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σ-NULL-ADDITIVE SET FUNCTIONS

Endre Pap1

Abstract. There is introduced the notion of σ-null-additive set function
as a generalization of the classical measure. There are proved the relations
to disjoint and chain variations. The general Lebesgue decomposition the-
orem is obtained.
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1. Introduction

We introduce in this paper the notion of σ-null-additive set functions as a
generalization of the notion of the classical measure. This class of set functions is
a subclass of general class of non-additive set functions the class of null-additive
set functions. We prove some general properties of σ–null-additive set functions.
We investigate the relation with the disjoint variation and chain variation and
prove a general Lebesgue decomposition theorem.

2. Basic definitions

We have now the definition of the main notion in this article.

Definition 1. A set function m, m : D → [−∞,∞], is called null-additive, if
we have

m(A ∪B) = m(A)

whenever A,B ∈ D, A ∩B = ∅, and m(B) = 0.

It is obvious that for null-additive set function m we have m(∅) = 0 whenever
there exists B ∈ D such that m(B) = 0. We shall always suppose that m(∅) = 0,
if otherwise is not explicitly stated.

In the next section we present a number of important examples of σ–null-
additive set functions.

We give two simple examples of set functions.

Example 1. Let m(A) 6= 0 whenever A ∈ Σ, A 6= ∅. Then m is null-additive.
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Example 2. Let X = {x, y} and define m in the following way:

m(X) = 1 and m(A) = 0 for A 6= X.

Then m is not null-additive.

We have some obvious properties of null-additive set functions.

Theorem 1. Let m be a positive monotone set function defined on a ring R.
Then the following statements are equivalent:

(1) m is null-additive.

(2) If E ∈ R, F ∈ R,m(F ) = 0, then m(E ∪ F ) = m(E).

(3) If E ∈ R, F ∈ R, F ⊂ E and m(F ) = 0, then m(E \ F ) = m(E).

(4) If E ∈ R, F ∈ R,m(F ) = 0, then m(E \ F ) = m(F ).

(5) If E ∈ R, F ∈ R,m(F ) = 0, then m(E∆F ) = m(F ).

Now we have an example of null-additive non-monotone set function.

Example 3. Let m : Σ → [0, 1] be defined by

m(A) =
{

2µ(A), if µ(A) ≤ 1
2 ,

−2µ(A) + 2 if µ(A) ≥ 1
2 ,

where µ, µ : Σ → [0, 1], is a σ-additive measure. Then m is null-additive and
not monotone, but it is continuous from above and from below.

We can introduce a more general class of set functions.

Definition 2. A set function m, m : D → [−∞,∞], is called supernull-additive,
if we have

m(A ∪B) ≥ m(A)

whenever A,B ∈ D, A ∩B = ∅, and m(B) = 0.

The class of supernull-additive set functions includes all null-additive set func-
tions, all monotone set functions (defined on a ring) and all superadditive set
functions.

Theorem 2. Let m be a null-additive, positive, monotone and continuous from
above set function defined on Σ. If A ∈ Σ, then

m(A ∪Bn) → m(A)

for any decreasing sequence {Bn} from Σ for which m(Bn) → 0 and there exists
at least one n0 such that m(A ∪Bn0) < ∞ as m(A) < ∞.

Theorem 3. Let m be a null-additive, positive, monotone and continuous set
function on Σ. If A ∈ Σ, then we have

m(A \Bn) → m(A)

for any decreasing sequence {Bn} from R for which limn→∞m(Bn) = 0.
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3. σ-null-additive set function

We introduce the following generalization of the σ−additiveness.

Definition 3. Let R be a σ−ring, a set function m : R → [−∞,∞] with
m(∅) = 0 is σ−null-additive if for every sequence {Bi} of pairwise disjoint sets
from R such that A ∩Bi = ∅ and m(Bi) = 0 we have

m(A ∪
∞⋃

i=1

Bi) = m(A).

Proposition 1. Let R be a σ−ring and let m be a function m : R → [−∞,∞].
The function m is σ−null-additive if and only if m is null-additive and m(Bi) =
0 (i ∈ N) implies m(

⋃∞
i=1 Bi) = 0 for a sequence {Bi} of pairwise disjoint sets

from R.

Proof. We have for σ−null-additive set function m

m(
∞⋃

i=1

Bi) = m(B1 ∪
∞⋃

i=2

Bi) = m(B1) = 0, where B1 ∩
∞⋃

i=2

Bi = ∅.

If m(B) = 0 for B ∈ R, then taking B1 = B and Bi = ∅ for i ≥ 2 we have by
Definition 3

m(A ∪B) = m(A ∪
∞⋃

i=1

Bi) = m(A)

for any A ∈ R, i.e., m is null-additive. The inverse statement is obvious. 2

Proposition 2. Let R be a σ−ring. If m is null - additive and continuous from
below, then it is σ−null-additive.

Proof. Let {Bi} be a sequence of pairwise disjoint sets fromR such that A∩Bi =
∅ and m(Bi) = 0 (i ∈ N). Then, since

A ∪
n⋃

i=1

Bi ↗ A ∪
∞⋃

i=1

Bi,

we have by continuity of m

lim
n→∞

m(A ∪
n⋃

i=1

Bi) = m(A ∪
∞⋃

i=1

Bi).

But the left part of the preceding equality by the null-additivity of m is the
limit of a stationary sequence with all members equal to m(A). Hence the limit
is also equal to m(A) and so we have

m(A) = m(A ∪
∞⋃

i=1

Bi),

i.e., m is σ−null-additive. 2
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Example 1. (Decomposable measures)

We introduce an operation which generalizes the usual addition on the in-
terval [0, 1].

Definition 4. A triangular conorm S (t−conorm briefly) is a function S :
[0, 1]2 → [0, 1] such that

(s1) S(x, y) ≤ S(x, z) for y ≤ z (monotonicity)

(s2) S(x, y) = S(y, x) (commutativity)

(s3) S(x, S(y, z)) = S(S(x, y), z) (associativity)

(s4) S(x, 0) = S(0, x) = x (boundary condition).

Example 4. The following are the most important t-conorms

SM(x, y) = max(x, y), SP(x, y) = x + y − xy,

the bounded sum is given by

SL(x, y) = min(1, x + y),

and a non-continuous t−conorm

SW(x, y) =
{

max(x, y) if min(x, y) = 0,
1, otherwise.

There are many other important t−conorms.

Definition 5. A set function m,m : D → [0, 1], is σ-S-decomposable if it sat-
isfies m(∅) = 0 and

m(∪∞i=1Ai) = S∞i=1m(Ai)

for every sequence {Ai} from D of pairwise disjoint sets such that ∪∞i=1Ai ∈ D.

We remark that σ − S−decomposable measure is always σ−null-additive .

Example 2. (k−triangular set functions)

Definition 6. A set function m : Σ → [0,∞) is said to be k-triangular for
k ≥ 1 if m(∅) = 0 and

m(A)− km(B) ≤ m(A ∪B) ≤ m(A) + km(B),

whenever A,B ∈ Σ, A ∩B = ∅.
We remark that even for the classical signed measure µ, the set function |µ( . )|
is not monotone, but it is 1-triangular.
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Proposition 3. Let R be a σ−ring. The monotone and σ − k−subadditive set
function m : R→ [0,∞] with m(∅) = 0 is σ−null-additive.

Proof. Follows by Proposition 1 and the inequality

m(B1) ≤ m(
∞⋃

i=1

Bi) ≤ m(B1) + k

∞∑

i=2

m(Bi),

where {Bi} is a sequence of pairwise disjoint sets from R, such that m(Bi) =
0 (i ∈ N). 2

4. The relation of the disjoint variation and chain variation

Definition 7. For an arbitrary but fixed subset A of X and a set function m
we define the disjoint variation m by

m(A) = sup
I

∑

i∈I

| m(Di) |,

where the supremum is taken over all finite families {Di}i∈I of pairwise disjoint
sets of D such that Di ⊂ A (i ∈ I).

Remark. If A ∈ A, then we can take in the previous definition the supremum
for all finite families {Di}i∈I of disjoint sets such that

⋃
i∈I

Di = A.

The relation of the disjoint variation with the notion of null-additivity is
given in the next theorem.

Theorem 4. If a set function m, m(∅) = 0, is null-additive, then its disjoint
variation m is also null-additive.

Proof. Suppose that m is null-additive. Let B ∈ D be such that m(B) = 0.
Then by | m(B) |≤ m(B) it follows m(B) = 0. For an arbitrary A ∈ D such
that A ∪B ∈ D and A ∩B = ∅ we have

m(A ∪B) = sup{
n∑

i=1

| m(Di) |: {Di} disjoint}

= sup{
n∑

i=1

| m((Di ∩A) ∪ (Di ∩B)) |: {Di} disjoint}

= sup{
n∑

i=1

| m(Di ∩A) |: {Di} disjoint } = m(A),

where we have used that m(Di∩B) = 0, i = 1, ..., n, holds by the monotonicity
of m, which implies m(Di ∩B) = 0 and hence by null-additivity of m

m((Di ∩A) ∪ (Di ∩B)) = m(Di ∩A). 2
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Definition 8. A real-valued set function m with m(∅) = 0 is of bounded chain
variation if | m | (X) < +∞ .

We denote the family of set functions which vanish on an empty set and
with bounded chain variation on (X, Σ) by BV. Since for m, v ∈ BV and a ∈ R
we have

10 | m | (X) = 0 if and only if m = 0;

20 | am | (X) =| a | · | m | (X);

30 | m + v | (X) ≤ | m | (X)+ | v | (X),

the functional
‖m‖ =| m | (X)

is a norm on the vector space BV.
The second type of variation of set function is given in the next definition.

Definition 9. The chain variation of a real-valued set function m with m(∅) =
0 on the set A ∈ D is given by

| m | (A) = sup{
n∑

i=1

| m(Ai)−m(Ai−1) |:

∅ = A0 ⊂ A1 ⊂ ... ⊂ An = A, Ai ∈ D, i = 1, ..., n}
We remark that the supremum in the previous definition is taken over all

chains between ∅ and A.
There are null-additive set functions which do not belong to BV.

Example 5. Let X = [−1, 1] and Σ be a family of all Borel subsets of [−1, 1].
Taking a measure

µ(A) =
∫

A

x dx (A ∈ Σ),

we have that
m(A) =

√
| µ(A) | (A ∈ Σ)

is a null-additive set functions. But m 6∈ BV. Namely, take a special chain

∅ = A0 ⊂ A1 ⊂ ... ⊂ A2n,

with A2i−1 = [− i−1
n , i

n ] and A2i = [− i
n , i

n ] for i = 1, 2, ..., n. Then

‖m‖ ≥
2n∑

i=1

| m(Ai)−m(Ai−1) |= 2
√

n →∞

as n →∞. Hence m 6∈ BV.

There are also set functions which belong to BV, but which are not null-
additive.
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5. Signed fuzzy measures

Σ always denotes a σ-algebra of subsets of the given set X.

Definition 10. A signed fuzzy measure (revised monotone continuous from
above and below set function) m, m : Σ → [−∞,∞], is an extended real-valued
set function m defined on σ-algebra Σ and with the properties:

(SFM1) m(∅) = 0;

(SFM2) if E,F ∈ Σ, E ∩ F = ∅, then

(a) m(E) ≥ 0, m(F ) ≥ 0, max(m(E),m(F )) > 0 implies

m(E ∪ F ) ≥ max(m(E),m(F ));

(b) m(E) ≤ 0, m(F ) ≤ 0, min(m(E), m(F )) < 0 implies

m(E ∪ F ) ≤ min(m(E),m(F ));

(c) m(E) > 0, m(F ) < 0 implies m(E) ≥ m(E ∪ F ) ≥ m(F ).

(SFM3) (E1 ⊂ E2 ⊂ ... , En ∈ Σ ⇒ m(
⋃∞

n=1 En) = limn→∞m(En);

(SFM4) (E1 ⊃ E2 ⊃ ... , En ∈ Σ, there exists n0 ∈ N, |m(En0)| <
∞) ⇒ m(

⋂∞
n=1 En) = limn→∞m(En).

The property (SFM2) of m is called the revised monotonicity.

Example 6. Any non-negative signed fuzzy measure is a usual fuzzy measure.
Namely, the condition (SFM2), (a) implies the monotonicity of m. But also
each fuzzy measure is a signed fuzzy measure.

Example 7. The classical signed measure is a signed fuzzy measure.

Definition 11. A set A ⊂ X is called a positive set (resp. negative set) for
signed fuzzy measure m on (Σ, X) if for every subset E of A which belongs to
Σ we have m(E) ≥ 0 (resp. m(E) ≤ 0).

We have the following Hahn decomposition type theorem.

Theorem 5. Let m be a null-additive revised monotone set function on (Σ, X),
which is continuous from above and from below (i.e., a null-additive signed fuzzy
measure). If m takes at most one of the values −∞ or +∞, and if

E ∈ Σ, |m(E)| < +∞ ⇒ |m(F )| < +∞ (F ⊂ E, F ∈ Σ),

then there exist two disjoint sets A and B from Σ such that A ∪B = X and A
is a positive set and B is a negative set.
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In this section we shall suppose, without loss of generality, that the signed
fuzzy measure m satisfies the condition

−∞ < m(E) ≤ +∞ (E ∈ Σ).

Now we can prove the following version of the Jordan decomposition theorem

Theorem 6. Let m be a null-additive signed fuzzy measure. Then there exist
uniquely determined null-additive fuzzy measures m+ and m− such that

m+ ≥ m ≥ −m−.

Moreover, if m has a representation in the form

m = v1 − v2,

where v1 and v2 are null-additive fuzzy measures, then v1 ≥ m+ and v2 ≥ m−.

6. Lebesgue Decomposition Theorem

Let m and v be two non-negative monotone set functions defined on a ring
R.

Definition 12. Let m and v be two finite monotone set functions. If E ∈
R, v(E) = 0 implies m(E) = 0, then we say that m is absolutely continuous
with respect to v.

Definition 13. Let m and v be two finite monotone set functions. If for every
ε > 0 there is a δ > 0 such that E ∈ R, v(E) < δ implies m(E) < ε, then we
say that m is absolutely ε−continuous with respect to v.

Theorem 7. Let m and v be two finite monotone set functions defined on a
σ−ring R such that they are continuous from above and continuous from below.
If v is autocontinuous from above, then m is absolutely continuous with respect
to v if and only if m is absolutely ε−continuous with respect to v.

Definition 14. Let m and v be two finite monotone set functions defined on
R. The monotone set function m is called singular with respect to v, denoted by
m⊥v, if there exists a set A from R such that

m(E \A) = v(E) = 0 (E ∈ R).

Remark 1. We have that if for null-additive monotone set functions m and v,
which are continuous from above and continuous from below, m⊥v holds, then
we have v⊥m, too.

Now we have the following theorem of Lebesgue decomposition type for contin-
uous null-additive monotone set functions.
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Theorem 8. Let m and v be two finite null-additive monotone continuous set
functions on σ−ring R. Then there exist two null-additive monotone set func-
tions mc and ms such that mc(E) = m(E \ A) and ms(E) = m(E ∩ A) for a
set A ∈ R and mc is absolutely continuous with respect to v and ms is singular
with respect to v.

We will use now the ideal approach. Let R be a ring and m a function from
R into [0,∞]. We do not suppose the monotonicity of m. We write

N (m) = {A ∈ R : m(A ∩ Y ) = 0, ∀Y ∈ R}.

Theorem 9. Let R be a ring. If m : R → [0,∞] is null-additive set function
then the set N (m) is an ideal in R.

Proof. By the definition we have for B ∈ R and A ∈ N (m) such that B ⊂ A
that m(B) = 0, i.e., B ∈ N (m).

For A1, A2 ∈ N (m) and for arbitrary but fixed subset B of A1 ∪ A2 which
belongs to R we have B \A1 and B ∩A1, and so

m(B \A1) = m(B ∩A1) = 0.

Hence, since B \A1 and B ∩A1 are disjoint sets and m is null-additive,

m(B) = m((B \A1) ∪ (B ∩A1)) = 0,

i.e. A1 ∪A2 ∈ N (m). 2

Corollary 1. Let R be a σ−ring. If m : R → [0,∞] is σ−null-additive then
the set N (m) is a σ−ideal of R.

Definition 15. Let R be a ring and M a subset of R. M is said to satisfy the
countable chain condition (CCC) if every disjoint subset (consisting of disjoint
sets from M) of M\{∅} is at most countable. Let m be a function from R into
[0,∞], m is said to satisfies the (CCC) if R \N (m) satisfy the (CCC).

Definition 16. Let R be a ring and let m and v be two functions from R into
[0,∞]. We say that m is v−continuous if N (v) ⊂ N (m). We say that m is
v−singular if there exists an element A ∈ N (µ) such that T \ A ∈ N (m) for
every T in R.

Theorem 10. Let R be a σ−ring, m a null-additive set function, and v a finite
σ-null-additive set function from R into [0,+∞]. If N (m)\N (v) satisfies (CCC)
then there exists A ∈ N (v) such that null-additive set functions

m1 : Y ∈ R → m(Y \A), m2 : Y ∈ R → m(Y ∩A)

are, respectively, v−continuous and v−singular.
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Corollary 2. Let R be a σ−ring , ⊕ a pseudo-addition. Let m be a ⊕−decom-
posable measure on R and v a σ−null-additive and exhaustive function on R.
Then m can be uniquely represented as the ⊕−sum of two ⊕−decomposable
functions m1 and m2 such that m1 is v−continuous and m2 is v−singular.
Moreover m2 is m1−singular.

Remark 2. The main point in Corollary 2 is the possibility of supposition of
σ − ⊕−decomposability of v (which implies σ−null-additivity) without order
continuity. In this way it can be considered also the possibility measure, i.e. the
set function π : R → [0, 1] which satisfies

π(A ∪B) = π(A) ∨ π(B)

for A,B ∈ R such that A∩B = ∅, which in general does not be order continuous
although it is σ − ∨−decomposable.
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