σ-NULL-ADDITIVE SET FUNCTIONS

Endre Pap ${ }^{1}$

Abstract

There is introduced the notion of σ-null-additive set function as a generalization of the classical measure. There are proved the relations to disjoint and chain variations. The general Lebesgue decomposition theorem is obtained.

AMS Mathematics Subject Classification (2000): 28A25
Key words and phrases: σ-null-additive set function, Lebesgue decomposition theorem

1. Introduction

We introduce in this paper the notion of σ-null-additive set functions as a generalization of the notion of the classical measure. This class of set functions is a subclass of general class of non-additive set functions the class of null-additive set functions. We prove some general properties of $\sigma-$ null-additive set functions. We investigate the relation with the disjoint variation and chain variation and prove a general Lebesgue decomposition theorem.

2. Basic definitions

We have now the definition of the main notion in this article.
Definition 1. A set function $m, m: \mathcal{D} \rightarrow[-\infty, \infty]$, is called null-additive, if we have

$$
m(A \cup B)=m(A)
$$

whenever $A, B \in \mathcal{D}, A \cap B=\emptyset$, and $m(B)=0$.
It is obvious that for null-additive set function m we have $m(\emptyset)=0$ whenever there exists $B \in \mathcal{D}$ such that $m(B)=0$. We shall always suppose that $m(\emptyset)=0$, if otherwise is not explicitly stated.

In the next section we present a number of important examples of σ-nulladditive set functions.

We give two simple examples of set functions.
Example 1. Let $m(A) \neq 0$ whenever $A \in \Sigma, A \neq \emptyset$. Then m is null-additive.

[^0]Example 2. Let $X=\{x, y\}$ and define m in the following way:

$$
m(X)=1 \text { and } m(A)=0 \text { for } A \neq X
$$

Then m is not null-additive.
We have some obvious properties of null-additive set functions.
Theorem 1. Let m be a positive monotone set function defined on a ring \mathcal{R}. Then the following statements are equivalent:
(1) m is null-additive.
(2) If $E \in \mathcal{R}, F \in \mathcal{R}, m(F)=0$, then $m(E \cup F)=m(E)$.
(3) If $E \in \mathcal{R}, F \in \mathcal{R}, F \subset E$ and $m(F)=0$, then $m(E \backslash F)=m(E)$.
(4) If $E \in \mathcal{R}, F \in \mathcal{R}, m(F)=0$, then $m(E \backslash F)=m(F)$.
(5) If $E \in \mathcal{R}, F \in \mathcal{R}, m(F)=0$, then $m(E \Delta F)=m(F)$.

Now we have an example of null-additive non-monotone set function.
Example 3. Let $m: \Sigma \rightarrow[0,1]$ be defined by

$$
m(A)= \begin{cases}2 \mu(A), & \text { if } \mu(A) \leq \frac{1}{2} \\ -2 \mu(A)+2 & \text { if } \mu(A) \geq \frac{1}{2}\end{cases}
$$

where $\mu, \mu: \Sigma \rightarrow[0,1]$, is a σ-additive measure. Then m is null-additive and not monotone, but it is continuous from above and from below.
We can introduce a more general class of set functions.
Definition 2. A set function $m, m: \mathcal{D} \rightarrow[-\infty, \infty]$, is called supernull-additive, if we have

$$
m(A \cup B) \geq m(A)
$$

whenever $A, B \in \mathcal{D}, A \cap B=\emptyset$, and $m(B)=0$.
The class of supernull-additive set functions includes all null-additive set functions, all monotone set functions (defined on a ring) and all superadditive set functions.

Theorem 2. Let m be a null-additive, positive, monotone and continuous from above set function defined on Σ. If $A \in \Sigma$, then

$$
m\left(A \cup B_{n}\right) \rightarrow m(A)
$$

for any decreasing sequence $\left\{B_{n}\right\}$ from Σ for which $m\left(B_{n}\right) \rightarrow 0$ and there exists at least one n_{0} such that $m\left(A \cup B_{n_{0}}\right)<\infty$ as $m(A)<\infty$.
Theorem 3. Let m be a null-additive, positive, monotone and continuous set function on Σ. If $A \in \Sigma$, then we have

$$
m\left(A \backslash B_{n}\right) \rightarrow m(A)
$$

for any decreasing sequence $\left\{B_{n}\right\}$ from \mathcal{R} for which $\lim _{n \rightarrow \infty} m\left(B_{n}\right)=0$.

3. σ-null-additive set function

We introduce the following generalization of the σ-additiveness.
Definition 3. Let \mathcal{R} be a σ-ring, a set function $m: \mathcal{R} \rightarrow[-\infty, \infty]$ with $m(\emptyset)=0$ is σ-null-additive if for every sequence $\left\{B_{i}\right\}$ of pairwise disjoint sets from \mathcal{R} such that $A \cap B_{i}=\emptyset$ and $m\left(B_{i}\right)=0$ we have

$$
m\left(A \cup \bigcup_{i=1}^{\infty} B_{i}\right)=m(A)
$$

Proposition 1. Let \mathcal{R} be a $\sigma-$ ring and let m be a function $m: \mathcal{R} \rightarrow[-\infty, \infty]$. The function m is $\sigma-$ null-additive if and only if m is null-additive and $m\left(B_{i}\right)=$ $0(i \in \mathbf{N})$ implies $m\left(\bigcup_{i=1}^{\infty} B_{i}\right)=0$ for a sequence $\left\{B_{i}\right\}$ of pairwise disjoint sets from \mathcal{R}.

Proof. We have for σ-null-additive set function m

$$
m\left(\bigcup_{i=1}^{\infty} B_{i}\right)=m\left(B_{1} \cup \bigcup_{i=2}^{\infty} B_{i}\right)=m\left(B_{1}\right)=0, \quad \text { where } B_{1} \cap \bigcup_{i=2}^{\infty} B_{i}=\emptyset
$$

If $m(B)=0$ for $B \in \mathcal{R}$, then taking $B_{1}=B$ and $B_{i}=\emptyset$ for $i \geq 2$ we have by Definition 3

$$
m(A \cup B)=m\left(A \cup \bigcup_{i=1}^{\infty} B_{i}\right)=m(A)
$$

for any $A \in \mathcal{R}$, i.e., m is null-additive. The inverse statement is obvious.
Proposition 2. Let \mathcal{R} be a σ-ring. If m is null-additive and continuous from below, then it is σ-null-additive.

Proof. Let $\left\{B_{i}\right\}$ be a sequence of pairwise disjoint sets from \mathcal{R} such that $A \cap B_{i}=$ $\emptyset \quad$ and $m\left(B_{i}\right)=0 \quad(i \in \mathbf{N})$. Then, since

$$
A \cup \bigcup_{i=1}^{n} B_{i} \nearrow A \cup \bigcup_{i=1}^{\infty} B_{i}
$$

we have by continuity of m

$$
\lim _{n \rightarrow \infty} m\left(A \cup \bigcup_{i=1}^{n} B_{i}\right)=m\left(A \cup \bigcup_{i=1}^{\infty} B_{i}\right)
$$

But the left part of the preceding equality by the null-additivity of m is the limit of a stationary sequence with all members equal to $m(A)$. Hence the limit is also equal to $m(A)$ and so we have

$$
m(A)=m\left(A \cup \bigcup_{i=1}^{\infty} B_{i}\right)
$$

i.e., m is σ-null-additive.

Example 1. (Decomposable measures)
We introduce an operation which generalizes the usual addition on the interval $[0,1]$.

Definition 4. A triangular conorm S (t-conorm briefly) is a function S : $[0,1]^{2} \rightarrow[0,1]$ such that
$\left(s_{1}\right) \quad S(x, y) \leq S(x, z)$ for $y \leq z \quad$ (monotonicity)
$\left(s_{2}\right) \quad S(x, y)=S(y, x) \quad$ (commutativity)
($\left.s_{3}\right) \quad S(x, S(y, z))=S(S(x, y), z) \quad$ (associativity)
$\left(s_{4}\right) \quad S(x, 0)=S(0, x)=x \quad$ (boundary condition).
Example 4. The following are the most important t-conorms

$$
S_{\mathbf{M}}(x, y)=\max (x, y), \quad S_{\mathbf{P}}(x, y)=x+y-x y
$$

the bounded sum is given by

$$
S_{\mathbf{L}}(x, y)=\min (1, x+y)
$$

and a non-continuous t-conorm

$$
S_{\mathbf{W}}(x, y)= \begin{cases}\max (x, y) & \text { if } \min (x, y)=0 \\ 1, & \text { otherwise }\end{cases}
$$

There are many other important t-conorms.
Definition 5. A set function $m, m: \mathcal{D} \rightarrow[0,1]$, is σ - S-decomposable if it satisfies $m(\emptyset)=0$ and

$$
m\left(\cup_{i=1}^{\infty} A_{i}\right)=S_{i=1}^{\infty} m\left(A_{i}\right)
$$

for every sequence $\left\{A_{i}\right\}$ from \mathcal{D} of pairwise disjoint sets such that $\cup_{i=1}^{\infty} A_{i} \in \mathcal{D}$.
We remark that $\sigma-S$-decomposable measure is always σ-null-additive .
Example 2. (k-triangular set functions)
Definition 6. A set function $m: \Sigma \rightarrow[0, \infty)$ is said to be k-triangular for $k \geq 1$ if $m(\emptyset)=0$ and

$$
m(A)-k m(B) \leq m(A \cup B) \leq m(A)+k m(B)
$$

whenever $A, B \in \Sigma, A \cap B=\emptyset$.
We remark that even for the classical signed measure μ, the set function $|\mu()$. is not monotone, but it is 1 -triangular.

Proposition 3. Let \mathcal{R} be a $\sigma-$ ring. The monotone and $\sigma-k-$ subadditive set function $m: \mathcal{R} \rightarrow[0, \infty]$ with $m(\emptyset)=0$ is $\sigma-$ null-additive.

Proof. Follows by Proposition 1 and the inequality

$$
m\left(B_{1}\right) \leq m\left(\bigcup_{i=1}^{\infty} B_{i}\right) \leq m\left(B_{1}\right)+k \sum_{i=2}^{\infty} m\left(B_{i}\right)
$$

where $\left\{B_{i}\right\}$ is a sequence of pairwise disjoint sets from \mathcal{R}, such that $m\left(B_{i}\right)=$ $0 \quad(i \in \mathbf{N})$.

4. The relation of the disjoint variation and chain variation

Definition 7. For an arbitrary but fixed subset A of X and a set function m we define the disjoint variation \bar{m} by

$$
\bar{m}(A)=\sup _{I} \sum_{i \in I}\left|m\left(D_{i}\right)\right|
$$

where the supremum is taken over all finite families $\left\{D_{i}\right\}_{i \in I}$ of pairwise disjoint sets of \mathcal{D} such that $D_{i} \subset A(i \in I)$.

Remark. If $A \in \mathcal{A}$, then we can take in the previous definition the supremum for all finite families $\left\{D_{i}\right\}_{i \in I}$ of disjoint sets such that $\bigcup_{i \in I} D_{i}=A$.

The relation of the disjoint variation with the notion of null-additivity is given in the next theorem.

Theorem 4. If a set function $m, m(\emptyset)=0$, is null-additive, then its disjoint variation \bar{m} is also null-additive.

Proof. Suppose that m is null-additive. Let $B \in \mathcal{D}$ be such that $\bar{m}(B)=0$. Then by $|m(B)| \leq \bar{m}(B)$ it follows $m(B)=0$. For an arbitrary $A \in \mathcal{D}$ such that $A \cup B \in \mathcal{D}$ and $A \cap B=\emptyset$ we have

$$
\begin{aligned}
\bar{m}(A \cup B) & =\sup \left\{\sum_{i=1}^{n}\left|m\left(D_{i}\right)\right|:\left\{D_{i}\right\} \quad \text { disjoint }\right\} \\
& =\sup \left\{\sum_{i=1}^{n}\left|m\left(\left(D_{i} \cap A\right) \cup\left(D_{i} \cap B\right)\right)\right|: \quad\left\{D_{i}\right\} \text { disjoint }\right\} \\
& =\sup \left\{\sum_{i=1}^{n}\left|m\left(D_{i} \cap A\right)\right|: \quad\left\{D_{i}\right\} \text { disjoint }\right\}=\bar{m}(A)
\end{aligned}
$$

where we have used that $\bar{m}\left(D_{i} \cap B\right)=0, \quad i=1, \ldots, n$, holds by the monotonicity of \bar{m}, which implies $m\left(D_{i} \cap B\right)=0$ and hence by null-additivity of m

$$
m\left(\left(D_{i} \cap A\right) \cup\left(D_{i} \cap B\right)\right)=m\left(D_{i} \cap A\right)
$$

Definition 8. A real-valued set function m with $m(\emptyset)=0$ is of bounded chain variation if $|m|(X)<+\infty$.

We denote the family of set functions which vanish on an empty set and with bounded chain variation on (X, Σ) by $B V$. Since for $m, v \in B V$ and $a \in \mathbf{R}$ we have
$1^{0} \quad|m|(X)=0$ if and only if $m=0 ;$
$2^{0} \quad|a m|(X)=|a| \cdot|m|(X) ;$
$3^{0}|m+v|(X) \leq|m|(X)+|v|(X)$,
the functional

$$
\|m\|=|m|(X)
$$

is a norm on the vector space $B V$.
The second type of variation of set function is given in the next definition.
Definition 9. The chain variation of a real-valued set function m with $m(\emptyset)=$ 0 on the set $A \in \mathcal{D}$ is given by

$$
\begin{gathered}
|m|(A)=\sup \left\{\sum_{i=1}^{n}\left|m\left(A_{i}\right)-m\left(A_{i-1}\right)\right|:\right. \\
\left.\emptyset=A_{0} \subset A_{1} \subset \ldots \subset A_{n}=A, \quad A_{i} \in \mathcal{D}, i=1, \ldots, n\right\}
\end{gathered}
$$

We remark that the supremum in the previous definition is taken over all chains between \emptyset and A.

There are null-additive set functions which do not belong to $B V$.
Example 5. Let $X=[-1,1]$ and Σ be a family of all Borel subsets of $[-1,1]$. Taking a measure

$$
\mu(A)=\int_{A} x d x \quad(A \in \Sigma)
$$

we have that

$$
m(A)=\sqrt{|\mu(A)|} \quad(A \in \Sigma)
$$

is a null-additive set functions. But $m \notin B V$. Namely, take a special chain

$$
\emptyset=A_{0} \subset A_{1} \subset \ldots \subset A_{2 n}
$$

with $A_{2 i-1}=\left[-\frac{i-1}{n}, \frac{i}{n}\right] \quad$ and $A_{2 i}=\left[-\frac{i}{n}, \frac{i}{n}\right]$ for $i=1,2, \ldots, n$. Then

$$
\|m\| \geq \sum_{i=1}^{2 n}\left|m\left(A_{i}\right)-m\left(A_{i-1}\right)\right|=2 \sqrt{n} \rightarrow \infty
$$

as $n \rightarrow \infty$. Hence $m \notin B V$.
There are also set functions which belong to $B V$, but which are not nulladditive.

5. Signed fuzzy measures

Σ always denotes a σ-algebra of subsets of the given set X.
Definition 10. A signed fuzzy measure (revised monotone continuous from above and below set function) $m, m: \Sigma \rightarrow[-\infty, \infty]$, is an extended real-valued set function m defined on σ-algebra Σ and with the properties:
$\left(\mathrm{SFM}_{1}\right)$

$$
m(\emptyset)=0
$$

$\left(\mathbf{S F M}_{2}\right)$ if $\quad E, F \in \Sigma, E \cap F=\emptyset$, then
(a) $m(E) \geq 0, \quad m(F) \geq 0, \quad \max (m(E), m(F))>0$ implies

$$
m(E \cup F) \geq \max (m(E), m(F))
$$

(b) $m(E) \leq 0, \quad m(F) \leq 0, \quad \min (m(E), m(F))<0$ implies

$$
m(E \cup F) \leq \min (m(E), m(F))
$$

(c) $m(E)>0, m(F)<0$ implies $m(E) \geq m(E \cup F) \geq m(F)$.
$\left(\mathbf{S F M}_{3}\right) \quad\left(E_{1} \subset E_{2} \subset \ldots \quad, E_{n} \in \Sigma \Rightarrow m\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)\right.$;
$\left(\mathbf{S F M}_{4}\right) \quad\left(E_{1} \supset E_{2} \supset \ldots \quad, E_{n} \in \Sigma\right.$, there exists $n_{0} \in \mathbf{N},\left|m\left(E_{n_{0}}\right)\right|<$ $\infty) \Rightarrow m\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$.

The property $\left(\mathbf{S F M}_{\mathbf{2}}\right)$ of m is called the revised monotonicity.
Example 6. Any non-negative signed fuzzy measure is a usual fuzzy measure. Namely, the condition $\left(\mathbf{S F M}_{\mathbf{2}}\right)$, (a) implies the monotonicity of m. But also each fuzzy measure is a signed fuzzy measure.

Example 7. The classical signed measure is a signed fuzzy measure.
Definition 11. A set $A \subset X$ is called a positive set (resp. negative set) for signed fuzzy measure m on (Σ, X) if for every subset E of A which belongs to Σ we have $m(E) \geq 0$ (resp. $m(E) \leq 0$).

We have the following Hahn decomposition type theorem.
Theorem 5. Let m be a null-additive revised monotone set function on (Σ, X), which is continuous from above and from below (i.e., a null-additive signed fuzzy measure). If m takes at most one of the values $-\infty$ or $+\infty$, and if

$$
E \in \Sigma, \quad|m(E)|<+\infty \Rightarrow|m(F)|<+\infty(F \subset E, F \in \Sigma)
$$

then there exist two disjoint sets A and B from Σ such that $A \cup B=X$ and A is a positive set and B is a negative set.

In this section we shall suppose, without loss of generality, that the signed fuzzy measure m satisfies the condition

$$
-\infty<m(E) \leq+\infty \quad(E \in \Sigma)
$$

Now we can prove the following version of the Jordan decomposition theorem
Theorem 6. Let m be a null-additive signed fuzzy measure. Then there exist uniquely determined null-additive fuzzy measures m^{+}and m^{-}such that

$$
m^{+} \geq m \geq-m^{-}
$$

Moreover, if m has a representation in the form

$$
m=v_{1}-v_{2}
$$

where v_{1} and v_{2} are null-additive fuzzy measures, then $v_{1} \geq m^{+}$and $v_{2} \geq m^{-}$.

6. Lebesgue Decomposition Theorem

Let m and v be two non-negative monotone set functions defined on a ring \mathcal{R}.

Definition 12. Let m and v be two finite monotone set functions. If $E \in$ $\mathcal{R}, v(E)=0$ implies $m(E)=0$, then we say that m is absolutely continuous with respect to v.

Definition 13. Let m and v be two finite monotone set functions. If for every $\epsilon>0$ there is a $\delta>0$ such that $E \in \mathcal{R}, v(E)<\delta$ implies $m(E)<\epsilon$, then we say that m is absolutely ϵ-continuous with respect to v.

Theorem 7. Let m and v be two finite monotone set functions defined on a $\sigma-$ ring \mathcal{R} such that they are continuous from above and continuous from below. If v is autocontinuous from above, then m is absolutely continuous with respect to v if and only if m is absolutely ϵ-continuous with respect to v.

Definition 14. Let m and v be two finite monotone set functions defined on \mathcal{R}. The monotone set function m is called singular with respect to v, denoted by $m \perp v$, if there exists a set A from \mathcal{R} such that

$$
m(E \backslash A)=v(E)=0 \quad(E \in \mathcal{R})
$$

Remark 1. We have that if for null-additive monotone set functions m and v, which are continuous from above and continuous from below, $m \perp v$ holds, then we have $v \perp m$, too.

Now we have the following theorem of Lebesgue decomposition type for continuous null-additive monotone set functions.

Theorem 8. Let m and v be two finite null-additive monotone continuous set functions on $\sigma-\operatorname{ring} \mathcal{R}$. Then there exist two null-additive monotone set functions m_{c} and m_{s} such that $m_{c}(E)=m(E \backslash A)$ and $m_{s}(E)=m(E \cap A)$ for a set $A \in \mathcal{R}$ and m_{c} is absolutely continuous with respect to v and m_{s} is singular with respect to v.

We will use now the ideal approach. Let \mathcal{R} be a ring and m a function from \mathcal{R} into $[0, \infty]$. We do not suppose the monotonicity of m. We write

$$
\mathcal{N}(m)=\{A \in \mathcal{R}: \quad m(A \cap Y)=0, \forall Y \in \mathcal{R}\}
$$

Theorem 9. Let \mathcal{R} be a ring. If $m: \mathcal{R} \rightarrow[0, \infty]$ is null-additive set function then the set $\mathcal{N}(m)$ is an ideal in \mathcal{R}.

Proof. By the definition we have for $B \in \mathcal{R}$ and $A \in \mathcal{N}(m)$ such that $B \subset A$ that $m(B)=0$, i.e., $B \in \mathcal{N}(m)$.

For $A_{1}, A_{2} \in \mathcal{N}(m)$ and for arbitrary but fixed subset B of $A_{1} \cup A_{2}$ which belongs to \mathcal{R} we have $B \backslash A_{1}$ and $B \cap A_{1}$, and so

$$
m\left(B \backslash A_{1}\right)=m\left(B \cap A_{1}\right)=0
$$

Hence, since $B \backslash A_{1}$ and $B \cap A_{1}$ are disjoint sets and m is null-additive,

$$
m(B)=m\left(\left(B \backslash A_{1}\right) \cup\left(B \cap A_{1}\right)\right)=0
$$

i.e. $A_{1} \cup A_{2} \in \mathcal{N}(m)$.

Corollary 1. Let \mathcal{R} be a σ-ring. If $m: \mathcal{R} \rightarrow[0, \infty]$ is σ-null-additive then the set $\mathcal{N}(m)$ is a σ-ideal of \mathcal{R}.

Definition 15. Let \mathcal{R} be a ring and \mathcal{M} a subset of \mathcal{R}. \mathcal{M} is said to satisfy the countable chain condition (CCC) if every disjoint subset (consisting of disjoint sets from \mathcal{M}) of $\mathcal{M} \backslash\{\emptyset\}$ is at most countable. Let m be a function from \mathcal{R} into $[0, \infty], m$ is said to satisfies the $(C C C)$ if $\mathcal{R} \backslash \mathcal{N}(m)$ satisfy the (CCC).

Definition 16. Let \mathcal{R} be a ring and let m and v be two functions from \mathcal{R} into $[0, \infty]$. We say that m is v-continuous if $\mathcal{N}(v) \subset \mathcal{N}(m)$. We say that m is v-singular if there exists an element $A \in \mathcal{N}(\mu)$ such that $T \backslash A \in \mathcal{N}(m)$ for every T in \mathcal{R}.

Theorem 10. Let \mathcal{R} be a $\sigma-$ ring, m a null-additive set function, and v a finite σ-null-additive set function from \mathcal{R} into $[0,+\infty]$. If $\mathcal{N}(m) \backslash \mathcal{N}(v)$ satisfies (CCC) then there exists $A \in \mathcal{N}(v)$ such that null-additive set functions

$$
m_{1}: Y \in \mathcal{R} \rightarrow m(Y \backslash A), \quad m_{2}: Y \in \mathcal{R} \rightarrow m(Y \cap A)
$$

are, respectively, v-continuous and v-singular.

Corollary 2. Let \mathcal{R} be a σ-ring, \oplus a pseudo-addition. Let m be $a \oplus$-decomposable measure on \mathcal{R} and v a σ-null-additive and exhaustive function on \mathcal{R}. Then m can be uniquely represented as the \oplus-sum of two \oplus-decomposable functions m_{1} and m_{2} such that m_{1} is v-continuous and m_{2} is v-singular. Moreover m_{2} is $m_{1}-$ singular.

Remark 2. The main point in Corollary 2 is the possibility of supposition of $\sigma-\oplus$-decomposability of v (which implies σ-null-additivity) without order continuity. In this way it can be considered also the possibility measure, i.e. the set function $\pi: \mathcal{R} \rightarrow[0,1]$ which satisfies

$$
\pi(A \cup B)=\pi(A) \vee \pi(B)
$$

for $A, B \in \mathcal{R}$ such that $A \cap B=\emptyset$, which in general does not be order continuous although it is $\sigma-\vee$-decomposable.

References

[1] Choquet, G.,Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1953-1954), 131-292.
[2] de Lucia, P., Pap, E', Lebesgue decomposition by σ-null-additive set functions, Rend. del Circolo Met. di Palermo 45 (1996), 25-36.
[3] Dobrakov, I., On submeasures - I, Dissertationes Math., 112, Warszawa, 1974.
[4] Drewnowski, L., Topological rings of sets, continuous set functions, integration, I,II,III, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 20 (1972), 269-276, 277-286, 439-445.
[5] Drewnowski, L., On the continuity of certain non-additive set functions, Colloquium Math. 38 (1978), 243-253.
[6] Dubois, D., Prade, M., A class of fuzzy measures based on triangular norms, Internat. J. Gen. System 8 (1982), 43-61.
[7] de Lucia, P., Dvurečenskij, A., Pap, E., On a decomposition theorem and its applications, Math. Japonica 44 (1996), 145-164.
[8] Ichihashi, H., Tanaka, M., Asai, K., Fuzzy Integrals Based on Pseudo-Additions and Multiplications, J. Math. Anal. Appl. 130 (1988), 354-364.
[9] Jiao, B., Hahn decomposition theorem for signed fuzzy measure, Ph.D. Thesis, Hebei University, 1992.
[10] Murofushi, T., Sugeno, M., Pseudo - additive measures and integrals, J. Math. Anal. Appl. 122 (1987), 197-222.
[11] Pap, E., Lebesgue and Saks decompositions of \perp - decomposable measures, Fuzzy Sets and Systems 38 (1990), 345-353.
[12] Pap, E., Extension of the continuous t-conorm decomposable measure, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20,2 (1990), 121-130.
[13] Pap, E., On non-additive set functions, Atti. Sem. Mat. Fis. Univ. Modena 39 (1991), 345-360.
[14] Pap, E., The range of null-additive fuzzy and non-fuzzy measures, Fuzzy Sets and Systems 65 (1994), 105-115.
[15] Pap, E., Null-Additive Set Functions, Kluwer, Dordrecht, Ister Science, Bratislava, 1995.
[16] Pap, E., Lebesgue decomposition of null-additive set functions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (to appear).
[17] Pap, E., The Jordan decomposition of the null-additive signed fuzzy measures, NSJOM 30, 1 (2002), 1-7.
[18] Sugeno, M., Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, 1974.
[19] Suzuki, H., On fuzzy measures defined by fuzzy integrals, J. Math. Anal. Appl. 132 (1988), 87-101.
[20] Suzuki, H., Atoms of fuzzy measures and fuzzy integrals, Fuzzy Sets and Systems 41 (1991), 329-342.
[21] Xiucheng, L., Hahn decomposition theorem for infinite signed fuzzy measure, Fuzzy Sets and Systems 57 (1993), 377-380.
[22] Wang, Z., The Autocontinuity of Set Function and the Fuzzy Integral, J. Math. Anal. Appl. 99 (1984).
[23] Wang, Z., On the null-additivity and the autocontinuity of a fuzzy measure, Fuzzy Sets and Systems 45 (1992), 223-226.
[24] Wang, Z., Klir, G., Fuzzy measures, Plenum Press, New York, 1992.

Received by the editors February 26, 1996.

[^0]: ${ }^{1}$ Institute of Mathematics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia

