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ON UPPER AND LOWER WEAKLY α-CONTINUOUS
MULTIFUNCTIONS

Valeriu Popa1, Takashi Noiri2

Abstract. In this paper, the authors defined a multifunction F : X → Y
to be upper (resp. lower) weakly α-continuous if for each x ∈ X and
each open set V of Y such that F (x) ⊂ V (resp. F (x) ∩ V 6= ∅), there
exists an α-open set U of X containing x such that U ⊂ F+(Cl(V )) (resp.
U ⊂ F−(Cl(V ))). They give some characterizations and several proper-
ties concerning upper (lower) weakly α-continuous multifunctions.
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1. Introduction

In 1965, Nj̊astad [13] introduced a weak form of open sets called α- sets.
Mashhour et al. [11] defined a function to be α-continuous if the inverse image
of each set is an α-set. Noiri [16] called α-continuous functions strongly semi-
continuous and in [17] he further investigated α-continuous functions. In [18],
Noiri introduced a class of functions called weakly α-continuous functions. Some
properties of weakly α-continuous functions are studied in [25], [31] and [32].

In 1986, Neubrunn [12] introduced and investigated the notion of upper
(lower) α-continuous multifunctions. These multifunctions are further investi-
gated by the present authors [26]. In [27], the present authors introduced a class
of multifunctions called weakly α-continuous multifunctions. Some properties
of weakly α-continuous multifunctions are investigated in [4] and [27].

The purpose of the present paper is to obtain some characterizations of
upper (lower) weakly α-continuous multifunctions and several properties of such
multifunctions.

2. Preliminaries

Let X be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A
is said to be α-open (or α-set) [13] (resp. semi-open [8], preopen [10]) if A ⊂
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Int(Cl(Int(A))) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A))). The family of all α-
open (resp. semi-open, preopen) sets of X containing a point x ∈ X is denoted
by α(X, x), PO(X, x)). The family of all α-open (resp. semi-open, preopen)
sets in X is denoted by α(X) (resp.SO(X),PO(X) ). For these three families,
it is shown in [17, Lemma 3.1] that SO(X) ∩ PO(X) = α(X). Since α(X)
is a topology for X [13, Proposition 2], by αCl(A) (resp. αInt(A)) we denote
the closure (resp. interior) of A with respect to α(X). The complement of a
semi-open (resp. preopen, α-open) set is said to be semi-closed (resp. preclosed,
α-closed). The intersection of all semi-closed sets of X containing A is called
the semi- closure [5] of A and is denoted by sCl(A). The union of all semi-
open (resp. preopen) sets of X contained in A is called the semi-interior (resp.
preinterior) of A and is denoted by sInt(A) (resp. pInt(A)). A subset A of a
space X is said to be regular-open (resp. regular closed) if A = Int(Cl(A)(resp.
A = Cl(Int(A))). The family of regular open (resp. regular closed) sets of X
is denoted by RO(X) (resp. RC(X)). The θ-closure [35] of A, denoted by
Cl θ (A), is defined to be the set of all x ∈ X such that A ∩ Cl(U) 6= ∅ for every
open neighborhood U of x. It is shown in [35] that Cl θ (A) is closed in X and
Cl(U) = Cl θ (U) for each open set U of X.

Lemma 1. The following properties hold for a subset A of a topological space
X:

(1) If A is open in X, then sCl(A)=Int(Cl(A)).
(2) A is α-open in X if and only if U ⊂ A ⊂ sCl(U) for some open set U of

X.
(3) αCl(A) = A ∪ Cl(A))).

Proof. This follows from [17, Lemma 4.12] and [1, Theorem 2.2]. 2

Throughout this paper, spaces (X, τ) and (X,σ) (or simply X and Y ) al-
ways mean topological spaces and F : X → Y (resp.f : X → Y ) represents a
multivalued (resp. single valued) function. For a multifunction F : X → Y , we
shall denote the upper and lower inverse of a set G of Y of F+(G) and F−(G)
[3], respectively, that is

F+(G) = {x ∈ X : F (x) ⊂ G} and F−(G) = {x ∈ X : F (x) ∩G 6= ∅}. 2

Definition 1. A multifunction F : X → Y is said to be
(1) upper weakly continuous [22, 34] if for each x ∈ X and each open set V of

Y containing F(x), there exists an open set U of X containing x such that
F (U) ⊂ Cl(V ),

(2) upper weakly quasi continuous [19] if for each x ∈ X and each open set U
containing x and each open set V containing F(x), there exists a nonempty
open set G of X such that G ⊂ U and F (G) ⊂ Cl(V ),
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(3) upper almost weakly continuous if for each x ∈ X and each open set V
containing F(x), x ∈ Int(Cl(F+(Cl(V )))).

Definition 2. A multifunction F : X → Y is said to be
(1) upper α-continuous [26] at a point x in X if for each open set V of Y

containing F(x), there exists U ∈ α(X,x) such that F (U) ⊂ V ,

(2) lower α-continuous [26] at x ∈ X if for each open set V of Y such that
F (x) ∩ V 6= ∅, there exists U ∈ α(X,x) such that F (u) ∩ V 6= ∅ for every
u ∈ U ,

(3) upper(lower) α-continuous [12] if it is upper (lower) α-continuous at every
point of X.

Definition 3. A multifunction F : X → Y is said to be
(1) upper almost α-continuous [27] at a point x ∈ X if for each U ∈ SO(X, x)

and each open set V containing F(x), there exists a nonempty open set
G ⊂ U such that F (G) ⊂ sCl(V ),

(2) lower almost α-continuous [27] at a point x ∈ X if for each U ∈ SO(X, x)
and each open set V such that F (x)∩V = ∅, there exists a nonempty open
set G ⊂ U such that F (g) ∩ sCl(V ) 6= ∅ for every g ∈ G,

(3) upper (lower) α-continuous if F has this property at every point of X.

Definition 4. A multifunction F : X → Y is said to be
(1) upper weakly α-continuous (briefly u.w.α.c.) at a point x ∈ X if for

each U ∈ SO(X, x) and each open set V containing F(x), there exists a
nonempty open set G ⊂ U such that F (G) ⊂ Cl(V ),

(2) lower weakly α-continuous (briefly l.w.α.c.) at a point x ∈ X if for each
U ∈ SO(X,x) and each open set V such that F (x)∩ V = ∅, there exists a
nonempty open set G ⊂ U such that F (g) ∩ Cl(V ) 6= ∅ for every g ∈ G,

(3) upper (lower) weakly α-continuous if F has this property at every point of
X.

For the properties of multifunctions defined above we have the following
diagram:

upper weakly quasicontinuous
↑

upper α-continuous →upper almost α-continuous →upper weakly α-continuous
↓

upper almost weakly continuous
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3. Characterizations

In [4,Theorem 7], Cao and Dontchev have stated several characterizations
of upper weakly α-continuous multifunctions without the proof. In this section,
we obtain many characterizations of upper weakly α-continuous (lower weakly
α-continuous) multifunctions.

Theorem 1. The following are equivalent for a multifunction F : X → Y :

(1) F is u.w.α.c. at a point x ∈ X;

(2) for any open set V of Y containing F(x), there exists S ∈ α(X,x) such
that F (S) ⊂ Cl(V );

(3) x ∈ αInt(F+(Cl(V ))) for every open set V containing F(x);

(4) x ∈ Int(Cl(Int(F+(Cl(V ))))) for every open set V containg F(x).

Proof. (1) → (2): Let V be any open set of Y containing F (x). For each
U ∈ SO(X, x), there exists a nonempty open set GU such that GU ⊂ U and
F (GU ) ⊂ Cl(V ). Let W = ∪{GU : U ∈ SO(X, x)}. Put S = W ∪ {x}, then W
is open in X, x ∈ sCl(W ) and F (W ) ⊂ Cl(V ). Therefore, we have S ∈ α(X, x)
by Lemma 1 and F (S) ⊂ Cl(V ).

(2) → (3): Let V be any open set of Y containing F (x). Then there exists
S ∈ α(X, x) such that F (S) ⊂ Cl(V ). Thus we obtain x ∈ S ⊂ F+(Cl(V )) and
hence x ∈ αInt(F+(Cl(V ))).

(3) → (4): Let V be any open set of Y containing F (x). Now put
αInt(F+(Cl(V ))). Then U ∈ α(X) and x ∈ U ⊂ F+(Cl(V )). Thus we have
x ∈ U ⊂ Int(Cl(Int(F+(Cl(V ))))).

(4) → (1): Let U ∈ SO(X, x) and V be any open set of Y containing F (x).
Then we have x ∈ Int(Cl(Int(F+(Cl(V ))))) = sCl(Int(F+(Cl(V )))). It follows
from [15, Lemma 3] and [14, Lemma 1] that ∅ 6= U ∩ Int(F+(Cl(V ))) ∈ SO(X).
Put G = Int(U ∩ Int(F+(Cl(V )))). Then G is a nonempty open set of Y [14,
Lemma 4], G ⊂ U and F (G) ⊂ Cl(V ). 2

Theorem 2. The following are equivalent for a multifunction F : X → Y :

(1) F is l.w.α.c. at a point x of X;

(2) for any open set V of Y such that F (x)∩ V 6= ∅, there exists U ∈ α(X, x)
such that F (u) ∩ Cl(V ) 6= ∅ for every u ∈ U ;

(3) x ∈ αInt(F−(Cl(V ))) for every open set V of Y such that F (x) ∩ V 6= ∅;
(4) x ∈ Int(Cl(Int(F−(Cl(V ))))) for every open set V of Y such that F (x) ∩

V 6= ∅.
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Proof. The proof is similar to that of Theorem 1. 2

The following theorem is stated by Cao and Dontchev [4] without the proof.
We shall give the proof since it is important.

Theorem 3. The following are equivalent for a multifunction F : X → Y :
(1) F is u.w.α.c.;

(2) for each x ∈ X and each open set V of Y containing F(x), there exists
U ∈ α(X, x) such that F (U) ⊂ Cl(V );

(3) F+(V ) ⊂ Int(Cl(Int(F+(Cl(V ))))) for every open set V of Y;

(4) Cl(Int(Cl(F−(Int(K))))) ⊂ F−(K) for every closed set K of Y;

(5) αCl(F−(Int(K))) ⊂ F−(K) for every closed set K of Y;

(6) αCl(F−(Int(Cl(B)))) ⊂ F−(Cl(B)) for every subset B of Y;

(7) F+(Int(B)) ⊂ αInt(F+(Cl(Int(B)))) for every subset B of Y;

(8) F+(V ) ⊂ αInt(F+(Cl(V ))) for enery open set V of Y;

(9) αCl(F−(Int(K))) ⊂ F−(K) for every regular closed set K of Y;

(10) αCl(F−(V )) ⊂ F−(Cl(V )) for every open set V of Y;

(11) αCl(F−(Clθ(B)))) ⊂ F−(Clθ(B)) for every subset B of Y.

Proof. (1) → (2): The proof follows immediately from Theorem 1.
(2) → (3): Let V be any open set of Y and x ∈ F+(V ). Then F (x) ⊂ V and

there exists U ∈ α(X, x) such that F (U) ⊂ Cl(V ). Therefore, we have x ∈ U ⊂
F+(Cl(V )). Since U ∈ α(X, x), we have x ∈ U ⊂ Int(Cl(Int(F+(Cl(V ))))).

(3) → (4): Let K be any closed set of Y. Then Y −K is an open set in Y. By
(3), we have F+(Y −K) ⊂ Int(Cl(Int(F+(Cl(Y −K))))). By the straighforward
calculations, we obtain

Cl(Int(Cl(F−(Int(K))))) ⊂ F−(K).

(4) → (5): Let K be any closed set of Y. Then, we have Cl(Int(Cl(F−(Int(K))))) ⊂
f−(K) and hence αCl(F−(Int(K))) ⊂ F−(K) by Lemma 1.

(5) → (6): Let B be an arbitrary subset of Y, then Cl(B) is closed in Y.
Therefore, by (5) we have αCl(F−(Int(Cl(B)))) ⊂ F−(Cl(B)).

(6) → (7): Let B be any subset of Y. Then, we obtain

X − F+(Int(B)) = F−(Cl(Y −B)) ⊃ αCl(F−(Int(Cl(Y −B)))) =
αCl(F−(Y − Cl(Int(B))))) =

αCl(X − F+(Cl(Int(B)))) = X − αInt(F+(Cl(Int(B)))).

Therefore, we obtain F+(Int(B)) ⊂ αInt(F+(Cl(Int(B)))).
(7) → (8): The proof is obvious.
(8) → (1): Let x be any point of X and V be any open set of Y containing

F (x). Then, it follows from [1, Theorem 23] that x ∈ F+(V ) ⊂ αInt(F+(Cl(V ))))) ⊂
Int(Cl(Int(F+(Cl(V ))))) and hence F is u.w.α.c. at x by Theorem 1.
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(5) → (9): The proof is obvious.
(9) → (10): Let V be any open set of Y. Then Cl(V ) is regular closed in Y

and hence we have αCl(F−(V )) ⊂ αCl(F−(Int(Cl(V )))) ⊂ F−(Cl(V )).
(10) → (8): Let V be any open set of Y. Then we have

X − αInt(F+(Cl(V ))))) = αCl(X − F+(Cl(V ))))) = αCl(F−(Y − Cl(V )))
⊂ F−(Cl(Y − Cl(V )))) = X − F+(Int(Cl(V ))).

Therefore, we obtain F+(V ) ⊂ F+(Int(Cl(V ))) ⊂ αInt(F+(Cl(V ))).
(10) → (11): Let B any subset of Y. Put V = Int(Clθ(B)) in (10). Then,

since Clθ(B) is closed in Y, we have αCl(F−(Int(Clθ(B)))) ⊂ F−(Clθ(B)).
(11) → (9): Let K be any regular closed set of Y. In general, we have

Cl(V ) = Clθ(V ) for every open set V of Y. Therefore, we have

αCl(F−(Int(K))) = αCl(F−(Int(Cl(K))))) = αCl(F−(Int(Clθ(Int(K)))))
⊂ F−(Clθ(Int(K))) = F−(Cl(Int(K))) = F−(K). 2

Theorem 4. The following are equivalent for a multifunction F : X → Y :

(1) F is l.w.α.c.;

(2) for each x ∈ X and each open set V of Y such that F (x) ∩ V 6= ∅, there
exists U ∈ α(X, x) such that U ⊂ F−(Cl(V ));

(3) F−(V ) ⊂ Int(Cl(Int(F−(Cl(V ))))) for every open set V of Y;

(4) Cl(Int(Cl(F+(Int(K))))) ⊂ F+(Int(K)) for every closed set K of Y;

(5) αCl(F+(Int(K))) ⊂ F+(K) for every closed set K of Y;

(6) αCl(F+(Int(Cl(B)))) ⊂ F+(Cl(B)) for every closed set B of Y;

(7) F−(Int(B)) ⊂ αInt(F−(Cl(Int(B)))) for every subset B of Y;

(8) F−(V ) ⊂ αInt(F−(Cl(V ))) for every open set V of Y;

(9) αCl(F+(Int(K))) ⊂ F+(K) for every regular set K of Y;

(10) αCl(F+(V )) ⊂ F+(Cl(V )) for every open set V of Y;

(11) αCl(F+(Int(Clθ(B))))) ⊂ F+(Clθ(B)) for every subset B of Y;

Proof. The proof is similar to that of Theorem 3. 2

Lemma 2. If F : X → Y is l.w.α.c., then for each x ∈ X and each subset B
of Y with F (x) ∩ Intθ(B) 6= ∅ there exists U ∈ α(X, x) such that U ⊂ F−(B).

Proof. Since F (x) ∩ Intθ(B) 6= ∅, there exists a nonempty open set V of Y
such that V ⊂ Cl(V ) ⊂ B and F (x) ∩ V 6= ∅. Since F is l.w.α.c., there exists
U ∈ α(X,x) such that F (u)∩Cl(V ) 6= ∅ for every u ∈ U and hence U ⊂ F−(B).
2

Theorem 5. The following are equivalent for a multifunction F : X → Y :

(1) F is l.w.α.c.;
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(2) αCl(F+(B)) ⊂ F+(Clθ(B)) for every subset B of Y;

(3) F (αCl(A)) ⊂ Clθ(F (A)) for every subset A of X.

Proof. (1) → (2): Let B be any subset of Y. Suppose that x ∈ F−(Y −Clθ(B)) =
F−(Intθ(Y − B)). By Lemma 2, there exists U ∈ α(X, x) such that U ⊂
F−(Y −B) = X−F+(B). Thus U∩F+(B) = ∅ and hence x ∈ X−αCl(F+(B)).

(2) → (1): Let V be any open set of Y. Since Cl(V ) = Clθ(V ) for every open
set V of Y, we have αCl(F+(V )) ⊂ F+(Cl(V )) and by Theorem 4 F is l.w.α.c.

(2) → (3): Let A be any subset of X. By (2), we have

αCl(A) ⊂ αCl(F+(F (A))) ⊂ F+(Clθ(F (A))).

Thus we obtain F (αCl(A)) ⊂ Clθ(F (A)).
(3) → (2): Let B be any subset of Y. By (3), we obtain

F (αCl(F+(B))) ⊂ Clθ(F (F+(B))) ⊂ Clθ(B).

Thus we obtain αCl(F+(B)) ⊂ F+(Clθ(B)). 2

A function f : X → Y is said to be weakly α-continuous [18] if for each
x ∈ X and each open set V containing f(x), there exists U ∈ α(X, x) such that
f(U) ⊂ Cl(V ).

Corollary 1. (Noiri [18], Sen and Bhattacharyya [32]). The following are
equivalent for a function f : X → Y :

(1) f is weakly α-continuous;

(2) f−1(V ) ⊂ αInt(f−1(Cl(V ))) for every open set V of Y;

(3) αCl(f−1(Int(K))) ⊂ f−1(K) for every regular closed set K of Y;

(4) αCl(f−1(V )) ⊂ f−1(Cl(V )) for every open set V of Y;

(5) αCl(f−1(Int(Clθ(B)))) ⊂ f−1(Clθ(B)) for every open set B of Y;

(6) Cl(Int(Cl(f−1(V ))))) ⊂ f−1(Cl(V )) for every open set V of Y;

(7) f−1(V ) ⊂ Int(Cl(Int(f−1(Cl(V ))))) for every open set V of Y;

(8) f(Cl(Int(Cl(A)))) ⊂ Clθ(f(A))) for every subset A of X;

(9) Cl(Int(Cl(f−1(B)))) ⊂ f−1(Clθ(B)) for every subset B of Y.

For a multifunction F : X → Y , by ClF : X → Y [2] (resp. αClF : X → Y
[26]) we denote a multifunction defined as follows: (ClF )(x) = Cl(F (x)) (resp.
(αClF )(x) = αCl(F (x))) for each x ∈ X.

Definition 5. A subset A of a topogical space X is said to be

(1) α-paracompact [36] if every cover of A by open sets of X is refined by a
cover of A which consists of open sets of X and is locally finite in X,
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(2) α-regular [6] (resp. α-almost-regular [7]) if for each a ∈ A and each open
(resp. regular open) set U of X containing a, there exists an open set G
of X such that a ∈ G ⊂ Cl(G) ⊂ U .

Lemma 3. (Kovačević [6]). If A is an α-regular α- paracompact set of a topo-
logical space X and U is an open neighborhood of A, then there exists an open
set G of X such that A ⊂ G ⊂ Cl(G) ⊂ U .

Lemma 4. (Popa and Noiri [28]). If F : X → Y is a multifunction such that
F (x) is α-paracompact α-regular for each x ∈ X, then for each open set V of Y
G+(V ) = F+(V ), where G denotes αClF or ClF.

Theorem 6. Let F : X → Y be a multifunction such that F (x) is α-paracompact
and α-regular for each x ∈ X. Then the following are equivalent:

(1) F is u.w.α.c.;

(2) αClF is u.w.α.c.;

(3) ClF is u.w.α.c.

Proof. Similarly to Lemma 4, we put G = αClF or ClF. First, suppose that F
is u.w.α.c.
Let x ∈ X and V be any open set of Y containing G(x). By Lemma 4, x ∈
G+(V ) = F+(V ) and there exists U ∈ α(X, x) such that F (u) ⊂ Cl(V ) for
each u ∈ U . Therefore, we have (αClF )(u) ⊂ (ClF )(u) ⊂ Cl(V ); hence G(u) ⊂
Cl(V ) for each u ∈ U . This shows that G is u.w.α.c.

Conversely, suppose that G is u.w.α.c. Let x ∈ X and V be any open set of
Y containing F (x). By Lemma 4, x ∈ F+(V ) = G+(V ) and hence G(x) ⊂ V .
There exists U ∈ α(X, x) such that G(U) ⊂ Cl(V ); hence F (U) ⊂ Cl(V ). This
shows that F is u.w. α.c. 2

Lemma 5. (Popa and Noiri [28]). If F : X → Y is a multifunction, then for
each open set V of Y G−(V ) = F−(V ), where G denotes αClF or ClF.

Theorem 7. For a multifunction F : X → Y , the following are equivalent:

(1) F is l.w.α.c.;

(2) αClF is l.w.α.c.;

(3) ClF is l.w.α.c.

Proof. By utilizing Lemma 5, this can be proved in a similar way as Theorem
6. 2

For a multifunction F : X → Y , the graph multifunction GF : X → X × Y
is defined as follows:

GF (x) = {x} × F (x) for every x ∈ .X



On upper and lower weakly α-continuous multifunctions 15

Lemma 6. (Noiri and Popa [20]). For a multifunction F : X → Y , the fol-
lowing hold:

(a) G+
F (A×B) = A ∩ F+(B) and (b) G−F (A×B) = A ∩ F−(B)

for any subsets A ⊂ X and B ⊂ Y .

Theorem 8. Let F : X → Y be a multifunction such that F (x) is compact for
each x ∈ X. Then F is u.w.α.c. if and only if GF : X → Y is u.w.α.c.

Proof. Necessity. Suppose that F : X → Y is u.w.α.c. Let x ∈ X and W
be any open set of X × Y containing GF (x). For each y ∈ F (x), there exist
open sets U(y) ⊂ X and V (y) ⊂ Y such that (x, y) ∈ U(y) × V (y) ⊂ W .
The family {V (y) : y ∈ F (x)} is open cover of F (x) and F (x) is compact.
Therefore, there exists a finite number of points,say, y1, y2, , ...yn in F (x) such
that F (x) ⊂ ∪{V (yi) : 1 ≤ i ≤ n}. Set

U = ∩{U(yi) : 1 ≤ i ≤ n} and V = ∩{V (yi) : 1 ≤ i ≤ n}.
Then U and V are open in X and Y, respectively, and {x}×F (x) ⊂ U×V ⊂ W .
Since F is u.w.α.c., there exists U0 ∈ α(X, x) such that F (U0) ⊂ Cl(V ). By
Lemma 6, we have

U ∩ U0 ⊂ U ∩ F+(Cl(V )) = G+
F (U × Cl(V )) ⊂ G+

F (Cl(W )).

Therefore, we obtain U ∩ U0 ∈ α(X, x) and GF (U ∩ U0) ⊂ Cl(W ). This shows
that GF is u.w.α.c.

Sufficiency. Suppose that GF : X → X×Y is u.w.α.c. Let x ∈ X and V be
any open set of Y containing F (x). Since X×V is open in X×Y and GF (x) ⊂
X × V , there exists U ∈ α(X,x) such that GF (U) ⊂ Cl(X × V = X × Cl(V ).
By Lemma 6, we have U ⊂ G+

F (X × Cl(V )) = F+(Cl(V )) and F (U) ⊂ Cl(V ).
This shows that F is u.w.α.c. 2

Theorem 9. A multifunction F : X → Y is l.w.α.c. if and only if GF : X →
X × Y is l.w.α.c.

Proof. Necessity. Suppose that F is l.w.α.c. Let x ∈ X and W be any open
set of X × Y such that x ∈ G−F (W ). Since W ∩ ({x} × F (x)) 6= ∅, there exists
y ∈ F (x) such that (x, y) ∈ W and hence (x, y) ∈ U × V ⊂ W for some open
sets U ⊂ X and V ⊂ Y . Since F (x) ∩ V 6= ∅, there exists G ∈ α(X, x) such
that G ⊂ F−(Cl(V )). By Lemma 6, we have

U ∩G ⊂ U ∩ F−(Cl(V )) = G−F (U × Cl(V )) ⊂ G−F (Cl(W ))

Moreover, we have U ∩G ∈ α(X,x) and hence GF is l.w.α.c.
Sufficiency. Suppose that GF is l.w.α.c. Let x ∈ X and V be any open set

of Y such that x ∈ F−(V ). Then X × V is open in X × Y and
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GF (x) ∩ (X × V ) = ({x} × F (x)) ∩ (X × V ) = {x} × (F (x) ∩ V ) 6= ∅.
Since GF is l.w.α.c., there exists U ∈ α(X, x) such that U ⊂ G−F (Cl(X × V )) =
G−F (X × Cl(V )). By Lemma 6, we obtain U ⊂ F−(Cl(V )). This shows that F
is l.w.α.c. 2

Corollary 2. (Noiri [18]). A function F : X → Y is weakly α-continuous if
and only if the graph function g : X → X × Y , defined as follows: g(x) =
(x, f(x)) for each x ∈ X, is weakly α-continuous.

Lemma 7. (Mashhour et al. [11], Reilly and Vamanamurthy [30]). Let U and
X0 be subsets of a topological space X. The following properties hold:

(1) if U ∈ α(X) and X0 ∈ SO(X) ∪ PO(X), then U ∩X0 ∈ α(X0).

(2) If U ⊂ X0 ⊂ X, U ∈ α(X0) and X0 ∈ α(X), ,then U ∈ α(X).

Theorem 10. If a multifunction F : X → Y is u.w.α.c. (resp. l.w.α.c.) and
X0 ∈ SO(X) ∪ PO(X), then the restriction F/X0 : X0 → Y is u.w.α.c. (resp.
l.w.α.c.).

Proof. We prove only the first case, the proof of the second being analogous.
Let x ∈ X0 and V be any open sets of Y such that (F/X0)(x) ⊂ V . Since
(F/X0)(x) = F (x) and F is u.w.α.c., there exists U ∈ α(X,x) such that F (U) ⊂
Cl(V ). Let U0 = U ∩X0, then U0 ∈ α(X0, x) by Lemma 7 and (F/X0)(U0) =
F (U0) ⊂ Cl(V ). This shows that F/X0 is u.w.α.c. 2

Corollary 3. (Noiri [18]). If f : X → Y is weakly α- continuous and X0 ∈
SO(X) ∪ PO(X), then the restriction f/X0 : X0 → Y is weakly α-continuous.

Theorem 11. A multifunction F : X → Y is u.w.α.c. (resp. l.w.α.c.) if for
each x ∈ X there exists X0 ∈ α(X,x) such that the restriction F/X0 : X0 → Y
is u.w.α.c. (resp. l.w.α.c.).

Proof. We prove only the first case, the proof of the second being analogous.
Let x ∈ X and V be any open sets of Y such that F (x) ⊂ V . There exists
X0 ∈ α(X, x) such that F/X0 → Y is u.w.α.c. Therefore, there exists U0 ∈
α(X0, x) such that (F/X0)(U0) ⊂ Cl(V ). By Lemma 7, U0 ∈ α(X, x) and
F (u) = (F/X0)(u) for each u ∈ U0. This shows that F is u.w.α.c. 2

Corollary 4. Let {Uα : α ∈ ∇} be a cover of X by α-open sets of X. Then,
a multifunction F : X → Y is u.w.α.c. (resp. l.w.α.c.) if and only if the
restriction F/Uα : Uα → Y is u.w.α.c. (resp. l.w.α.c.) for each α ∈ ∇.

Proof. This is an immediate consequence of Theorems 10 and 11. 2

Corollary 5. (Sen and Bhattacharyya [32]). Let f : X → Y be a function
and X = X1 ∪ X2, where X1 and X2 are α-open in X. If the restrictions
f/X1 : X1 → Y are weakly α- continuous for each i=1,2, then f is weakly
α-continuous.
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4. Weak α-continuity, almost α-continuity and α- continuity

Theorem 12. If F : X → Y is a multifunction such that F (x) is closed in Y
for each x ∈ X and Y is a normal space, then the following are equivalent:

(1) F is upper α-continuous;

(2) F is upper almost α-continuous;

(3) F is u.w.α.c.

Proof. We prove only the implication (3) → (1). Suppose that F is u.w.α.c.
Let x ∈ X and V be any open sets of Y such that F (x) ⊂ V . Since F (x)
is closed in Y, by the normality of Y there exists an open set W of Y such
that F (x) ⊂ W ⊂ Cl(W ) ⊂ V . Since F is u.w.α.c., there exists U ∈ α(X, x)
such that F (U) ⊂ Cl(W ); hence F (U) ⊂ V . This shows that F is upper
α-continuous. 2

Definition 6. A multifunction F : X → Y is said to be α-preopen if for every
U ∈ α(X), F (U) ⊂ Int(Cl(F (U))).

Theorem 13. If a multifunction F : X → Y is u.w.α.c. and α-preopen, then
F is upper almost α-continuous.

Proof. For any x ∈ X and any open set V of Y containing F (x), there exists
U ∈ α(X, x) such that F (U) ⊂ Cl(V ). Since F is α- preopen, we have F (U) ⊂
Int(Cl(F (U))) ⊂ Int(Cl(V )) = sCl(V ). It follows from [27, Theorem 3] that F
is upper almost α-continuous. 2

Theorem 14. Let F : X → Y be a multifunction such that F (x) is open in Y
for each x ∈ X. Then the following are equivalent:

(1) F is lower α-continuous;

(2) F is lower almost α-continuous;

(3) F is l.w.α.c.

Proof. We shall only show that (3) implies (1). Let x ∈ X and V be any
open set of Y such that F (x) ∩ V 6= ∅. There exists U ∈ α(X,x) such that
F (u) ∩ Cl(V ) 6= ∅ for every u ∈ U . Since F (u) is open in Y, F (u) ∩ V 6= ∅ for
every u ∈ U and hence F is lower α-continuous. 2

Definition 7. A topological space X is said to be almost regular [33] if for each
x ∈ X and each regular closed set F of X not containing x, there exists disjoint
open sets U and V of X such that x ∈ U and F ⊂ V .

Theorem 15. If a multifunction F : X → Y is u.w.α.c. and F (x) is an α-
almost regular and α-paracompact subset of Y for each x ∈ X, then F is upper
almost α-continuous.
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Proof. Let V be any regular open set of Y containing F (x). Since F (x) is α-
almost regular and α-paracompact, by [24, Lemma 2] there exists an open set
H of Y such that F (x) ⊂ H ⊂ Cl(H) ⊂ V . Since F is u.w.α.c. and F (x) ⊂ H,
there exists U ∈ α(X, x) such that F (U) ⊂ Cl(H) ⊂ V . Therefore, it follows
from [27, Theorem 3] that F is upper almost α-continuous. 2

Corollary 6. If a multifunction F : X → Y is u.w.α.c., Y is almost regular and
F (x) is α-paracompact for each x ∈ X, then F is upper almost α-continuous.

Theorem 16. If a multifunction F : X → Y is l.w.α.c. and F (x) is an α-
almost regular subset of Y for each x ∈ X, then F is lower almost α-continuous.

Proof. Let V be a regular open set of Y such that F (x) ∩ V 6= ∅. Since F (x) is
α-almost regular, by [24, Lemma 5] there exists an open set H of Y such that
F (x) ∩ H 6= ∅ and Cl(H) ⊂ V . Since F is l.w.α.c. and F (x) ∩ H 6= ∅, there
exists U ∈ α(X,x) such that F (u) ∩ Cl(H) 6= ∅; hence F (u) ∩ V 6= ∅ for every
u ∈ U . It follows from [27, Theorem 5] that F is lower almost α-continuous. 2

Corollary 7. If a multifunction F : X → Y is l.w.α.c. and Y is almost regular,
then F is lower almost α-continuous.

Definition 8. A topological space X is said to be

(1) α-compact [9] if every cover of X by α-open sets of X has a finite sub-
cover,

(2) quasi H-closed [29] if for every open cover {Uα : α ∈ ∇} of X, there
exists a finite subset ∇0 of ∇ such that X = ∪{Cl(Uα) : α ∈ ∇0}.
Theorem 17. Let F : X → Y be a surjective multifunction, X α-compact and
Y a T4-space. If F is u.w.α.c. and F (x) is compact for each x ∈ X, then F is
upper almost α-continuous.

Proof. It follows from [27, Theorem 19] that Y is quasi H-closed. Every quasi
H-closed T4-space is almost regular [21, p. 139]. Therefore, it follows from
Corollary 6 that F is upper almost α-continuous. 2

Definition 9. A multifunction F : X → Y is said to be weak∗ α− continuous
if for each open set V of Y, F−(Fr(V )) is α- closed in X, where Fr(V ) denotes
the frontier of V.

Theorem 18. A multifunction F : X → Y is upper α- continuous if and only
if it is u.w.α.c. and weak∗ α- continuous.

Proof. Necessity. The proof follows from definition of upper α-continuous,
u.w.α.c. and weak∗ α-continuous and [26, Theorem 3.3].

Sufficiency. Let x ∈ X and V be any open set of Y such that F (x) ⊂ V . By
Theorem 3, there exists G ∈ α(X, x) such that F (G) ⊂ Cl(V ). Now put U =
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G ∩ (X − F−(Fr(V ))). Since F−(Fr(V )) is α-closed in X, by [16, Lemma 3.2]
U ∈ α(X). Moreover we have F (x)∩Fr(V ) = ∅ and hence x ∈ X−F−(Fr(V )).
Therefore, we obtain x ∈ U and F (U) ⊂ V since F (U) ⊂ F (G) ⊂ Cl(V ) and
F (U) ⊂ Y − Fr(V ). Thus, F is upper α-continuous. 2

A function f : X → Y is said to be weak∗ α − continuous [32] (resp.
α− continuous [11]) if for each open set V of Y, f−1(Fr(V )) is α-closed (resp.
f−1(V ) is α-open) in X.

Corollary 8. Corollary 8 (Sen and Bhattacharyya [32]). A function f :
X → Y is α-continuous if and only if it is weakly α-continuous and weak∗

α-continuous.

5. Weakly α-continuous multifunctions into Urysohn spaces

A topological space X is said to be Urysohn if for each pair of distinct points
x and y of X, there exist open sets U and V such that x ∈ U, y ∈ V and
Cl(V ) ∩ Cl(V ) = ∅.

Lemma 8. (Smithson [34]). If A and B are disjoint compact subsets of a
Urysohn space X, then there exists open sets U and V of X such that A ⊂
U,B ⊂ V and Cl(U) ∩ Cl(V ) = ∅.

Theorem 19. If F, G : (X, τ) → (Y, σ) are u.w.α.c. multifunctions into a
Urysohn space Y and for each x ∈ X F(x) and G(x) are compact in (Y, σ) ,
then A = {x ∈ X : F (x) ∩G(x) 6= ∅} is α-closed in (X, τ).

Proof. By [27, Teorem 7], multifunctions F, G : (X, τα) → (Y, σ) are upper
weakly continuous and A is closed in (X, τα) [34, Theorem 17]. Therefore, A is
α-closed in (X, τ). 2

Corollary 9. (Sen and Bhattacharyya [32]). If f, g : X → Y are weakly α-
continuous functions and Y is a Urysohn space, then {x ∈ X : f(x) = g(x)} is
α-closed in X.

Theorem 20. Let F, G : X → Y be multifunctions into an Urysohn space Y
and F (x), G(x) compact in Y for each x ∈ X. If F is u.w.α.c. and G is upper
almost weakly continuous, then A = {x ∈ X : F (x) ∩G(x) 6= ∅} is preclosed in
X.

Proof. Let x ∈ X−A. Then we have F (x)∩G(x) = ∅. By Lemma 8 there exist
open sets V and W such that F (x) ⊂ V, G(x) ⊂ W and Cl(V ) ∩ Cl(W ) = ∅.
Since F is u.w.αc., there exists U1 ∈ α(X, x) such that F (U1) ⊂ Cl(V ). Since
G is upper almost weakly continuous, by [20, Theorem 3.1] there exists U2 ∈
PO(X, x) such that G(U2) ⊂ Cl(W ). Now, put U = U1 ∩ U2, then we have
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U ∈ PO(X, x) [25, Lemma 4.1] and U ∩A = ∅. Therefore, A is preclosed in X.
2

A function f : X → Y is said to be almost weakly continuous [25] if for each
set V of Y, f−1(V ) ⊂ Int(Cl(f−1(Cl(V )))).

Corollary 10. (Popa and Noiri [25]). Let f, g : X → Y be functions into a
Urysohn space Y. If f is weakly α-continuous and g is almost weakly continuous,
then {x ∈ X : f(x) = g(x)} is preclosed in X.

Theorem 21. Let F : X1 → Y and G : X2 → Y be multifunctions into a
Urysohn space Y and F (x), G(x) compact in Y for each x ∈ X1 and each
i = 1, 2. If F is u.w.α.c. and G is upper almost weakly continuous, then A =
{(x1, x2) : F (x1) ∩G(x2) 6= ∅} is preclosed set of the product space X1 ×X2.

Proof. We shall show that X1 ×X2 − A is preopen in X1 ×X2. Let (x1, x2) ∈
X1×X2−A. Then we have F (x1)∩G(x2) = ∅. By Lemma 8, there exist open
sets V and W such that F (x) ⊂ V,G(x) ⊂ W and Cl(V )∩Cl(W ) = ∅. Since F
is u.w.α.c., by Theorem 3 we have x1 ∈ F+(V ) ⊂ αInt(F+(Cl(V ))). Since G is
upper almost weakly continuous, by [20, Theorem 3.1] we have x2 ∈ G+(W ) ⊂
pInt(G+(Cl(W ))). Now, put U = αInt(F+(Cl(V ))) × pInt(G+(Cl(W ))), then
we have U ∈ PO(X1 × X2) [23, Lemma 2] and (x1, x2) ∈ U ⊂ X1 × X2 − A.
Therefore, A is preclosed in X1 ×X2. 2

Theorem 22. Let F,G : X → Y be multifunctions into a Urysohn space Y
and F (x), G(x) compact in Y for each x ∈ X. If F is u.w.α.c. and G is upper
weakly quasicontinuous, then A = {x ∈ X : F (x) ∩G(x) 6= ∅} is semi-closed in
X.

Proof. The proof is similar to that of Theorem 20. 2

Theorem 23. Let F : X1 → Y and G : X2 → Y be multifunctions into a
Urysohn space Y and F (x), G(x) compact in Y for each x ∈ X1 and each
i = 1, 2. If F is u.w.α.c. and G is upper weakly quasicontinuous, then {(x1, x2) :
F (x1) ∩G(x2) 6= ∅} is a semi-closed set of the product space X1 ×X2.

Proof. The proof is similar to that of Theorem 21. 2

Definition 10. For a multifunction F : X → Y , the graph G(F ) = {(x, F (x)) :
x ∈ X} is said to be strongly α-closed if for each (x, y) ∈ (X × Y ) − G(F ),
there exists U ∈ α(X,x) and V ∈ α(Y, y) such that [U × αCl(V )] ∩G(F ) = ∅.

Lemma 9. A multifunction F : X → Y has a strongly α-closed graph if and
only if for each (x, y) ∈ (X×Y )−G(F ), there exist U ∈ α(X, x) and V ∈ α(Y, y)
such that F (U) ∩ Cl(V ) = ∅.
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Proof. For any V ∈ α(Y ), we have Cl(V ) = Cl(Int(Cl(Int(V )))) = Cl(Int(V ))
and hence by Lemma 1 αCl(V ) = V ∪Cl(Int(Cl(V ))) = V ∪Cl(Int(V )) = Cl(V ).
Therefore, the proof is obvious. 2

Theorem 24. If F : X → Y is u.w.α.c. multifunction such that F (x) is
compact for each x ∈ X and Y is a Urysohn space, then G(F ) is strongly α-
closed.

Proof. Let (x, y) ∈ (X × Y ) − G(F ), then y ∈ Y − F (x). By Lemma 8, there
exist open sets V and W of Y such that y ∈ V, F (x) ⊂ W and Cl(V )∩Cl(W ) =
∅. Since F is u.w.α.c., there exists U ∈ α(X,x) such that F (U) ⊂ Cl(W ).
Therefore, we have F (U) ∩ Cl(V ) = ∅ and by Lemma 9 G(F ) is strongly α-
closed. 2

Corollary 11. (Sen and Bhattacharyya [32]). If f : X → Y is a weakly α-
continuous function and Y is a Urysohn space, then G(f) is strongly α-closed.

Theorem 25. Let F1, F2 : (X, τ) → (Y, τ) be u.w.α. c. multifunctions into a
Urysohn space (Y, σ) and Fi(x) compact in Y for each x ∈ X1 and each i=1,2.
If F1(x) ∩ F2(x) 6= ∅ for each x ∈ X, then a multifunction F : (X, τ) → (Y, σ),
defined as follows F (x) = F1(x) ∩ F2(x) for each x ∈ X,is u.w.α .c.

Proof. By [27, Theorem 7] F1, F2 : (X, τα) → (Y, σ) are upper weakly continuous
and by [34, Theorem 18] F : (X, τα) → (Y, σ) is upper weakly continuous.
Therefore, F : (X, τ) → (Y, σ) is u.w.α.c. [27, Theorem 7]. 2

Lemma 10. If A is α-open and α-closed in a space X, then A is closed in X.

Proof. Let A be an α-open and α-closed set of X. Then we have A ⊂ Int(Cl(Int(A)))
and Cl(Int(Cl(A))) ⊂ A. Therefore, we have Cl(A) = Cl(Int(Cl(Int(A)))) =
Cl(Int(A)) and hence Cl(A) ⊂ Cl(Int(Cl(A))) ⊂ A. This shows that A is closed
in X. Therefore, we have A ⊂ Int(Cl(Int(A))) ⊂ Int(Cl(A)) = Int(A) and hence
A is open. Consequently, A is clopen in X. 2

Lemma 11. If a multifunction F : X → Y is u.w.α.c., and l.w.α.c., then
F+(V ) is clopen in X for every clopen set V of Y.

Proof. Let V be any clopen set of Y. It follows from Theorem 3 that

F+(V ) ⊂ αInt(F+(Cl(V ))) = αInt(F+(V )).

This shows that F+(V ) is α-open in X. Furthermore, since V is open, it follows
from Theorem 4 that αCl(F+(V )) ⊂ F+(Cl(V )) = F+(V ). Thus, F+(V ) is
α-closed. Therefore, it follows from Lemma 10 F+(V ) is clopen in X. 2

Theorem 26. Let F : X → Y be an u.w.α.c. and l.w.α.c. surjective multi-
function. If X is connected and F (x) is connected for each x ∈ X, then Y is
connected.
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Proof. Suppose that Y is not connected. There exist nonempty open sets U
and V of Y such that U ∪ V = Y and U ∩ V = ∅. Since F (x) is connected for
each x ∈ X, we have either F (x) ⊂ U or F (x) ⊂ V . If x ∈ F+(U ∪ V ), then
F (x) ⊂ U ∪ V and hence x ∈ F+(U) ∪ F+(V ). Moreover, since F is surjective,
there exist x and y in X such that F (x) ⊂ U and F (y) ⊂ V ; hence x ∈ F+(U)
and y ∈ F+(V ). Therefore, we obtain

(1) F+(U) ∪ F+(V ) = F+(U ∪ V = X),

(2) F+(U) ∩ F+(V ) = F+(U ∩ V ) = ∅,
(3) F+(U) 6= ∅ and F+(V ) 6= ∅.
By Lemma 11, F+(U) and F+(V ) are clopen. Consequently, X is not con-

nected. 2

Corollary 12. (Noiri [18]). If f : X → Y is a weakly α- continuous surjection
and X is connected, then Y is connected.

Definition 11. An u.w.α.c. multifunction F : X → A of a space X onto a
subset A of X is called a retraction [34] if F(a)=a for all a ∈ A.

Theorem 27. If F : (X, τ) → A is an u.w.α.c. retraction, (X, τ) is Hausdorff
and F(x) is compact for each x ∈ X, then A is α-closed in (X, τ).

Proof. By [27, Theorem 7], F : (X, τα) → A is upper weakly continuous. by
[34, theorem 10], A is closed in (X, τα) and hence A is α-closed in (X, τ). 2

Corollary 13. (Sen and Bhattacharyya [32]). Let A ⊂ X and f : (X, τ) → A
be a surjective weakly α-continuous retraction. If X is Hausdorff, then A is
α-closed in X.

Definition 12. The α − frontier of a subset A of a space X, denoted by
αFr(A), is defined by αFr(A) = αCl(A) ∩ αCl(X −A) = αCl(A)− αInt(A).

Theorem 28. The set of all points x of X at which a multifunction F : X → Y
is not u.w.α.c. (resp. l.w.α.c.) is identical with the union of the α-frontier of
the upper (resp. lower) inverse images of the closures of open sets containing
(resp. meeting) F(x).

Proof. Let x be a point of X at which F is not u.w.α.c. Then, there exists
an open set V containing F (x) such that U ∩ (X − F+(Cl(V ))) 6= ∅ for every
U ∈ α(X,x). Then, we have x ∈ αCl(X − F+(Cl(V ))). Since x ∈ F+(V ), we
have x ∈ αCl(F+(Cl(V ))) and hence x ∈ αFr(F+(Cl(V ))). If F is u.w.α.c.
at x, then there exists U ∈ α(X, x) such that F (U) ⊂ Cl(V ); hence U ⊂
F+(Cl(V )). Therefore, we obtain x ∈ U ⊂ αInt(F+(Cl(V ))). This contradicts
that x ∈ αFr(F+(Cl(V ))). Thus F is not u.w.α.c. at x. The case of l.w.α.c. is
similarly shown. 2
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