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o-NULL-ADDITIVE SET FUNCTIONS
Endre Pap!

Abstract. There is introduced the notion of o-null-additive set function
as a generalization of the classical measure. There are proved the relations
to disjoint and chain variations. The general Lebesgue decomposition the-
orem is obtained.
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1. Introduction

We introduce in this paper the notion of o-null-additive set functions as a
generalization of the notion of the classical measure. This class of set functions is
a subclass of general class of non-additive set functions the class of null-additive
set functions. We prove some general properties of c—null-additive set functions.
We investigate the relation with the disjoint variation and chain variation and
prove a general Lebesgue decomposition theorem.

2. Basic definitions
We have now the definition of the main notion in this article.

Definition 1. A set function m, m : D — [—o00, 0], is called null-additive, if
we have

m(AU B) =m(A)
whenever A,B €D, ANB =10, and m(B) = 0.

It is obvious that for null-additive set function m we have m(f)) = 0 whenever
there exists B € D such that m(B) = 0. We shall always suppose that m(f)) = 0,
if otherwise is not explicitly stated.

In the next section we present a number of important examples of o—null-
additive set functions.

We give two simple examples of set functions.

Example 1. Let m(A) # 0 whenever A € 3, A # (). Then m is null-additive.
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Example 2. Let X = {z,y} and define m in the following way:
m(X)=1 and m(A)=0 for A#X.

Then m is not null-additive.

We have some obvious properties of null-additive set functions.

Theorem 1. Let m be a positive monotone set function defined on a ring R.
Then the following statements are equivalent:

(1) m is null-additive.
(2) IfE€R,F eR,m(F)=0, then m(EUF)=m(E).
(3)IfE€R,FeR,FCE andm(F) =0, then m(E\ F) =m(E).
(4) IfEc€R,FeR,m(F)=0, then m(E\ F)=m(F).
(5) IfE€R,FeR,m(F)=0, then m( EAF) = m(F).
Now we have an example of null-additive non-monotone set function.
Example 3. Let m : 3 — [0,1] be defined by
. <1
= {20 TS

where p,p : ¥ — [0,1], is a o-additive measure. Then m is null-additive and
not monotone, but it is continuous from above and from below.

We can introduce a more general class of set functions.

Definition 2. A set functionm, m : D — [—00, 0], is called supernull-additive,
if we have
m(AU B) > m(A)

whenever A,B €D, ANB =1, and m(B) = 0.

The class of supernull-additive set functions includes all null-additive set func-
tions, all monotone set functions (defined on a ring) and all superadditive set
functions.

Theorem 2. Let m be a null-additive, positive, monotone and continuous from
above set function defined on X. If A € 3, then

m(AU B,) — m(A)

for any decreasing sequence { By} from ¥ for which m(B,,) — 0 and there exists
at least one ny such that m(A U By,) < 0o as m(A) < 0.

Theorem 3. Let m be a null-additive, positive, monotone and continuous set
function on X. If A € X, then we have

m(A\ By) — m(A)

for any decreasing sequence {By} from R for which lim,_ . m(B,) = 0.
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3. o-null-additive set function
We introduce the following generalization of the o—additiveness.

Definition 3. Let R be a o—ring, a set function m : R — [—o00,00] with
m(0) = 0 is o—null-additive if for every sequence {B;} of pairwise disjoint sets
from R such that AN B; =0 and m(B;) = 0 we have

m(AU | B;) = m(A).
i=1

Proposition 1. Let R be a c—ring and let m be a function m : R — [—o00, 00].
The function m is o —null-additive if and only if m is null-additive and m(B;) =
0 (i € N) implies m({;2, Bi) = 0 for a sequence {B;} of pairwise disjoint sets
from R.

Proof. We have for o—null-additive set function m

m(| ) Bi) =m(By U B;) =m(B1) =0, where Byn| B =0.
1=1

1=2 =2

If m(B) =0 for B € R, then taking B; = B and B; = () for i > 2 we have by
Definition 3

m(AUB) =m(AU G B;) =m(A)
i=1

for any A € R, i.e., m is null-additive. The inverse statement is obvious. O

Proposition 2. Let R be a o—ring. If m is null - additive and continuous from
below, then it is o—null-additive.

Proof. Let { B;} be a sequence of pairwise disjoint sets from R such that ANB; =
f  and m(B;) =0 (¢ € N). Then, since

AulJB; ~aul B,
i=1 i=1
we have by continuity of m
lim m(AU | ) B;) =m(AU | B)).
i=1

n—oo ;
i=1

But the left part of the preceding equality by the null-additivity of m is the
limit of a stationary sequence with all members equal to m(A). Hence the limit
is also equal to m(A) and so we have

Mm:mMUU&%

i.e., m is o—null-additive. O
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Example 1. (Decomposable measures)
We introduce an operation which generalizes the usual addition on the in-
terval [0, 1].

Definition 4. A triangular conorm S (t—conorm briefly) is a function S :
[0,1]% — [0,1] such that

(s1)  S(w,y) < S(x,2) fory <z (monotonicity)
(s2)  S(z,y) = S(y,z) (commutativity)

(s3)  S(z,S(y,2)) = S(S(z,y), ) (associativity)

(s1) S(z,0)=5(0,z) == (boundary condition).

Example 4. The following are the most important t-conorms
Sm(z,y) = max(z,y),  Se(z,y) =z +y—uwy,
the bounded sum is given by
SL(z,y) = min(1, z + y),
and a non-continuous t—conorm

| max(x,y) if min(z,y) =0,
Swz,y) = { 1, otherwise.
There are many other important t—conorms.
Definition 5. A set function m,m : D — [0, 1], is 0-S-decomposable if it sat-
isfies m(0) = 0 and
m(UZ1A;) = SZim(Ay)

for every sequence {A;} from D of pairwise disjoint sets such that U2, A; € D.

We remark that ¢ — S—decomposable measure is always o—null-additive .

Example 2. (k—triangular set functions)

Definition 6. A set function m : ¥ — [0,00) is said to be k-triangular for
k>14if m(@) =0 and

m(A) — km(B) < m(AU B) <m(A) + km(B),
whenever A,B € X, AN B = 0.

We remark that even for the classical signed measure p, the set function |p( . )
is not monotone, but it is 1-triangular.
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Proposition 3. Let R be a o—ring. The monotone and o — k—subadditive set
function m : R — [0, c0] with m(0) = 0 is o—null-additive.

Proof. Follows by Proposition 1 and the inequality

oo oo

m(By) <m(| ) Bi) <m(B1) + kY m(By),
=1 =2

where {B;} is a sequence of pairwise disjoint sets from R, such that m(B;)
0 (ieN).

ol

4. The relation of the disjoint variation and chain variation

Definition 7. For an arbitrary but fized subset A of X and a set function m
we define the disjoint variation m by

m(4) =supd_ | m(Dy) |

i€l

where the supremum is taken over all finite families {D; }icr of pairwise disjoint
sets of D such that D; C A (i € I).

Remark. If A € A, then we can take in the previous definition the supremum

for all finite families {D;};c; of disjoint sets such that |J D; = A.
i€l
The relation of the disjoint variation with the notion of null-additivity is
given in the next theorem.

Theorem 4. If a set function m, m(0) = 0, is null-additive, then its disjoint
variation m s also null-additive.

Proof. Suppose that m is null-additive. Let B € D be such that m(B) = 0.
Then by | m(B) |< m(B) it follows m(B) = 0. For an arbitrary A € D such
that AUB € D and AN B = we have

m(AUB) = sup{Z|m(Di)|: {D;} disjoint}

= sup{z | m((D;NA)U(D; N B)) |- {D;} disjoint}
i=1

= sup{z | m(D;NA)|: {D;} disjoint } =m(A),

i=1

where we have used that m(D;NB) =0, i =1,...,n, holds by the monotonicity
of m, which implies m(D; N B) = 0 and hence by null-additivity of m

m((D; N A) U (D; N B)) = m(D; N A). 0
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Definition 8. A real-valued set function m with m(0) = 0 is of bounded chain
variation if | m | (X) < +oo .

We denote the family of set functions which vanish on an empty set and
with bounded chain variation on (X, X) by BV. Since for m,v € BV and a € R
we have

19 | m | (X) =0 if and only if m = 0;
2° Jam | (X)=[a|-|m|(X);
3 Im+v|(X) < |[m|X)+]|v]|(X),

the functional
[m|| =[m | (X)

is a norm on the vector space BV.
The second type of variation of set function is given in the next definition.

Definition 9. The chain variation of a real-valued set function m with m(Q) =
0 on the set A € D is given by

|| (A) =sup{Y_ | m(4;) —m(Aiy) |:
i=1

0=AgcA Cc..CcA, =4 A, eD,i=1,...n}

We remark that the supremum in the previous definition is taken over all
chains between () and A.
There are null-additive set functions which do not belong to BV.

Example 5. Let X = [—1,1] and ¥ be a family of all Borel subsets of [-1,1].
Taking a measure

M(A):/Axdx (A ey,

we have that
m(A) =/ u(d)| (A€X)

is a null-additive set functions. But m ¢ BV. Namely, take a special chain
0=Ayg C A C...C Ay,

with  Ag; 1 = [—%, i] and Ag; = [—%, %] for ¢=1,2,...,n. Then

Imll = 3~ | m(A) = m(Aia) |= 2v/n — oo

as n — 0o. Hence m ¢ BV.

There are also set functions which belong to BV, but which are not null-
additive.
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5. Signed fuzzy measures
3. always denotes a o-algebra of subsets of the given set X.

Definition 10. A signed fuzzy measure (revised monotone continuous from
above and below set function) m,m : X — [—00, 0], is an extended real-valued
set function m defined on o-algebra ¥ and with the properties:

(SFM,) m(0) = 0;
(SFM,) if E.FeY, ENF=0, then
(a) m(F)>0, m(F) >0, max(m(E),m(F)) > 0 implies

m(E U F) > max(m(E), m(F));
(b) m(E) <0, m(F) <0, min(m(E),m(F)) <0 implies
m(E U F) <min(m(E), m(F));

(c) m(E) >0, m(F) <0 implies m(E) > m(EUF)>m(F).

(SFM3) (ExCExC... ,E,eX = m(U,~, En) =lim,_oo m(E,);
(SFMy) (F1 D E2 D ... L,E, € X, there exists ng € N, /m(E,,)| <

) = m(N,~, Ey) =lim, .o m(E,).
The property (SFMsz) of m is called the revised monotonicity.

Example 6. Any non-negative signed fuzzy measure is a usual fuzzy measure.
Namely, the condition (SFM2), (a) implies the monotonicity of m. But also
each fuzzy measure is a signed fuzzy measure.

Example 7. The classical signed measure is a signed fuzzy measure.

Definition 11. A set A C X is called a positive set (resp. negative set) for
signed fuzzy measure m on (X, X) if for every subset E of A which belongs to
Y we have m(E) > 0 (resp. m(E) < 0).

We have the following Hahn decomposition type theorem.

Theorem 5. Let m be a null-additive revised monotone set function on (X, X),
which is continuous from above and from below (i.e., a null-additive signed fuzzy
measure). If m takes at most one of the values —oo or +o00, and if

Ecy, mE)<+x = |m(F) <+ (FCE,FeX),

then there exist two disjoint sets A and B from X such that AUB =X and A
1 a positive set and B is a negative set.
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In this section we shall suppose, without loss of generality, that the signed
fuzzy measure m satisfies the condition

—o00o < m(E) <+o00 (Ee€X).
Now we can prove the following version of the Jordan decomposition theorem

Theorem 6. Let m be a null-additive signed fuzzy measure. Then there exist
uniquely determined null-additive fuzzy measures m™ and m™ such that

mt>m>-m".
Moreover, if m has a representation in the form
m = v — v,

where v1 and vy are null-additive fuzzy measures, then vi > m™ and vy > m™.

6. Lebesgue Decomposition Theorem

Let m and v be two non-negative monotone set functions defined on a ring

R.

Definition 12. Let m and v be two finite monotone set functions. If E €
R,v(E) = 0 implies m(E) = 0, then we say that m is absolutely continuous
with respect to v.

Definition 13. Let m and v be two finite monotone set functions. If for every
€ > 0 there is a & > 0 such that E € R,v(E) < 0 implies m(E) < €, then we
say that m is absolutely e— continuous with respect to v.

Theorem 7. Let m and v be two finite monotone set functions defined on a
o—ring R such that they are continuous from above and continuous from below.
If v is autocontinuous from above, then m is absolutely continuous with respect
to v if and only if m is absolutely e— continuous with respect to v.

Definition 14. Let m and v be two finite monotone set functions defined on
R. The monotone set function m is called singular with respect to v, denoted by
m_w, if there exists a set A from R such that

m(E\ A) =v(E) =0 (E €R).

Remark 1. We have that if for null-additive monotone set functions m and v,
which are continuous from above and continuous from below, m_Lv holds, then
we have v1m, too.

Now we have the following theorem of Lebesgue decomposition type for contin-
uous null-additive monotone set functions.
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Theorem 8. Let m and v be two finite null-additive monotone continuous set
functions on o—ring R. Then there exist two null-additive monotone set func-
tions m. and my such that me.(E) = m(E \ A) and ms(E) = m(E N A) for a
set A € R and m is absolutely continuous with respect to v and mg is singular
with respect to v.

We will use now the ideal approach. Let R be a ring and m a function from
R into [0, 00]. We do not suppose the monotonicity of m. We write

Nm)={AeR: m(ANY)=0, VY € R}.

Theorem 9. Let R be a ring. If m : R — [0,00] is null-additive set function
then the set N'(m) is an ideal in R.

Proof. By the definition we have for B € R and A € N (m) such that B C A
that m(B) = 0, i.e., B € N(m).

For Ay, Ay € N(m) and for arbitrary but fixed subset B of A; U A2 which
belongs to R we have B\ A; and BN Ay, and so

m(B\ A1) =m(BNA;)=0.
Hence, since B\ A1 and BN A; are disjoint sets and m is null-additive,
m(B)=m((B\ A1)U (BN A;)) =0,
ie. A1 UAs € N(m). O

Corollary 1. Let R be a o—ring. If m : R — [0,00] is o—null-additive then
the set N'(m) is a o—ideal of R.

Definition 15. Let R be a ring and M a subset of R. M is said to satisfy the
countable chain condition (CCC) if every disjoint subset (consisting of disjoint
sets from M) of M\ {0} is at most countable. Let m be a function from R into
[0,00], m is said to satisfies the (CCC) if R\ N(m) satisfy the (CCC).

Definition 16. Let R be a ring and let m and v be two functions from R into
[0,00]. We say that m is v——continuous if N'(v) C N(m). We say that m is
v—singular if there exists an element A € N(u) such that T\ A € N(m) for
every T in R.

Theorem 10. Let R be a c0—ring, m a null-additive set function, and v a finite

o-null-additive set function from R into [0, +o00]. If N (m)\N (v) satisfies (CCC)

then there exists A € N'(v) such that null-additive set functions
m:YeER—-mY\A), me:YeR—-mYNA

are, respectively, v—continuous and v—singular.
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Corollary 2. Let R be a oc—ring , & a pseudo-addition. Let m be a ®—decom-
posable measure on R and v a o—null-additive and erhaustive function on R.
Then m can be uniquely represented as the ®—sum of two &—decomposable
functions my1 and mo such that mq is v—continuous and ms is v—singular.
Moreover mo is mi—singular.

Remark 2. The main point in Corollary 2 is the possibility of supposition of
o — @—decomposability of v (which implies o—null-additivity) without order
continuity. In this way it can be considered also the possibility measure, i.e. the
set function 7 : R — [0, 1] which satisfies

T(AUB) =7(A) Vr(B)

for A, B € R such that ANB = (), which in general does not be order continuous
although it is ¢ — V—decomposable.
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