cl(B))$. (6) \rightarrow (7): Let *B* be any subset of *Y*. Then, we obtain

$$\begin{split} X - F^+(\operatorname{Int}(B)) &= F^-(\operatorname{Cl}(Y - B)) \supset \alpha \operatorname{Cl}(F^-(\operatorname{Int}(\operatorname{Cl}(Y - B)))) = \\ \alpha \operatorname{Cl}(F^-(Y - \operatorname{Cl}(\operatorname{Int}(B)))) = \\ \alpha \operatorname{Cl}(X - F^+(\operatorname{Cl}(\operatorname{Int}(B)))) = X - \alpha \operatorname{Int}(F^+(\operatorname{Cl}(\operatorname{Int}(B)))). \end{split}$$

Therefore, we obtain $F^+(\operatorname{Int}(B)) \subset \alpha \operatorname{Int}(F^+(\operatorname{Cl}(\operatorname{Int}(B)))).$

 $(7) \rightarrow (8)$: The proof is obvious.

 $(8) \to (1)$: Let x be any point of X and V be any open set of Y containing F(x). Then, it follows from [1, Theorem 23] that $x \in F^+(V) \subset \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V)))) \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^+(\operatorname{Cl}(V)))))$ and hence F is u.w. α .c. at x by Theorem 1.

 $(5) \rightarrow (9)$: The proof is obvious.

 $(9) \to (10)$: Let V be any open set of Y. Then $\operatorname{Cl}(V)$ is regular closed in Y and hence we have $\alpha \operatorname{Cl}(F^{-}(V)) \subset \alpha \operatorname{Cl}(F^{-}(\operatorname{Int}(\operatorname{Cl}(V)))) \subset F^{-}(\operatorname{Cl}(V))$.

 $(10) \rightarrow (8)$: Let V be any open set of Y. Then we have

$$X - \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V)))) = \alpha \operatorname{Cl}(X - F^+(Cl(V)))) = \alpha \operatorname{Cl}(F^-(Y - \operatorname{Cl}(V))) \subset F^-(\operatorname{Cl}(Y - \operatorname{Cl}(V))) = X - F^+(\operatorname{Int}(\operatorname{Cl}(V))).$$

Therefore, we obtain $F^+(V) \subset F^+(\operatorname{Int}(\operatorname{Cl}(V))) \subset \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V))).$

 $(10) \to (11)$: Let B any subset of Y. Put $V = \text{Int}(Cl_{\theta}(B))$ in (10). Then, since $Cl_{\theta}(B)$ is closed in Y, we have $\alpha \text{Cl}(F^{-}(\text{Int}(Cl_{\theta}(B)))) \subset F^{-}(Cl_{\theta}(B))$.

 $(11) \rightarrow (9)$: Let K be any regular closed set of Y. In general, we have $\operatorname{Cl}(V) = Cl_{\theta}(V)$ for every open set V of Y. Therefore, we have

$$\alpha \operatorname{Cl}(F^{-}(\operatorname{Int}(K))) = \alpha \operatorname{Cl}(F^{-}(\operatorname{Int}(\operatorname{Cl}(K)))) = \alpha \operatorname{Cl}(F^{-}(\operatorname{Int}(Cl_{\theta}(\operatorname{Int}(K))))) \subset F^{-}(Cl_{\theta}(\operatorname{Int}(K))) = F^{-}(\operatorname{Cl}(\operatorname{Int}(K))) = F^{-}(K). \quad \Box$$

Theorem 4. The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is l.w. α .c.;
- (2) for each $x \in X$ and each open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists $U \in \alpha(X, x)$ such that $U \subset F^{-}(Cl(V))$;
- (3) $F^{-}(V) \subset Int(Cl(Int(F^{-}(Cl(V)))))$ for every open set V of Y;
- (4) $Cl(Int(Cl(F^+(Int(K))))) \subset F^+(Int(K))$ for every closed set K of Y;
- (5) $\alpha Cl(F^+(Int(K))) \subset F^+(K)$ for every closed set K of Y;
- (6) $\alpha Cl(F^+(Int(Cl(B)))) \subset F^+(Cl(B))$ for every closed set B of Y;
- (7) $F^{-}(Int(B)) \subset \alpha Int(F^{-}(Cl(Int(B))))$ for every subset B of Y;
- (8) $F^{-}(V) \subset \alpha Int(F^{-}(Cl(V)))$ for every open set V of Y;
- (9) $\alpha Cl(F^+(Int(K))) \subset F^+(K)$ for every regular set K of Y;
- (10) $\alpha Cl(F^+(V)) \subset F^+(Cl(V))$ for every open set V of Y;
- (11) $\alpha Cl(F^+(Int(Cl_{\theta}(B))))) \subset F^+(Cl_{\theta}(B))$ for every subset B of Y;

Proof. The proof is similar to that of Theorem 3.

Lemma 2. If $F : X \to Y$ is $l.w.\alpha.c.$, then for each $x \in X$ and each subset B of Y with $F(x) \cap Int_{\theta}(B) \neq \emptyset$ there exists $U \in \alpha(X, x)$ such that $U \subset F^{-}(B)$.

Proof. Since $F(x) \cap Int_{\theta}(B) \neq \emptyset$, there exists a nonempty open set V of Y such that $V \subset Cl(V) \subset B$ and $F(x) \cap V \neq \emptyset$. Since F is l.w. α .c., there exists $U \in \alpha(X, x)$ such that $F(u) \cap Cl(V) \neq \emptyset$ for every $u \in U$ and hence $U \subset F^{-}(B)$. \Box

Theorem 5. The following are equivalent for a multifunction $F: X \to Y$: (1) F is $l.w.\alpha.c.$;

(2)
$$\alpha Cl(F^+(B)) \subset F^+(Cl_{\theta}(B))$$
 for every subset B of Y;

(3) $F(\alpha Cl(A)) \subset Cl_{\theta}(F(A))$ for every subset A of X.

Proof. (1) → (2): Let *B* be any subset of *Y*. Suppose that $x \in F^-(Y - Cl_\theta(B)) = F^-(Int_\theta(Y - B))$. By Lemma 2, there exists $U \in \alpha(X, x)$ such that $U \subset F^-(Y - B) = X - F^+(B)$. Thus $U \cap F^+(B) = \emptyset$ and hence $x \in X - \alpha \operatorname{Cl}(F^+(B))$. (2) → (1): Let *V* be any open set of *Y*. Since $\operatorname{Cl}(V) = Cl_\theta(V)$ for every open

set V of Y, we have $\alpha \operatorname{Cl}(F^+(V)) \subset F^+(\operatorname{Cl}(V))$ and by Theorem 4 F is l.w. α .c. (2) \rightarrow (3): Let A be any subset of X. By (2), we have

$$\alpha \mathrm{Cl}(A) \subset \alpha \mathrm{Cl}(F^+(F(A))) \subset F^+(Cl_\theta(F(A))).$$

Thus we obtain $F(\alpha \operatorname{Cl}(A)) \subset \operatorname{Cl}_{\theta}(F(A))$.

 $(3) \rightarrow (2)$: Let B be any subset of Y. By (3), we obtain

$$F(\alpha \operatorname{Cl}(F^+(B))) \subset \operatorname{Cl}_{\theta}(F(F^+(B))) \subset \operatorname{Cl}_{\theta}(B).$$

Thus we obtain $\alpha \operatorname{Cl}(F^+(B)) \subset F^+(Cl_\theta(B))$.

A function $f : X \to Y$ is said to be weakly α -continuous [18] if for each $x \in X$ and each open set V containing f(x), there exists $U \in \alpha(X, x)$ such that $f(U) \subset \operatorname{Cl}(V)$.

Corollary 1. (Noiri [18], Sen and Bhattacharyya [32]). The following are equivalent for a function $f: X \to Y$:

(1) f is weakly α -continuous; (2) $f^{-1}(V) \subset \alpha Int(f^{-1}(Cl(V)))$ for every open set V of Y; (3) $\alpha Cl(f^{-1}(Int(K))) \subset f^{-1}(K)$ for every regular closed set K of Y; (4) $\alpha Cl(f^{-1}(V)) \subset f^{-1}(Cl(V))$ for every open set V of Y; (5) $\alpha Cl(f^{-1}(Int(Cl_{\theta}(B)))) \subset f^{-1}(Cl_{\theta}(B))$ for every open set B of Y; (6) $Cl(Int(Cl(f^{-1}(V)))) \subset f^{-1}(Cl(V))$ for every open set V of Y; (7) $f^{-1}(V) \subset Int(Cl(Int(f^{-1}(Cl(V)))))$ for every open set V of Y; (8) $f(Cl(Int(Cl(A)))) \subset Cl_{\theta}(f(A)))$ for every subset A of X; (9) $Cl(Int(Cl(f^{-1}(B)))) \subset f^{-1}(Cl_{\theta}(B))$ for every subset B of Y.

For a multifunction $F: X \to Y$, by $ClF: X \to Y$ [2] (resp. $\alpha ClF: X \to Y$ [26]) we denote a multifunction defined as follows: (ClF)(x) = Cl(F(x)) (resp. $(\alpha ClF)(x) = \alpha Cl(F(x)))$ for each $x \in X$.

Definition 5. A subset A of a topogical space X is said to be

(1) α -paracompact [36] if every cover of A by open sets of X is refined by a cover of A which consists of open sets of X and is locally finite in X,

(2) α -regular [6] (resp. α -almost-regular [7]) if for each $a \in A$ and each open (resp. regular open) set U of X containing a, there exists an open set G of X such that $a \in G \subset Cl(G) \subset U$.

Lemma 3. (Kovačević [6]). If A is an α -regular α - paracompact set of a topological space X and U is an open neighborhood of A, then there exists an open set G of X such that $A \subset G \subset \operatorname{Cl}(G) \subset U$.

Lemma 4. (Popa and Noiri [28]). If $F : X \to Y$ is a multifunction such that F(x) is α -paracompact α -regular for each $x \in X$, then for each open set V of Y $G^+(V) = F^+(V)$, where G denotes αClF or ClF.

Theorem 6. Let $F : X \to Y$ be a multifunction such that F(x) is α -paracompact and α -regular for each $x \in X$. Then the following are equivalent:

- (1) F is u.w. α .c.;
- (2) αClF is u.w. $\alpha.c.$;
- (3) ClF is $u.w.\alpha.c.$

Proof. Similarly to Lemma 4, we put $G = \alpha ClF$ or ClF. First, suppose that F is u.w. α .c.

Let $x \in X$ and V be any open set of Y containing G(x). By Lemma 4, $x \in G^+(V) = F^+(V)$ and there exists $U \in \alpha(X, x)$ such that $F(u) \subset \operatorname{Cl}(V)$ for each $u \in U$. Therefore, we have $(\alpha \operatorname{Cl} F)(u) \subset (\operatorname{Cl} F)(u) \subset \operatorname{Cl}(V)$; hence $G(u) \subset \operatorname{Cl}(V)$ for each $u \in U$. This shows that G is u.w. α .c.

Conversely, suppose that G is u.w. α .c. Let $x \in X$ and V be any open set of Y containing F(x). By Lemma 4, $x \in F^+(V) = G^+(V)$ and hence $G(x) \subset V$. There exists $U \in \alpha(X, x)$ such that $G(U) \subset \operatorname{Cl}(V)$; hence $F(U) \subset \operatorname{Cl}(V)$. This shows that F is u.w. α .c.

Lemma 5. (Popa and Noiri [28]). If $F : X \to Y$ is a multifunction, then for each open set V of $Y G^{-}(V) = F^{-}(V)$, where G denotes αClF or ClF.

Theorem 7. For a multifunction $F: X \to Y$, the following are equivalent:

- (1) F is $l.w.\alpha.c.;$
- (2) αClF is l.w. $\alpha.c.$;
- (3) ClF is $l.w.\alpha.c.$

Proof. By utilizing Lemma 5, this can be proved in a similar way as Theorem 6. $\hfill \Box$

For a multifunction $F: X \to Y$, the graph multifunction $G_F: X \to X \times Y$ is defined as follows:

$$G_F(x) = \{x\} \times F(x)$$
 for every $x \in X$

Lemma 6. (Noiri and Popa [20]). For a multifunction $F : X \to Y$, the following hold:

(a)
$$G_F^+(A \times B) = A \cap F^+(B)$$
 and (b) $G_F^-(A \times B) = A \cap F^-(B)$

for any subsets $A \subset X$ and $B \subset Y$.

Theorem 8. Let $F : X \to Y$ be a multifunction such that F(x) is compact for each $x \in X$. Then F is u.w. $\alpha.c.$ if and only if $G_F : X \to Y$ is u.w. $\alpha.c.$

Proof. Necessity. Suppose that $F: X \to Y$ is u.w.a.c. Let $x \in X$ and W be any open set of $X \times Y$ containing $G_F(x)$. For each $y \in F(x)$, there exist open sets $U(y) \subset X$ and $V(y) \subset Y$ such that $(x, y) \in U(y) \times V(y) \subset W$. The family $\{V(y) : y \in F(x)\}$ is open cover of F(x) and F(x) is compact. Therefore, there exists a finite number of points, say, $y_1, y_2, ..., y_n$ in F(x) such that $F(x) \subset \cup \{V(y_i) : 1 \le i \le n\}$. Set

$$U = \cap \{U(y_i) : 1 \le i \le n\}$$
 and $V = \cap \{V(y_i) : 1 \le i \le n\}.$

Then U and V are open in X and Y, respectively, and $\{x\} \times F(x) \subset U \times V \subset W$. Since F is u.w. α .c., there exists $U_0 \in \alpha(X, x)$ such that $F(U_0) \subset Cl(V)$. By Lemma 6, we have

$$U \cap U_0 \subset U \cap F^+(\mathrm{Cl}(V)) = G^+_F(U \times \mathrm{Cl}(V)) \subset G^+_F(\mathrm{Cl}(W)).$$

Therefore, we obtain $U \cap U_0 \in \alpha(X, x)$ and $G_F(U \cap U_0) \subset Cl(W)$. This shows that G_F is u.w. α .c.

Sufficiency. Suppose that $G_F: X \to X \times Y$ is u.w. α .c. Let $x \in X$ and V be any open set of Y containing F(x). Since $X \times V$ is open in $X \times Y$ and $G_F(x) \subset X \times V$, there exists $U \in \alpha(X, x)$ such that $G_F(U) \subset \operatorname{Cl}(X \times V = X \times \operatorname{Cl}(V)$. By Lemma 6, we have $U \subset G_F^+(X \times \operatorname{Cl}(V)) = F^+(\operatorname{Cl}(V))$ and $F(U) \subset \operatorname{Cl}(V)$. This shows that F is u.w. α .c.

Theorem 9. A multifunction $F : X \to Y$ is $l.w.\alpha.c.$ if and only if $G_F : X \to X \times Y$ is $l.w.\alpha.c.$

Proof. Necessity. Suppose that F is l.w. α .c. Let $x \in X$ and W be any open set of $X \times Y$ such that $x \in G_F^-(W)$. Since $W \cap (\{x\} \times F(x)) \neq \emptyset$, there exists $y \in F(x)$ such that $(x, y) \in W$ and hence $(x, y) \in U \times V \subset W$ for some open sets $U \subset X$ and $V \subset Y$. Since $F(x) \cap V \neq \emptyset$, there exists $G \in \alpha(X, x)$ such that $G \subset F^-(\operatorname{Cl}(V))$. By Lemma 6, we have

$$U \cap G \subset U \cap F^{-}(\mathrm{Cl}(V)) = G_{F}^{-}(U \times \mathrm{Cl}(V)) \subset G_{F}^{-}(\mathrm{Cl}(W))$$

Moreover, we have $U \cap G \in \alpha(X, x)$ and hence G_F is l.w. α .c.

Sufficiency. Suppose that G_F is l.w. α .c. Let $x \in X$ and V be any open set of Y such that $x \in F^-(V)$. Then $X \times V$ is open in $X \times Y$ and

$$G_F(x) \cap (X \times V) = (\{x\} \times F(x)) \cap (X \times V) = \{x\} \times (F(x) \cap V) \neq \emptyset.$$

Since G_F is l.w.a.c., there exists $U \in \alpha(X, x)$ such that $U \subset G_F^-(\operatorname{Cl}(X \times V)) = G_F^-(X \times \operatorname{Cl}(V))$. By Lemma 6, we obtain $U \subset F^-(\operatorname{Cl}(V))$. This shows that F is l.w.a.c.

Corollary 2. (Noiri [18]). A function $F : X \to Y$ is weakly α -continuous if and only if the graph function $g : X \to X \times Y$, defined as follows: g(x) = (x, f(x)) for each $x \in X$, is weakly α -continuous.

Lemma 7. (Mashhour et al. [11], Reilly and Vamanamurthy [30]). Let U and X_0 be subsets of a topological space X. The following properties hold:

- (1) if $U \in \alpha(X)$ and $X_0 \in SO(X) \cup PO(X)$, then $U \cap X_0 \in \alpha(X_0)$.
- (2) If $U \subset X_0 \subset X$, $U \in \alpha(X_0)$ and $X_0 \in \alpha(X)$, then $U \in \alpha(X)$.

Theorem 10. If a multifunction $F : X \to Y$ is $u.w.\alpha.c.$ (resp. $l.w.\alpha.c.$) and $X_0 \in SO(X) \cup PO(X)$, then the restriction $F/X_0 : X_0 \to Y$ is $u.w.\alpha.c.$ (resp. $l.w.\alpha.c.$).

Proof. We prove only the first case, the proof of the second being analogous. Let $x \in X_0$ and V be any open sets of Y such that $(F/X_0)(x) \subset V$. Since $(F/X_0)(x) = F(x)$ and F is u.w. α .c., there exists $U \in \alpha(X, x)$ such that $F(U) \subset Cl(V)$. Let $U_0 = U \cap X_0$, then $U_0 \in \alpha(X_0, x)$ by Lemma 7 and $(F/X_0)(U_0) = F(U_0) \subset Cl(V)$. This shows that F/X_0 is u.w. α .c.

Corollary 3. (Noiri [18]). If $f : X \to Y$ is weakly α - continuous and $X_0 \in SO(X) \cup PO(X)$, then the restriction $f/X_0 : X_0 \to Y$ is weakly α -continuous.

Theorem 11. A multifunction $F : X \to Y$ is $u.w.\alpha.c.$ (resp. $l.w.\alpha.c.$) if for each $x \in X$ there exists $X_0 \in \alpha(X, x)$ such that the restriction $F/X_0 : X_0 \to Y$ is $u.w.\alpha.c.$ (resp. $l.w.\alpha.c.$).

Proof. We prove only the first case, the proof of the second being analogous. Let $x \in X$ and V be any open sets of Y such that $F(x) \subset V$. There exists $X_0 \in \alpha(X, x)$ such that $F/X_0 \to Y$ is u.w. α .c. Therefore, there exists $U_0 \in \alpha(X_0, x)$ such that $(F/X_0)(U_0) \subset \operatorname{Cl}(V)$. By Lemma 7, $U_0 \in \alpha(X, x)$ and $F(u) = (F/X_0)(u)$ for each $u \in U_0$. This shows that F is u.w. α .c. \Box

Corollary 4. Let $\{U_{\alpha} : \alpha \in \nabla\}$ be a cover of X by α -open sets of X. Then, a multifunction $F : X \to Y$ is $u.w.\alpha.c.$ (resp. $l.w.\alpha.c.$) if and only if the restriction $F/U_{\alpha} : U_{\alpha} \to Y$ is $u.w.\alpha.c.$ (resp. $l.w.\alpha.c.$) for each $\alpha \in \nabla$.

Proof. This is an immediate consequence of Theorems 10 and 11.

Corollary 5. (Sen and Bhattacharyya [32]). Let $f : X \to Y$ be a function and $X = X_1 \cup X_2$, where X_1 and X_2 are α -open in X. If the restrictions $f/X_1 : X_1 \to Y$ are weakly α - continuous for each i=1,2, then f is weakly α -continuous.

4. Weak α -continuity, almost α -continuity and α - continuity

Theorem 12. If $F : X \to Y$ is a multifunction such that F(x) is closed in Y for each $x \in X$ and Y is a normal space, then the following are equivalent:

- (1) F is upper α -continuous;
- (2) F is upper almost α -continuous;
- (3) F is $u.w.\alpha.c.$

Proof. We prove only the implication $(3) \to (1)$. Suppose that F is u.w. α .c. Let $x \in X$ and V be any open sets of Y such that $F(x) \subset V$. Since F(x)is closed in Y, by the normality of Y there exists an open set W of Y such that $F(x) \subset W \subset \operatorname{Cl}(W) \subset V$. Since F is u.w. α .c., there exists $U \in \alpha(X, x)$ such that $F(U) \subset \operatorname{Cl}(W)$; hence $F(U) \subset V$. This shows that F is upper α -continuous.

Definition 6. A multifunction $F : X \to Y$ is said to be α -preopen if for every $U \in \alpha(X), F(U) \subset Int(Cl(F(U))).$

Theorem 13. If a multifunction $F : X \to Y$ is u.w. $\alpha.c.$ and α -preopen, then F is upper almost α -continuous.

Proof. For any $x \in X$ and any open set V of Y containing F(x), there exists $U \in \alpha(X, x)$ such that $F(U) \subset \operatorname{Cl}(V)$. Since F is α - preopen, we have $F(U) \subset \operatorname{Int}(\operatorname{Cl}(F(U))) \subset \operatorname{Int}(\operatorname{Cl}(V)) = s\operatorname{Cl}(V)$. It follows from [27, Theorem 3] that F is upper almost α -continuous.

Theorem 14. Let $F : X \to Y$ be a multifunction such that F(x) is open in Y for each $x \in X$. Then the following are equivalent:

- (1) F is lower α -continuous;
- (2) F is lower almost α -continuous;
- (3) F is $l.w.\alpha.c.$

Proof. We shall only show that (3) implies (1). Let $x \in X$ and V be any open set of Y such that $F(x) \cap V \neq \emptyset$. There exists $U \in \alpha(X, x)$ such that $F(u) \cap \operatorname{Cl}(V) \neq \emptyset$ for every $u \in U$. Since F(u) is open in $Y, F(u) \cap V \neq \emptyset$ for every $u \in U$ and hence F is lower α -continuous.

Definition 7. A topological space X is said to be almost regular [33] if for each $x \in X$ and each regular closed set F of X not containing x, there exists disjoint open sets U and V of X such that $x \in U$ and $F \subset V$.

Theorem 15. If a multifunction $F : X \to Y$ is $u.w.\alpha.c.$ and F(x) is an α -almost regular and α -paracompact subset of Y for each $x \in X$, then F is upper almost α -continuous.

Proof. Let V be any regular open set of Y containing F(x). Since F(x) is α -almost regular and α -paracompact, by [24, Lemma 2] there exists an open set H of Y such that $F(x) \subset H \subset \operatorname{Cl}(H) \subset V$. Since F is u.w. α .c. and $F(x) \subset H$, there exists $U \in \alpha(X, x)$ such that $F(U) \subset \operatorname{Cl}(H) \subset V$. Therefore, it follows from [27, Theorem 3] that F is upper almost α -continuous.

Corollary 6. If a multifunction $F : X \to Y$ is $u.w.\alpha.c., Y$ is almost regular and F(x) is α -paracompact for each $x \in X$, then F is upper almost α -continuous.

Theorem 16. If a multifunction $F : X \to Y$ is l.w. α .c. and F(x) is an α -almost regular subset of Y for each $x \in X$, then F is lower almost α -continuous.

Proof. Let V be a regular open set of Y such that $F(x) \cap V \neq \emptyset$. Since F(x) is α -almost regular, by [24, Lemma 5] there exists an open set H of Y such that $F(x) \cap H \neq \emptyset$ and $\operatorname{Cl}(H) \subset V$. Since F is l.w. α .c. and $F(x) \cap H \neq \emptyset$, there exists $U \in \alpha(X, x)$ such that $F(u) \cap \operatorname{Cl}(H) \neq \emptyset$; hence $F(u) \cap V \neq \emptyset$ for every $u \in U$. It follows from [27, Theorem 5] that F is lower almost α -continuous. \Box

Corollary 7. If a multifunction $F : X \to Y$ is $l.w.\alpha.c.$ and Y is almost regular, then F is lower almost α -continuous.

Definition 8. A topological space X is said to be

(1) α -compact [9] if every cover of X by α -open sets of X has a finite subcover,

(2) quasi H-closed [29] if for every open cover $\{U_{\alpha} : \alpha \in \nabla\}$ of X, there exists a finite subset ∇_0 of ∇ such that $X = \cup \{Cl(U_{\alpha}) : \alpha \in \nabla_0\}.$

Theorem 17. Let $F : X \to Y$ be a surjective multifunction, X α -compact and Y a T_4 -space. If F is u.w. α .c. and F(x) is compact for each $x \in X$, then F is upper almost α -continuous.

Proof. It follows from [27, Theorem 19] that Y is quasi H-closed. Every quasi H-closed T_4 -space is almost regular [21, p. 139]. Therefore, it follows from Corollary 6 that F is upper almost α -continuous.

Definition 9. A multifunction $F : X \to Y$ is said to be weak^{*} α - continuous if for each open set V of Y, $F^{-}(Fr(V))$ is α - closed in X, where Fr(V) denotes the frontier of V.

Theorem 18. A multifunction $F : X \to Y$ is upper α - continuous if and only if it is $u.w.\alpha.c.$ and weak^{*} α - continuous.

Proof. Necessity. The proof follows from definition of upper α -continuous, u.w. α .c. and weak* α -continuous and [26, Theorem 3.3].

Sufficiency. Let $x \in X$ and V be any open set of Y such that $F(x) \subset V$. By Theorem 3, there exists $G \in \alpha(X, x)$ such that $F(G) \subset Cl(V)$. Now put U =

 $G \cap (X - F^-(Fr(V)))$. Since $F^-(Fr(V))$ is α -closed in X, by [16, Lemma 3.2] $U \in \alpha(X)$. Moreover we have $F(x) \cap Fr(V) = \emptyset$ and hence $x \in X - F^-(Fr(V))$. Therefore, we obtain $x \in U$ and $F(U) \subset V$ since $F(U) \subset F(G) \subset Cl(V)$ and $F(U) \subset Y - Fr(V)$. Thus, F is upper α -continuous.

A function $f : X \to Y$ is said to be $weak^* \alpha - continuous$ [32] (resp. $\alpha - continuous$ [11]) if for each open set V of Y, $f^{-1}(Fr(V))$ is α -closed (resp. $f^{-1}(V)$ is α -open) in X.

Corollary 8. Corollary 8 (Sen and Bhattacharyya [32]). A function $f : X \to Y$ is α -continuous if and only if it is weakly α -continuous and weak* α -continuous.

5. Weakly α -continuous multifunctions into Urysohn spaces

A topological space X is said to be *Urysohn* if for each pair of distinct points x and y of X, there exist open sets U and V such that $x \in U, y \in V$ and $Cl(V) \cap Cl(V) = \emptyset$.

Lemma 8. (Smithson [34]). If A and B are disjoint compact subsets of a Urysohn space X, then there exists open sets U and V of X such that $A \subset U, B \subset V$ and $Cl(U) \cap Cl(V) = \emptyset$.

Theorem 19. If $F, G : (X, \tau) \to (Y, \sigma)$ are $u.w.\alpha.c.$ multifunctions into a Urysohn space Y and for each $x \in X$ F(x) and G(x) are compact in (Y, σ) , then $A = \{x \in X : F(x) \cap G(x) \neq \emptyset\}$ is α -closed in (X, τ) .

Proof. By [27, Teorem 7], multifunctions $F, G : (X, \tau^{\alpha}) \to (Y, \sigma)$ are upper weakly continuous and A is closed in (X, τ^{α}) [34, Theorem 17]. Therefore, A is α -closed in (X, τ) .

Corollary 9. (Sen and Bhattacharyya [32]). If $f, g : X \to Y$ are weakly α continuous functions and Y is a Urysohn space, then $\{x \in X : f(x) = g(x)\}$ is α -closed in X.

Theorem 20. Let $F, G : X \to Y$ be multifunctions into an Urysohn space Yand F(x), G(x) compact in Y for each $x \in X$. If F is $u.w.\alpha.c.$ and G is upper almost weakly continuous, then $A = \{x \in X : F(x) \cap G(x) \neq \emptyset\}$ is preclosed in X.

Proof. Let $x \in X - A$. Then we have $F(x) \cap G(x) = \emptyset$. By Lemma 8 there exist open sets V and W such that $F(x) \subset V, G(x) \subset W$ and $\operatorname{Cl}(V) \cap \operatorname{Cl}(W) = \emptyset$. Since F is u.w. α c., there exists $U_1 \in \alpha(X, x)$ such that $F(U_1) \subset \operatorname{Cl}(V)$. Since G is upper almost weakly continuous, by [20, Theorem 3.1] there exists $U_2 \in$ PO(X, x) such that $G(U_2) \subset \operatorname{Cl}(W)$. Now, put $U = U_1 \cap U_2$, then we have $U \in PO(X, x)$ [25, Lemma 4.1] and $U \cap A = \emptyset$. Therefore, A is preclosed in X.

A function $f: X \to Y$ is said to be almost weakly continuous [25] if for each set V of Y, $f^{-1}(V) \subset \operatorname{Int}(\operatorname{Cl}(f^{-1}(\operatorname{Cl}(V))))$.

Corollary 10. (Popa and Noiri [25]). Let $f, g : X \to Y$ be functions into a Urysohn space Y. If f is weakly α -continuous and g is almost weakly continuous, then $\{x \in X : f(x) = g(x)\}$ is preclosed in X.

Theorem 21. Let $F : X_1 \to Y$ and $G : X_2 \to Y$ be multifunctions into a Urysohn space Y and F(x), G(x) compact in Y for each $x \in X_1$ and each i = 1, 2. If F is u.w. $\alpha.c.$ and G is upper almost weakly continuous, then $A = \{(x_1, x_2) : F(x_1) \cap G(x_2) \neq \emptyset\}$ is preclosed set of the product space $X_1 \times X_2$.

Proof. We shall show that $X_1 \times X_2 - A$ is preopen in $X_1 \times X_2$. Let $(x_1, x_2) \in X_1 \times X_2 - A$. Then we have $F(x_1) \cap G(x_2) = \emptyset$. By Lemma 8, there exist open sets V and W such that $F(x) \subset V, G(x) \subset W$ and $\operatorname{Cl}(V) \cap \operatorname{Cl}(W) = \emptyset$. Since F is u.w.α.c., by Theorem 3 we have $x_1 \in F^+(V) \subset \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V)))$. Since G is upper almost weakly continuous, by [20, Theorem 3.1] we have $x_2 \in G^+(W) \subset p \operatorname{Int}(G^+(\operatorname{Cl}(W)))$. Now, put $U = \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V))) \times p \operatorname{Int}(G^+(\operatorname{Cl}(W)))$, then we have $U \in PO(X_1 \times X_2)$ [23, Lemma 2] and $(x_1, x_2) \in U \subset X_1 \times X_2 - A$. Therefore, A is preclosed in $X_1 \times X_2$.

Theorem 22. Let $F, G : X \to Y$ be multifunctions into a Urysohn space Y and F(x), G(x) compact in Y for each $x \in X$. If F is $u.w.\alpha.c.$ and G is upper weakly quasicontinuous, then $A = \{x \in X : F(x) \cap G(x) \neq \emptyset\}$ is semi-closed in X.

Proof. The proof is similar to that of Theorem 20.

Theorem 23. Let $F : X_1 \to Y$ and $G : X_2 \to Y$ be multifunctions into a Urysohn space Y and F(x), G(x) compact in Y for each $x \in X_1$ and each i = 1, 2. If F is u.w.a.c. and G is upper weakly quasicontinuous, then $\{(x_1, x_2) : F(x_1) \cap G(x_2) \neq \emptyset\}$ is a semi-closed set of the product space $X_1 \times X_2$.

Proof. The proof is similar to that of Theorem 21.

Definition 10. For a multifunction $F: X \to Y$, the graph $G(F) = \{(x, F(x)) : x \in X\}$ is said to be strongly α -closed if for each $(x, y) \in (X \times Y) - G(F)$, there exists $U \in \alpha(X, x)$ and $V \in \alpha(Y, y)$ such that $[U \times \alpha Cl(V)] \cap G(F) = \emptyset$.

Lemma 9. A multifunction $F : X \to Y$ has a strongly α -closed graph if and only if for each $(x, y) \in (X \times Y) - G(F)$, there exist $U \in \alpha(X, x)$ and $V \in \alpha(Y, y)$ such that $F(U) \cap Cl(V) = \emptyset$.

Proof. For any $V \in \alpha(Y)$, we have $\operatorname{Cl}(V) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(V)))) = \operatorname{Cl}(\operatorname{Int}(V))$ and hence by Lemma 1 $\alpha \operatorname{Cl}(V) = V \cup \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(V))) = V \cup \operatorname{Cl}(\operatorname{Int}(V)) = \operatorname{Cl}(V)$. Therefore, the proof is obvious.

Theorem 24. If $F : X \to Y$ is $u.w.\alpha.c.$ multifunction such that F(x) is compact for each $x \in X$ and Y is a Urysohn space, then G(F) is strongly α -closed.

Proof. Let $(x, y) \in (X \times Y) - G(F)$, then $y \in Y - F(x)$. By Lemma 8, there exist open sets V and W of Y such that $y \in V, F(x) \subset W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since F is u.w.α.c., there exists $U \in \alpha(X, x)$ such that $F(U) \subset Cl(W)$. Therefore, we have $F(U) \cap Cl(V) = \emptyset$ and by Lemma 9 G(F) is strongly α-closed. □

Corollary 11. (Sen and Bhattacharyya [32]). If $f : X \to Y$ is a weakly α -continuous function and Y is a Urysohn space, then G(f) is strongly α -closed.

Theorem 25. Let $F_1, F_2 : (X, \tau) \to (Y, \tau)$ be $u.w.\alpha$. c. multifunctions into a Urysohn space (Y, σ) and $F_i(x)$ compact in Y for each $x \in X_1$ and each i=1,2. If $F_1(x) \cap F_2(x) \neq \emptyset$ for each $x \in X$, then a multifunction $F : (X, \tau) \to (Y, \sigma)$, defined as follows $F(x) = F_1(x) \cap F_2(x)$ for each $x \in X$, is $u.w.\alpha$.c.

Proof. By [27, Theorem 7] $F_1, F_2 : (X, \tau^{\alpha}) \to (Y, \sigma)$ are upper weakly continuous and by [34, Theorem 18] $F : (X, \tau^{\alpha}) \to (Y, \sigma)$ is upper weakly continuous. Therefore, $F : (X, \tau) \to (Y, \sigma)$ is u.w. α .c. [27, Theorem 7].

Lemma 10. If A is α -open and α -closed in a space X, then A is closed in X.

Proof. Let A be an α -open and α -closed set of X. Then we have $A \subset \text{Int}(\text{Cl}(\text{Int}(A)))$ and $\text{Cl}(\text{Int}(\text{Cl}(A))) \subset A$. Therefore, we have Cl(A) = Cl(Int(Cl(Int(A)))) =Cl(Int(A)) and hence $\text{Cl}(A) \subset \text{Cl}(\text{Int}(\text{Cl}(A))) \subset A$. This shows that A is closed in X. Therefore, we have $A \subset \text{Int}(\text{Cl}(\text{Int}(A))) \subset \text{Int}(\text{Cl}(A)) = \text{Int}(A)$ and hence A is open. Consequently, A is clopen in X. \Box

Lemma 11. If a multifunction $F : X \to Y$ is u.w. $\alpha.c.$, and l.w. $\alpha.c.$, then $F^+(V)$ is clopen in X for every clopen set V of Y.

Proof. Let V be any clopen set of Y. It follows from Theorem 3 that

 $F^+(V) \subset \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V))) = \alpha \operatorname{Int}(F^+(V)).$

This shows that $F^+(V)$ is α -open in X. Furthermore, since V is open, it follows from Theorem 4 that $\alpha \operatorname{Cl}(F^+(V)) \subset F^+(\operatorname{Cl}(V)) = F^+(V)$. Thus, $F^+(V)$ is α -closed. Therefore, it follows from Lemma 10 $F^+(V)$ is clopen in X. \Box

Theorem 26. Let $F : X \to Y$ be an $u.w.\alpha.c.$ and $l.w.\alpha.c.$ surjective multifunction. If X is connected and F(x) is connected for each $x \in X$, then Y is connected. *Proof.* Suppose that Y is not connected. There exist nonempty open sets U and V of Y such that $U \cup V = Y$ and $U \cap V = \emptyset$. Since F(x) is connected for each $x \in X$, we have either $F(x) \subset U$ or $F(x) \subset V$. If $x \in F^+(U \cup V)$, then $F(x) \subset U \cup V$ and hence $x \in F^+(U) \cup F^+(V)$. Moreover, since F is surjective, there exist x and y in X such that $F(x) \subset U$ and $F(y) \subset V$; hence $x \in F^+(U)$ and $y \in F^+(V)$. Therefore, we obtain

- (1) $F^+(U) \cup F^+(V) = F^+(U \cup V = X),$
- (2) $F^+(U) \cap F^+(V) = F^+(U \cap V) = \emptyset$,
- (3) $F^+(U) \neq \emptyset$ and $F^+(V) \neq \emptyset$.

By Lemma 11, $F^+(U)$ and $F^+(V)$ are clopen. Consequently, X is not connected.

Corollary 12. (Noiri [18]). If $f : X \to Y$ is a weakly α - continuous surjection and X is connected, then Y is connected.

Definition 11. An u.w. α .c. multifunction $F : X \to A$ of a space X onto a subset A of X is called a retraction [34] if F(a)=a for all $a \in A$.

Theorem 27. If $F : (X, \tau) \to A$ is an $u.w.\alpha.c.$ retraction, (X, τ) is Hausdorff and F(x) is compact for each $x \in X$, then A is α -closed in (X, τ) .

Proof. By [27, Theorem 7], $F : (X, \tau^{\alpha}) \to A$ is upper weakly continuous. by [34, theorem 10], A is closed in (X, τ^{α}) and hence A is α -closed in (X, τ) . \Box

Corollary 13. (Sen and Bhattacharyya [32]). Let $A \subset X$ and $f : (X, \tau) \to A$ be a surjective weakly α -continuous retraction. If X is Hausdorff, then A is α -closed in X.

Definition 12. The α - frontier of a subset A of a space X, denoted by $\alpha Fr(A)$, is defined by $\alpha Fr(A) = \alpha Cl(A) \cap \alpha Cl(X - A) = \alpha Cl(A) - \alpha Int(A)$.

Theorem 28. The set of all points x of X at which a multifunction $F : X \to Y$ is not u.w. α .c. (resp. l.w. α .c.) is identical with the union of the α -frontier of the upper (resp. lower) inverse images of the closures of open sets containing (resp. meeting) F(x).

Proof. Let x be a point of X at which F is not u.w. α .c. Then, there exists an open set V containing F(x) such that $U \cap (X - F^+(\operatorname{Cl}(V))) \neq \emptyset$ for every $U \in \alpha(X, x)$. Then, we have $x \in \alpha Cl(X - F^+(\operatorname{Cl}(V)))$. Since $x \in F^+(V)$, we have $x \in \alpha Cl(F^+(Cl(V)))$ and hence $x \in \alpha Fr(F^+(\operatorname{Cl}(V)))$. If F is u.w. α .c. at x, then there exists $U \in \alpha(X, x)$ such that $F(U) \subset \operatorname{Cl}(V)$; hence $U \subset$ $F^+(\operatorname{Cl}(V))$. Therefore, we obtain $x \in U \subset \alpha \operatorname{Int}(F^+(\operatorname{Cl}(V)))$. This contradicts that $x \in \alpha Fr(F^+(\operatorname{Cl}(V)))$. Thus F is not u.w. α .c. at x. The case of l.w. α .c. is similarly shown. \Box

References

- [1] Andrijević, D., Some properties of the topology of α -sets, Mat. Vesnik 36(1984), 1-10.
- [2] Banzaru, T., Multifunctions and M-product spaces (in Romanian), Bull. St. Tehn. Inst. Politehn. "T. Vuia" Timisoara, Mat. Fiz. Mec. Teor. Apl. 17(31)(1972), 17-23.
- [3] Berge, C., Espaces topologiques. Fonctiones multivoques, Dunod, Paris, 1959
- [4] Cao, J., Dontchev, J., On some weaker forms of continuity for multifunctions, Real Anal. Exchange 22(1996/97),842-852.
- [5] Crossley, S. G., Hildebrand, S. K., Semi-closure, Texas J.Sci. 22(1971), 99-112.
- [6] Kovačević, I., Subsets and paracompactness, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 14(1984), 79-87.
- [7] Kovačević, I., A note on subsets and almost closed mappings, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17(1987), 137-141.
- [8] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [9] Maheshwari, S. N., Thakur, S. S., On α-compact spaces, Bull. Inst. Math. Acad. Sinica 13(1985), 341-347.
- [10] Mashhour, A. S., Abd El-Monsef, M. E., El-Deeb, S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- [11] Mashhour, A. S., Hasanein, I. A., El-Deeb, S. N., α-continuous and α-open mappings, Acta Math. Hungar. 41(1983), 213-218.
- [12] Neubrunn, T., Strongly quasi-continuous multivalued mappings, General Topology and its Relations to Modern Analysis and Algebra VI (Prague 1986) Heldermann, Berlin, 1988, 351-359.
- [13] Njåstad, O., On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [14] Noiri, T., On semi-continuous mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973), 210-214.
- [15] Noiri, T., A note on semi-continuous mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 55 (1973), 400-403.
- [16] Noiri, T., A function which preserves connected spaces, Časopis Pěst. Mat. 107 (1982), 393-396.
- [17] Noiri, T., On α -continuous functions, Časopis Pést. Mat. 109 (1984), 118-126.
- [18] Noiri, T., Weakly α -continous functions, Internat. J. Math. Math. Sci. 10 (1987), 483-490.
- [19] Noiri, T., Popa, V., On upper and lower weakly quasi-continuous multifunctions, Rev. Romaine Math. Pures Appl. 37 (1992), 499-508.
- [20] Noiri, T., Popa, V., Almost weakly continuous multifunctions, Demonstr. Math. 26 (1993), 363-380.

- [21] Papić, P., Sur les espaces H-fermes, Glasnik Mat. Fiz. Astron. 14 (1959), 135-141.
- [22] Popa, V., Weakly continuous multifunctions, Boll. Un. Mat. Ital. (5) 15-A(1978) 379-388.
- [23] Popa, V., Properties of H-almost continuous functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie 31(79) (1987), 163-168.
- [24] Popa, V., A note on weakly and almost continuous multifunctions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21 (1991), 31-38.
- [25] Popa, V., Noiri, T., Almost weakly continuous functions, Demonstr. Math. 25 (1992), 241-251.
- [26] Popa, V., Noiri, T., On upper and lower α -continuous multifunctions, Math. Slovaca 43 (1993), 477-491.
- [27] Popa, V., Noiri, T., On upper and lower almost α -continuous multifunctions, Demonstr. Math. 29 (1996), 381-396.
- [28] Popa, V., Noiri, T., On upper and lower β-continuous multifunctions, Real Anal. Exchange 22(1996/97), 362-376.
- [29] Porter, J., Thomas, J., On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159-170.
- [30] Reilly, I. L., Vamanamurthy, M. K., Connectdness and strong semi- continuity, Časopis Pěst. Mat. 109 (1984), 261-265.
- [31] Rose, D. A., A note on Levine's decomposition of continuity, Indian J. Pure Appl. Math. 21 (1990), 985-987.
- [32] Sen, A. K., Bhattacharyya, P., On weakly α -continuous functions, Tamkang J. Math. 24 (1993), 445-460.
- [33] Singal, M. K., Arya, S. P., On almost regullar spaces, Glasnik Mat. 4(24) (1969), 89-99.
- [34] Smithson, R. E., Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc. 70 (1978), 383-390.
- [35] Velicko, N. V., H-closed topological spaces, Amer. Soc. Transl. (2)78 (1968), 103-118.
- [36] Wine, J. D., Locally paracompact spaces, Glasnik Mat. 10 (30)(1975), 351-357.

Received by the editors June 19, 1998.