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ON UPPER AND LOWER WEAKLY a-CONTINUOUS
MULTIFUNCTIONS

Valeriu Popa'!, Takashi Noiri?

Abstract. In this paper, the authors defined a multifunction F': X — Y
to be upper (resp. lower) weakly a-continuous if for each z € X and
each open set V of Y such that F(x) C V (resp. F(z) NV # 0), there
exists an a-open set U of X containing x such that U C F*(Cl(V)) (resp.
U C F7(CI(V))). They give some characterizations and several proper-
ties concerning upper (lower) weakly a-continuous multifunctions.
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1. Introduction

In 1965, Njastad [13] introduced a weak form of open sets called a- sets.
Mashhour et al. [11] defined a function to be a-continuous if the inverse image
of each set is an a-set. Noiri [16] called a-continuous functions strongly semi-
continuous and in [17] he further investigated a-continuous functions. In [18§],
Noiri introduced a class of functions called weakly a-continuous functions. Some
properties of weakly a-continuous functions are studied in [25], [31] and [32].

In 1986, Neubrunn [12] introduced and investigated the notion of upper
(lower) a-continuous multifunctions. These multifunctions are further investi-
gated by the present authors [26]. In [27], the present authors introduced a class
of multifunctions called weakly a-continuous multifunctions. Some properties
of weakly a-continuous multifunctions are investigated in [4] and [27].

The purpose of the present paper is to obtain some characterizations of
upper (lower) weakly a-continuous multifunctions and several properties of such
multifunctions.

2. Preliminaries

Let X be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A
is said to be a-open (or a-set) [13] (resp. semi-open [8], preopen [10]) if A C
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Int(Cl(Int(A))) (resp. A C Cl(Int(A)), A C Int(Cl(A))). The family of all a-
open (resp. semi-open, preopen) sets of X containing a point x € X is denoted
by a(X,x), PO(X,z)). The family of all a-open (resp. semi-open, preopen)
sets in X is denoted by a(X) (resp.SO(X),PO(X) ). For these three families,
it is shown in [17, Lemma 3.1] that SO(X) N PO(X) = «(X). Since a(X)
is a topology for X [13, Proposition 2|, by aCl(A) (resp. alnt(A)) we denote
the closure (resp. interior) of A with respect to a(X). The complement of a
semi-open (resp. preopen, a-open) set is said to be semi-closed (resp. preclosed,
a-closed). The intersection of all semi-closed sets of X containing A is called
the semi- closure [5] of A and is denoted by sCl(A). The union of all semi-
open (resp. preopen) sets of X contained in A is called the semi-interior (resp.
preinterior) of A and is denoted by sInt(A) (resp. pInt(A)). A subset A of a
space X is said to be regular-open (resp. regular closed) if A = Int(Cl(A)(resp.
A = Cl(Int(A))). The family of regular open (resp. regular closed) sets of X
is denoted by RO(X) (resp. RC(X)). The 6-closure [35] of A, denoted by
Cl,(A), is defined to be the set of all z € X such that AN CI(U) # 0 for every
open neighborhood U of x. It is shown in [35] that Cl,(A) is closed in X and
Cl(U) = Cl,(U) for each open set U of X.

Lemma 1. The following properties hold for a subset A of a topological space
X:

(1) If A is open in X, then sCI(A)=Int(CI(A)).

(2) A is a-open in X if and only if U C A C sCl(U) for some open set U of
X.

(8) aCl(A) = AU Ci(A))).

Proof. This follows from [17, Lemma 4.12] and [1, Theorem 2.2]. O

Throughout this paper, spaces (X,7) and (X,0) (or simply X and Y) al-
ways mean topological spaces and F' : X — Y (resp.f : X — Y) represents a
multivalued (resp. single valued) function. For a multifunction F : X — Y, we
shall denote the upper and lower inverse of a set G of Y of F7(G) and F~(G)
[3], respectively, that is

Fr(G)={zeX:Fzx)cG} and F (Q)={zcX:Fx)NG#0}. O

Definition 1. A multifunction F : X — Y is said to be

(1) upper weakly continuous [22, 34] if for each x € X and each open set V of
Y containing F(z), there exists an open set U of X containing x such that
FU) c cuv),

(2) upper weakly quasi continuous [19] if for each x € X and each open set U
containing z and each open set V containing F(x), there exists a nonempty
open set G of X such that G C U and F(G) C CI(V),
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(8) upper almost weakly continuous if for each x € X and each open set V
containing F(x), v € Int(CI(FT(CIV)))).

Definition 2. A multifunction F : X — Y is said to be

(1) upper a-continuous [26] at a point x in X if for each open set V of Y
containing F(zx), there exists U € a(X, ) such that F(U) C V,

(2) lower a-continuous [26] at x € X if for each open set V of Y such that
F(x) NV £ 0, there exists U € a(X,x) such that F(u) NV #§ for every
u e U,

(3) upper(lower) a-continuous [12] if it is upper (lower) a-continuous at every
point of X.

Definition 3. A multifunction F : X — Y is said to be

(1) upper almost a-continuous [27] at a point v € X if for each U € SO(X, x)
and each open set V containing F(z), there exists a nonempty open set
G C U such that F(G) C sCl(V),

(2) lower almost a-continuous [27] at a point x € X if for each U € SO(X, x)
and each open set V such that F(z)NV =0, there exists a nonempty open
set G C U such that F(g) NsCIV) # 0 for every g € G,

(8) upper (lower) a-continuous if F has this property at every point of X.

Definition 4. A multifunction F : X — 'Y is said to be
(1) upper weakly a-continuous (briefly u.w.c.c.) at a point © € X if for

each U € SO(X,x) and each open set V containing F(z), there exists a
nonempty open set G C U such that F(G) C CI(V),

(2) lower weakly a-continuous (briefly Lw.a.c.) at a point x € X if for each
U € SO(X,z) and each open set V such that F(x)NV =, there exists a
nonempty open set G C U such that F(g) N Cl(V) # O for every g € G,

(8) upper (lower) weakly c-continuous if F' has this property at every point of
X.

For the properties of multifunctions defined above we have the following
diagram:

upper weakly quasicontinuous

1

upper a-continuous —upper almost a-continuous —upper weakly a-continuous

!

upper almost weakly continuous
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3. Characterizations

In [4,Theorem 7], Cao and Dontchev have stated several characterizations
of upper weakly a-continuous multifunctions without the proof. In this section,
we obtain many characterizations of upper weakly a-continuous (lower weakly
a-continuous) multifunctions.

Theorem 1. The following are equivalent for a multifunction F : X — Y :
(1) F is vw.a.c. at a point x € X;

(2) for any open set V of Y containing F(x), there exists S € a(X,x) such
that F(S) C CI(V);

(3) x € alnt(FT(CIV))) for every open set V containing F(x);
(4) x € Int(Cl(Int(FT(CIV))))) for every open set V containg F(x).

Proof. (1) — (2): Let V be any open set of Y containing F(x). For each
U € SO(X,z), there exists a nonempty open set Gy such that Gy C U and
F(Gy) c CI(V). Let W =U{Gy : U € SO(X,z)}. Put S = WU {z}, then W
is open in X, x € sCI(W) and F(W) C CI(V). Therefore, we have S € a(X, x)
by Lemma 1 and F(S) C CI(V).

(2) — (3): Let V be any open set of Y containing F(x). Then there exists
S € a(X,x) such that F(S) c CI(V). Thus we obtain z € S ¢ F*(Cl(V)) and
hence z € alnt(F*(CL(V))).

(3) — (4): Let V be any open set of Y containing F(z). Now put
alnt(FT(CI(V))). Then U € a(X) and z € U C FY(CI(V)). Thus we have
z €U C Int(Cl(Int(FT(CI(V))))).

(4) = (1): Let U € SO(X,x) and V be any open set of Y containing F'(z).
Then we have z € Int(Cl(Int(F*(Cl(V))))) = sCl(Int(FT(CL(V)))). It follows
from [15, Lemma 3] and [14, Lemma 1] that § # U NInt(F+(CL(V))) € SO(X).
Put G = Int(U NInt(FT(C1(V)))). Then G is a nonempty open set of Y [14,
Lemma 4], G C U and F(G) C C(V). O

Theorem 2. The following are equivalent for a multifunction F : X — Y :
(1) Fis lw.a.c. at a point z of X;

(2) for any open set V of Y such that F(z) NV # 0, there exists U € a(X, x)
such that F(u) N CUV) #£ 0 for every u € U;

(3) x € alnt(F~(CUV))) for every open set V of Y such that F(z) NV #0;

(4) x € Int( Cl(Int(F~(CIV))))) for every open set V of Y such that F(x) N
V #0.
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Proof. The proof is similar to that of Theorem 1. m|

The following theorem is stated by Cao and Dontchev [4] without the proof.
We shall give the proof since it is important.

Theorem 3. The following are equivalent for a multifunction F : X — Y :
(1) F is vw.a.c.;
(2) for each x € X and each open set V of Y containing F(x), there exists
U € a(X,x) such that F(U) C C(V);
(3) FH(V) C Int(Cl(Int(F*(CIV))))) for every open set V of Y;
(4) Cli(Int(CF~(Int(K))))) C F~(K) for every closed set K of Y;
(5) aClF~(Int(K))) C F~(K) for every closed set K of Y;
(6) aCI(F~(Int(CI(B)))) C F~(CI(B)) for every subset B of Y;
(7) F*(Int(B)) C alnt(F*(Cl(Int(B)))) for every subset B of Y;
(8) FH(V) C alnt(F+(CIV))) for enery open set V of Y;
(9) aCl(F~(In{(K))) C F~(K) for every regular closed set K of Y;
(10) «CI(F~(V)) C F~(CU(V)) for every open set V of Y;
(11) aCI(F~(Cly(B)))) C F~(Clo(B)) for every subset B of Y.

Proof. (1) — (2): The proof follows immediately from Theorem 1.

(2) — (3): Let V be any open set of Y and x € F*(V). Then F(z) C V and
there exists U € a(X, x) such that F(U) C CI(V). Therefore, we have © € U C
FF(CI(V)). Since U € a(X,x), we have x € U C Int(Cl(Int(FT(CL(V))))).

(3) — (4): Let K be any closed set of Y. Then Y — K is an open set in Y. By
(3), we have FT (Y — K) C Int(Cl(Int(F*(Cl(Y — K))))). By the straighforward
calculations, we obtain

Cl(Int(CL(F~ (Int(K))))) € F~(K).

(4) — (5): Let K be any closed set of Y. Then, we have Cl(Int(C1(F~ (Int(K))))) C
f~(K) and hence aCl(F'~ (Int(K))) C F~(K) by Lemma 1.

(5) — (6): Let B be an arbitrary subset of Y, then CI(B) is closed in Y.
Therefore, by (5) we have a«Cl(F~ (Int(Cl(B)))) € F~(CI(B)).

(6) — (7): Let B be any subset of Y. Then, we obtain

X — Fr*(Int(B)) = F~(C(Y — B)) D aCl(F~ (Int(Cl(Y — B)))) =
aCI(F~ (Y — Cl(Int(B))))) =
aCl(X — FT(Cl(Int(B)))) = X — aInt(FT(Cl(Int(B)))).

Therefore, we obtain F*(Int(B)) C aInt(F T (Cl(Int(B)))).

(7) — (8): The proof is obvious.

(8) — (1): Let x be any point of X and V be any open set of Y containing
F(x). Then, it follows from [1, Theorem 23] that z € F* (V) C alnt(F*(C1(V))))) C
Int(Cl(Int(F'*(C1(V))))) and hence F is u.w.a.c. at x by Theorem 1.
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(5) — (9): The proof is obvious.
(9) — (10): Let V be any open set of Y. Then CI(V) is regular closed in Y’
and hence we have «Cl(F~(V)) C aCl(F~ (Int(CL(V)))) C F~(CI(V)).
(10) — (8): Let V' be any open set of Y. Then we have
X — aInt(FT(CI(V))))) = aCl(X — FT(CUL(V))))) = aCl(F~ (Y — CI(V)))
C F(Cl(Y = CI(V)))) = X — FH(Int(CLV))).
Therefore, we obtain F* (V) C F(Int(Cl(V))) C alnt(F*(CL(V))).
(10) — (11): Let B any subset of Y. Put V = Int(Clyg(B)) in (10). Then,
since Cly(B) is closed in Y, we have aCl(F~ (Int(Cly(B)))) C F~(Clo(B)).
(11) — (9): Let K be any regular closed set of Y. In general, we have
Cl(V) = Cly(V) for every open set V of Y. Therefore, we have
aCl(F~ (Int(K))) = aCl(F~ (Int(CI(K))))) = aCl(F~ (Int(Clp(Int(K)))))
C F~(Clp(Int(K))) = F~(Cl(Int(K))) = F~(K). O
Theorem 4. The following are equivalent for a multifunction F : X — Y :
(1) Fislw.a.c.;

(2) for each x € X and each open set V of Y such that F(x) NV #(, there
exists U € a(X, ) such that U C F~(CIV));
(3) F~(V) C Int(Cl(Int(F~(CI(V))))) for every open set V of Y;

(4) Cl(Int(CF T (Int(K))))) C FT(Int(K)) for every closed set K of Y;
(5) aC(F*(Int(K))) C FT(K) for every closed set K of Y;

(6) aC(F*(Int(CU(B)))) C F*(CUB)) for every closed set B of Y;

(7) F~(Int(B)) C aInt(F~(Cl(Int(B)))) for every subset B of Y;

(8) F~(V) C aInt(F~(CIV))) for every open set V of Y;

(9) aCl(FF(Int(K))) C FT(K) for every reqular set K of Y;

(10) aCI(F+(V)) C FT(CIV)) for every open set V of Y;

(11) aCI(F+(Int(Cly(B))))) C F*(Clg(B)) for every subset B of Y;

Proof. The proof is similar to that of Theorem 3. a

Lemma 2. If F: X — Y is lw.a.c., then for each x € X and each subset B
of Y with F(x) N Intg(B) # 0 there exists U € a(X, ) such that U C F~(B).

Proof. Since F(x) N Intg(B) # 0, there exists a nonempty open set V of Y
such that V' C CI(V) C B and F(z) NV # (). Since F is L.w.c.c., there exists
U € a(X, z) such that F(u)NClV) # () for every u € U and hence U C F~(B).
O

Theorem 5. The following are equivalent for a multifunction F : X — Y :
(1) Fis lw.a.c.;
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(2) aCl(F*(B)) C F*(Clg(B)) for every subset B of Y;
(3) F(aCl(A)) C Clg(F(A)) for every subset A of X.

Proof. (1) — (2): Let B be any subset of Y. Suppose that z € I~ (Y —Cly(B)) =

F~(Intp(Y — B)). By Lemma 2, there exists U € «a(X,z) such that U C

F~(Y—B)=X-F7*(B). Thus UNF*(B) = 0 and hence z € X —aCl(F*(B)).
(2) — (1): Let V be any open set of Y. Since C1(V') = Cly(V) for every open

set V of Y, we have aCl(F*(V)) Cc FT(Cl(V)) and by Theorem 4 F' is L.w.a.c.
(2) — (3): Let A be any subset of X. By (2), we have

aCl(A) € aCl(F*(F(A))) C FF(Clo(F(A))).

Thus we obtain F'(aCl(A)) C Cly(F(A)).
(3) — (2): Let B be any subset of Y. By (3), we obtain

F(aCl(F*(B))) C Clg(F(F*(B))) C Cly(B).
Thus we obtain aCl(F*(B)) C F*(Cly(B)). 0

A function f : X — Y is said to be weakly a-continuous [18] if for each
x € X and each open set V' containing f(x), there exists U € a(X, x) such that

F(U) C V).

Corollary 1. (Noiri [18], Sen and Bhattacharyya [32]). The following are
equivalent for a function f: X — Y

(1) fis weakly a-continuous;

(2) f~Y V) C alnt(f~1(CUV))) for every open set V of Y;

(3) aCl(f~H(Int(K))) C f~Y(K) for every reqular closed set K of Y;
(4) «CI(f~1(V)) C f7L(CuV )) for every open set V of Y;

(5) aCl(f~ (Int(C’lg(B)))) ~Y(Cly(B)) for every open set B of Y;
(6) Cl(Int(CI(f~1(V))))) C ( (V') for every open set V of Y;
(7) f~XV) C Int(Cl(Int(f~ ( 1(V))))) for every open set V of Y;
(8) f(Ci(Int(CI(A)))) C CIi ( (A))) for every subset A of X;

(9) Cl(Int(CI(f~*(B)))) C f~1(Clo(B)) for every subset B of Y.

For a multifunction F': X — Y, by CIF : X — Y [2] (resp. aCIF : X =Y
[26]) we denote a multifunction defined as follows: (ClF)(x) = CI(F(z)) (resp.
(aClF)(x) = aCl(F(x))) for each z € X.

Definition 5. A subset A of a topogical space X is said to be

(1) a-paracompact [36] if every cover of A by open sets of X is refined by a
cover of A which consists of open sets of X and is locally finite in X,
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(2) a-regular [6] (resp. a-almost-regular [7]) if for each a € A and each open
(resp. regular open) set U of X containing a, there exists an open set G
of X such thata € G C Cl(G) C U.

Lemma 3. (Kovacevié [6]). If A is an a-regular a- paracompact set of a topo-
logical space X and U is an open neighborhood of A, then there exists an open
set G of X such that AC G C CI(G) CU.

Lemma 4. (Popa and Noiri [28]). If F : X — Y is a multifunction such that
F(x) is a-paracompact a-regular for each x € X, then for each open set V of Y
GH(V) = F*(V), where G denotes aCIF or CIF.

Theorem 6. Let F': X — Y be a multifunction such that F(x) is a-paracompact
and a-reqular for each x € X. Then the following are equivalent:

(1) F is vw.c.c.;
(2) aCIF is u.w.c.c.;
(8) CIF is v.w.a.c.

Proof. Similarly to Lemma 4, we put G = aCIlF or CIF. First, suppose that F’
is w.w.a.c.
Let £ € X and V be any open set of ¥ containing G(z). By Lemma 4, z €
GT(V) = F*(V) and there exists U € a(X,z) such that F(u) C Cl(V) for
each u € U. Therefore, we have (a«CIlF)(u) C (CIF)(u) C CI(V); hence G(u) C
Cl(V) for each u € U. This shows that G is u.w.a.c.

Conversely, suppose that G is u.w.a.c. Let x € X and V be any open set of
Y containing F(z). By Lemma 4, 2 € F*(V) = G*(V) and hence G(z) C V.
There exists U € a(X, x) such that G(U) C CI(V); hence F(U) C CI(V). This
shows that F'is u.w. a.c. ]

Lemma 5. (Popa and Noiri [28]). If F : X — 'Y is a multifunction, then for
each open set Vof Y G— (V) = F~(V), where G denotes aClF or CIF.

Theorem 7. For a multifunction F : X — Y, the following are equivalent:
(1) Fis lw.a.c.;
(2) aCIF is Lw.a.c.;
(3) CIF is Lw.a.c.

Proof. By utilizing Lemma 5, this can be proved in a similar way as Theorem
6. m|

For a multifunction F': X — Y, the graph multifunction Gp : X — X xY
is defined as follows:

Gp(z) ={z} x F(x) forevery z€.X
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Lemma 6. (Noiri and Popa [20]). For a multifunction F : X — Y, the fol-
lowing hold:

(a) GL(AxB)=ANF*(B) and (b)) Gr(AxB)=ANF(B)
for any subsets A C X and BCY.

Theorem 8. Let F : X — Y be a multifunction such that F(x) is compact for
each x € X. Then F is v.w.a.c. if and only if Gp : X — Y is u.w.a.c.

Proof. Necessity. Suppose that F' : X — Y is uw.a.c. Let z € X and W
be any open set of X x Y containing Gg(z). For each y € F(z), there exist
open sets U(y) C X and V(y) C Y such that (z,y) € U(y) x V(y) C W.
The family {V(y) : y € F(z)} is open cover of F(z) and F(z) is compact.
Therefore, there exists a finite number of points,say, y1, Y2, , ...yn in F(z) such
that F(x) C U{V(y;): 1 <i<n}. Set

U=n{U(y;):1<i<n}and V=n{V(y;):1<i<n}.

Then U and V are open in X and Y, respectively, and {z} x F(z) CUxV C W.
Since F is u.w.a.c., there exists Uy € «(X,z) such that F(Uy) C CI(V). By
Lemma 6, we have

UNUy C UNFHCV)) = GH(U x CI(V)) € GL(CL(W)).

Therefore, we obtain U N Uy € a(X, z) and Gp(U NU) C CI(W). This shows
that Gr is uw.w.a.c.

Sufficiency. Suppose that Gp: X — X xY is u.w.a.c. Let z € X and V be
any open set of Y containing F'(x). Since X x V is open in X xY and Gp(z) C
X x V, there exists U € a(X,z) such that Gp(U) C CI(X x V = X x Cl(V).
By Lemma 6, we have U C G5(X x CL(V)) = FH(CL(V)) and F(U) C CI(V).
This shows that F' is u.w.c.c. g

Theorem 9. A multifunction F : X — Y is L.w.a.c. if and only if Ggp : X —
X xY islw.a.c.

Proof. Necessity. Suppose that F' is lL.w.a.c. Let x € X and W be any open
set of X x Y such that x € Gx(W). Since W N ({z} x F(x)) # 0, there exists
y € F(z) such that (z,y) € W and hence (z,y) € U x V. C W for some open
sets U C X and V C Y. Since F(z) NV # 0, there exists G € a(X,x) such
that G C F~(Cl(V)). By Lemma 6, we have

UNG cUNF(CUV)) = Ga(U x CI(V)) € G7(CIW))

Moreover, we have U N G € a(X, ) and hence G is L.w.a.c.
Sufficiency. Suppose that Gp is Lw.a.c. Let z € X and V be any open set
of Y such that z € F~(V). Then X x V is open in X x Y and
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Grz)N(X xV)=({z} x F(z))N (X xV)={z} x (F(z)NV) #£0.

Since G is L.w.av.c., there exists U € o(X,x) such that U C Gz(Cl(X x V)) =
Gr(X x Cl(V)). By Lemma 6, we obtain U C F~(Cl(V)). This shows that F'
is Lw.a.c. a

Corollary 2. (Noiri [18]). A function F : X — Y is weakly a-continuous if
and only if the graph function g : X — X XY, defined as follows: g(x) =
(z, f(x)) for each x € X, is weakly o-continuous.

Lemma 7. (Mashhour et al. [11], Reilly and Vamanamurthy [30]). Let U and
Xo be subsets of a topological space X. The following properties hold:

(1) if U € a(X) and X9 € SO(X) U PO(X), then UN Xy € a(Xop).
(2) IfU C Xo C X, U € a(Xy) and Xo € a(X), ,then U € a(X).

Theorem 10. If a multifunction F : X — Y is v.w.c.c. (resp. Lw.a.c.) and
Xo € SO(X)U PO(X), then the restriction F/Xy : Xo — Y is v.w.a.c. (resp.
Lw.a.c.).

Proof. We prove only the first case, the proof of the second being analogous.
Let z € X and V' be any open sets of ¥ such that (F/Xo)(z) C V. Since
(F/Xo)(z) = F(x) and F is u.w.cv.c., there exists U € a(X, ) such that F(U) C
Cl(V). Let Uy = U N Xy, then Uy € a(Xo, ) by Lemma 7 and (F/X)(Up) =
F(Uy) C CI(V). This shows that F/Xq is u.w.c.c. O

Corollary 3. (Noiri [18]). If f : X — Y is weakly a- continuous and Xy €
SO(X) U PO(X), then the restriction f/Xo: Xo — Y is weakly a-continuous.

Theorem 11. A multifunction F : X — Y is v.w.a.c. (resp. lLw.a.c.) if for
each x € X there exists Xo € a(X, x) such that the restriction F/Xo: Xg — Y
is ww.a.c. (resp. lLw.a.c.).

Proof. We prove only the first case, the proof of the second being analogous.
Let z € X and V be any open sets of Y such that F(x) C V. There exists
Xo € a(X,z) such that F/Xy — Y is uw.a.c. Therefore, there exists Uy €
a(Xo, ) such that (F/Xy)(Uy) C CI(V). By Lemma 7, Uy € «(X,z) and
F(u) = (F/Xo)(u) for each u € Uy. This shows that F is u.w.a.c. |

Corollary 4. Let {U, : o € V} be a cover of X by a-open sets of X. Then,
a multifunction F : X — Y is ww.a.c. (resp. lw.a.c.) if and only if the
restriction F/Uy : Uy = Y is u.w.a.c. (resp. lw.a.c.) for each « € V.

Proof. This is an immediate consequence of Theorems 10 and 11. O

Corollary 5. (Sen and Bhattacharyya [32]). Let f : X — Y be a function
and X = X1 U Xs, where X; and X5 are a-open in X. If the restrictions
f/X1 + X1 — Y are weakly a- continuous for each i=1,2, then f is weakly
Q-continuous.
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4. Weak a-continuity, almost a-continuity and a- continuity

Theorem 12. If F: X — Y is a multifunction such that F(x) is closed in' Y
for each x € X and Y is a normal space, then the following are equivalent:

(1) F is upper a-continuous;

(2) F is upper almost a-continuous;

(3) F is v.w.a.c.

Proof. We prove only the implication (3) — (1). Suppose that F is u.w.a.c.
Let x € X and V be any open sets of Y such that F(x) C V. Since F(x)
is closed in Y, by the normality of Y there exists an open set W of Y such
that F(z) C W C CI(W) C V. Since F is u.w.a.c., there exists U € a(X,x)
such that F(U) C Cl(W); hence F(U) C V. This shows that F is upper
a-continuous. O

Definition 6. A multifunction F : X — Y is said to be a-preopen if for every
UeaX),FU)cC Int(C(F(U))).

Theorem 13. If a multifunction F': X — Y is u.w.a.c. and a-preopen, then
F' is upper almost a-continuous.

Proof. For any x € X and any open set V of Y containing F(x), there exists
U € a(X,z) such that F(U) C CI(V). Since F is a- preopen, we have F(U) C
Int(CI(F(U))) C Int(CL(V)) = sCI(V). It follows from [27, Theorem 3] that F'
is upper almost a-continuous. O

Theorem 14. Let F : X — Y be a multifunction such that F(x) is open in'Y
for each x € X. Then the following are equivalent:

(1) F is lower a-continuous;
(2) F is lower almost a-continuous;
(3) Fis l.w.a.c.

Proof. We shall only show that (3) implies (1). Let © € X and V be any
open set of Y such that F(z) NV # (. There exists U € a(X,z) such that
F(u) N CYV) # 0 for every w € U. Since F(u) is open in Y, F(u) NV # { for
every u € U and hence F' is lower a-continuous. O

Definition 7. A topological space X is said to be almost regular [33] if for each
x € X and each regular closed set F' of X not containing x, there exists disjoint
open sets U and V' of X such that x € U and F C V.

Theorem 15. If a multifunction F : X — Y is v.w.a.c. and F(z) is an a-
almost regular and a-paracompact subset of Y for each x € X, then F is upper
almost a-continuous.
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Proof. Let V' be any regular open set of Y containing F(x). Since F(z) is -
almost regular and a-paracompact, by [24, Lemma 2] there exists an open set
H of Y such that F(z) C H C CI(H) C V. Since F is ww.c.c. and F(z) C H,
there exists U € a(X,x) such that F(U) C CI(H) C V. Therefore, it follows
from [27, Theorem 3] that F' is upper almost a-continuous. O

Corollary 6. If a multifunction F': X —Y isu.w.a.c., Y is almost reqular and
F(z) is a-paracompact for each x € X, then F is upper almost a-continuous.

Theorem 16. If a multifunction F : X — Y is Lw.a.c. and F(x) is an a-
almost reqular subset of Y for each x € X, then F' is lower almost a-continuous.

Proof. Let V be a regular open set of Y such that F(xz) NV # (. Since F(z) is
a-almost regular, by [24, Lemma 5] there exists an open set H of Y such that
F(xz)NH # 0 and CI(H) C V. Since F is Lw.a.c. and F(z) N H # 0, there
exists U € a(X,z) such that F(u) N CI(H) # 0; hence F(u) NV # @ for every
u € U. It follows from [27, Theorem 5] that F' is lower almost a-continuous. O

Corollary 7. If a multifunction F : X — Y is lLw.a..c. andY is almost regular,
then F' is lower almost a-continuous.

Definition 8. A topological space X is said to be

(1) a-compact [9] if every cover of X by a-open sets of X has a finite sub-
cover,

(2) quasi H-closed [29] if for every open cover {U, : o € V} of X, there
ezists a finite subset Vo of V such that X = U{Cl(U,) : a € V}.

Theorem 17. Let F': X — Y be a surjective multifunction, X a-compact and
Y a Ty-space. If F is u.w.c.c. and F(x) is compact for each x € X, then F is
upper almost a-continuous.

Proof. Tt follows from [27, Theorem 19] that Y is quasi H-closed. Every quasi
H-closed Ty-space is almost regular [21, p. 139]. Therefore, it follows from
Corollary 6 that F' is upper almost a-continuous. O

Definition 9. A multifunction F' : X — Y is said to be weak™ o — continuous
if for each open set' V of Y, F~(Fr(V)) is a- closed in X, where Fr(V) denotes
the frontier of V.

Theorem 18. A multifunction F : X — Y is upper a- continuous if and only
if it is v.w.a.c. and weak® «- continuous.

Proof. Necessity. The proof follows from definition of upper a-continuous,
u.w.a.c. and weak™ a-continuous and [26, Theorem 3.3].

Sufficiency. Let x € X and V be any open set of Y such that F'(z) C V. By
Theorem 3, there exists G € «(X, z) such that F(G) C ClI(V). Now put U =
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GN (X — F (Fr(V))). Since F~(Fr(V)) is a-closed in X, by [16, Lemma 3.2]
U € a(X). Moreover we have F(z)NFr(V) =0 and hence x € X — F~ (Fr(V)).
Therefore, we obtain € U and F(U) C V since F(U) C F(G) C CI(V) and
F(U)CY — Fr(V). Thus, F is upper a-continuous. O

A function f : X — Y is said to be weak* a — continuous [32] (resp.
a — continuous [11]) if for each open set V of Y, f~1(Fr(V)) is a-closed (resp.
f71(V) is a-open) in X.

Corollary 8. Corollary 8 (Sen and Bhattacharyya [32]). A function f :
X — Y is a-continuous if and only if it is weakly a-continuous and weak™
a-continuous.

5. Weakly a-continuous multifunctions into Urysohn spaces

A topological space X is said to be Urysohn if for each pair of distinct points
x and y of X, there exist open sets U and V such that x € U,y € V and
CV)NCYV) =0.

Lemma 8. (Smithson [84]). If A and B are disjoint compact subsets of a
Urysohn space X, then there exists open sets U and V of X such that A C
U,BCV and CI(U)N CIV) = 0.

Theorem 19. If F,G : (X,7) — (Y,0) are w.w.a.c. multifunctions into a
Urysohn space Y and for each v € X F(z) and G(x) are compact in (Y,0) ,
then A={z € X : F(z) NG(x) # 0} is a-closed in (X,T).

Proof. By [27, Teorem 7], multifunctions F,G : (X,7*) — (Y, o) are upper
weakly continuous and A is closed in (X, 7%) [34, Theorem 17]. Therefore, A is
a-closed in (X, 7). a

Corollary 9. (Sen and Bhattacharyya [32]). If f,g : X — Y are weakly a-
continuous functions and Y is a Urysohn space, then {x € X : f(z) = g(z)} is
a-closed in X.

Theorem 20. Let F,G : X — Y be multifunctions into an Urysohn space Y
and F(x), G(x) compact in'Y for each x € X. If F is u.w.a.c. and G is upper
almost weakly continuous, then A = {x € X : F(z) N G(x) # 0} is preclosed in
X.

Proof. Let x € X — A. Then we have F(x) NG(z) = (). By Lemma 8 there exist
open sets V and W such that F(z) C V,G(z) C W and CI(V) N Cl(W) = .
Since F is u.w.ac., there exists Uy € a(X,x) such that F(U;) C Cl(V). Since
G is upper almost weakly continuous, by [20, Theorem 3.1] there exists Uy €
PO(X, z) such that G(Uz) C CI(W). Now, put U = U; N Us, then we have
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U € PO(X,z) [25, Lemma 4.1] and U N A = ). Therefore, A is preclosed in X.
O

A function f: X — Y is said to be almost weakly continuous [25] if for each

set Vof Y, f=1(V) C Int(CL(f~1(CL(V)))).

Corollary 10. (Popa and Noiri [25]). Let f,g: X — Y be functions into a
Urysohn space Y. If f is weakly a-continuous and g is almost weakly continuous,
then {z € X : f(z) = g(z)} is preclosed in X.

Theorem 21. Let F : X1 — Y and G : Xo — Y be multifunctions into a
Urysohn space Y and F(x), G(x) compact in Y for each x € Xy and each
i=1,2. If F is u.w.a.c. and G is upper almost weakly continuous, then A =
{(z1,22) : F(z1) N G(z2) # 0} is preclosed set of the product space X1 x Xo.

Proof. We shall show that X; x Xy — A is preopen in X; x X5. Let (z1,22) €
X1 x Xo — A. Then we have F(z1) N G(z2) = 0. By Lemma 8, there exist open
sets V and W such that F(z) C V,G(z) C W and CI(V) N CY(W) = (). Since F'
is w.w.a.c., by Theorem 3 we have x; € F7 (V) C alnt(FT(Cl(V))). Since G is
upper almost weakly continuous, by [20, Theorem 3.1] we have x5 € GT(W) C
pInt(GF(CI(W))). Now, put U = alnt(F+(CI(V))) x pInt(GT(CL(W))), then
we have U € PO(X; x X3) [23, Lemma 2] and (z1,22) € U C X; x Xo — A.
Therefore, A is preclosed in X7 x Xs. o

Theorem 22. Let F,G : X — Y be multifunctions into a Urysohn space Y
and F(x), G(x) compact in'Y for each x € X. If F is v.w.a.c. and G is upper
weakly quasicontinuous, then A = {x € X : F(x) N G(x) # 0} is semi-closed in
X.

Proof. The proof is similar to that of Theorem 20. O

Theorem 23. Let F : X1 — Y and G : Xo — Y be multifunctions into a
Urysohn space Y and F(x), G(x) compact in' Y for each x € Xy and each
i=1,2. If F is vw.a.c. and G is upper weakly quasicontinuous, then {(z1,x2) :
F(z1) N G(z2) # 0} is a semi-closed set of the product space X1 X Xs.

Proof. The proof is similar to that of Theorem 21. m]

Definition 10. For a multifunction F : X — Y, the graph G(F) = {(z, F(z)) :
x € X} is said to be strongly a-closed if for each (z,y) € (X xY)
there ezists U € a(X,x) and V € a(Y,y) such that [U x a«CI(V)]|NG(F) =

Lemma 9. A multifunction F : X — Y has a strongly a-closed graph if and
only if for each (z,y) € (X xY)—G(F), there exist U € a(X,z) and V € a(Y,y)
such that F(U)N CYV) = 0.
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Proof. For any V € a(Y), we have CI(V) = Cl(Int(Cl(Int(V)))) = Cl(Int(V))
and hence by Lemma 1 aC1(V) = VUCI(Int(Cl(V))) = VUCI(Int(V)) = CI(V).
Therefore, the proof is obvious. o

Theorem 24. If F : X — Y is ww.a.c. multifunction such that F(x) is
compact for each x € X and Y is a Urysohn space, then G(F) is strongly a-
closed.

Proof. Let (z,y) € (X xY) — G(F), then y € Y — F(x). By Lemma 8, there
exist open sets V and W of Y such that y € V, F(x) C W and CI(V)NCl(W) =
. Since F is u.w.a.c., there exists U € a(X,z) such that F(U) c Cl(W).
Therefore, we have F(U) N Cl(V) = () and by Lemma 9 G(F) is strongly a-
closed. a

Corollary 11. (Sen and Bhattacharyya [32]). If f : X — Y is a weakly a-
continuous function and'Y is a Urysohn space, then G(f) is strongly a-closed.

Theorem 25. Let F1,Fy : (X,7) — (Y, 7) be ww.ce. ¢. multifunctions into a
Urysohn space (Y, o) and F;(z) compact in Y for each x € X7 and each i=1,2.
If Fi(z) N Fy(z) # 0 for each x € X, then a multifunction F : (X,7) — (Y, 0),
defined as follows F(x) = Fy(x) N Fy(x) for each x € X ,is u.w.a .c.

Proof. By [27, Theorem 7] Fy, Fy : (X, 7%) — (Y, o) are upper weakly continuous
and by [34, Theorem 18] F : (X,7%) — (Y, 0) is upper weakly continuous.
Therefore, F: (X,7) — (Y,0) is w.w.a.c. [27, Theorem 7]. O

Lemma 10. If A is a-open and a-closed in a space X, then A is closed in X.

Proof. Let A be an a-open and a-closed set of X. Then we have A C Int(Cl(Int(A)))
and Cl(Int(Cl(A))) € A. Therefore, we have Cl(A) = Cl(Int(Cl(Int(A)))) =
Cl(Int(A)) and hence Cl(A) C Cl(Int(Cl(A))) C A. This shows that A is closed
in X. Therefore, we have A C Int(Cl(Int(A))) C Int(Cl(A4)) = Int(A) and hence
A is open. Consequently, A is clopen in X. O

Lemma 11. If a multifunction F : X — Y is v.w.a.c., and lLw.a.c., then
F*(V) is clopen in X for every clopen set V of Y.

Proof. Let V' be any clopen set of Y. It follows from Theorem 3 that
FH(V) C alnt(FT(CIV))) = alnt(FT(V)).

This shows that FT (V) is a-open in X. Furthermore, since V is open, it follows
from Theorem 4 that aCl(F*(V)) ¢ FY(C(V)) = FT (V). Thus, F*(V) is
a-closed. Therefore, it follows from Lemma 10 F+ (V) is clopen in X. a

Theorem 26. Let F': X — Y be an u.w.a.c. and l.w.a.c. surjective multi-
function. If X is connected and F(z) is connected for each x € X, then' Y is
connected.
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Proof. Suppose that Y is not connected. There exist nonempty open sets U
and V of Y such that UUV =Y and UNV = 0. Since F(z) is connected for
each z € X, we have either F(x) C U or F(z) C V. If z € FF(UUYV), then
F(x) CUUYV and hence x € F*(U) U F™ (V). Moreover, since F is surjective,
there exist z and y in X such that F(z) C U and F(y) C V; hence x € F(U)
and y € F*(V). Therefore, we obtain

(1) FFU)UFH(V)=Ft({UUV = X),
(2) FFr(UYNFH(V)=FtUNV) =0,
(3) FH(U) # 0 and F (V) # 0.

By Lemma 11, F*(U) and F* (V) are clopen. Consequently, X is not con-
nected. a

Corollary 12. (Noiri [18]). If f : X — Y is a weakly a- continuous surjection
and X 1is connected, then Y is connected.

Definition 11. An w.w.a.c. multifunction F' : X — A of a space X onto a
subset A of X is called a retraction [34] if F(a)=a for all a € A.

Theorem 27. If F: (X,7) — A is an uv.w.a.c. retraction, (X, 1) is Hausdorff
and F(z) is compact for each x € X, then A is a-closed in (X, 7).

Proof. By [27, Theorem 7|, F' : (X,7%) — A is upper weakly continuous. by
[34, theorem 10], A is closed in (X,7%) and hence A is a-closed in (X, 7). O

Corollary 13. (Sen and Bhattacharyya [32]). Let AC X and f: (X,7) — A
be a surjective weakly a-continuous retraction. If X is Hausdorff, then A is
a-closed in X.

Definition 12. The « — frontier of a subset A of a space X, denoted by
aFr(A), is defined by aFr(A) = aCl(A) NaCl(X — A) = aCl(A) — alnt(A).

Theorem 28. The set of all points x of X at which a multifunction F': X —Y
is not v.w.a.c. (resp. lLw.a.c.) is identical with the union of the a-frontier of
the upper (resp. lower) inverse images of the closures of open sels containing
(resp. meeting) F(z).

Proof. Let x be a point of X at which F' is not u.w.a.c. Then, there exists
an open set V containing F(z) such that U N (X — FT(CL(V))) # 0 for every
U € a(X,x). Then, we have x € aCl(X — F*(CI(V))). Since x € F*(V), we
have z € aCl(F*(CI(V))) and hence z € aFr(F(CL(V))). If F is w.w.a.c.
at x, then there exists U € «(X,x) such that F(U) C Cl(V); hence U C
F*(CL(V)). Therefore, we obtain € U C aInt(F+(CI(V))). This contradicts
that z € aF'r(F+(CL(V))). Thus F is not u.w.a.c. at z. The case of Lw.a.c. is
similarly shown. O
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