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TAYLOR-TYPE EXPANSION OF THE £-TH
DERIVATIVE OF THE DIRAC DELTA IN u(xy,...z,) —t.

Manuel A. Aguirre!

Abstract. We obtain an expansion of Taylor style of the distribution
™) (u(z1, ...zn) — t) where u(z1,...z,) € C°°(R"™) without critical points
and t is a real number. In particular, we obtain the expansion of the
distribution 6% (P 4 m?)(see ([3]), ([4]) and ([5])), where m is a positive
real number and P = P(z) = 23 4+ 3 + If) - 1’12)+1 - —x§+q, p+qg=n
dimension of the space.
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1. Introduction

Let ¢ denote a distribution of one variable t. Let u € C°°(R™) be such that
(n-1)-dimensional manifold u(x1, ...z,) = 0 has no critical point.
By ¢u(x) Leray(c.f. [2], p. 102) designates the distribution defined on R™ by

(1) (Pue)s () = (be, (1)) ([2], page 102)

@) b(t) = / e eds)

and ¢ € C°(R™) is the set of infinitely differentiable functions with compact
support and w,, is a (n-1)-dimensional exterior differential form on u defined as

(3) du Nwy, = dzy Adza A ... Ndxy,.

By assumption, in the neighborhood of any point of the surface we can introduce

a local coordinate system ui us. ...u, such that one of the coordinates, say u; is

u(zxy,...x,) and such that the transformation from z; to u;,i = 1,2, ... is given

by infinitely differentiable function with the positive Jacobian D (%) ([1],p. 220).
If, in particular, in the neighborhood of the given point

ou
(4) 67371 >0,
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we may take the u; coordinate to be

up = u(wy,x2,..2,) — t
U = X9
(5)
Uy = T
then
T
(6) Wy = D( )dug...dun
U
where

x w\ 1
U x Qu
811
Therefore, from(6) and(7) we have
dus...du,,

u
811

(8) Wy, = Wy (u, du) =

From (5) and taking into account(4), it follws that there exists such a function
a = alug,...u,) € C*(R"™) such that
(9) xry = OZ(UQ, un)

Therefore, from (2) and considering the formulae (5),(6) and(7) we have,

(10) 0= [ rlun ) du)
where
(11) p1(ug, ug, ... up) = (a1, T2, ...T,)

and w,, (u,du) is defined by(8).
On the other hand from [1], p. 230, formula 6,we have,

(12) <§(k)(G(;v1,x2,...xn),gp(:rl,xg,...xn)> - (_1)k/a( . wi(9)

k=0,1,2,..., where x = (z1, 22, ...x,), G(x1, X2, ...xy) is such an infinite differ-
entiable function that

(13) grad G = <8G G 6G) #0,

87‘%1’ aixQ’ E

(14) wi () o {D(Z)(pl(ul,UQ,...un)}duQ...dun,

= 9k
ouj
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(15) W, = @.w,
up = G(xy,x2,...25)
Ug = T2

(16)
Up = T,

1 is defined by equation(11), w = w,, is the differential form defined by (6) and

o()-[o()] -3

with 8
18 — > 0.
(18) e
Otherwise, from [1], p. 211, formula 8, §*)(G(zy, s, ...z,,) can be written
as,
(WG (@), ) = (1) [y F(0, w2,y oot dus...duy, =
(19) ok (k)
(=) [, [67 (F (o,u2,...un)} dus....duy,
1 u1=0
where
T
(20) flur,ug, ..upn) = @1(ur, ug, un)D(u>
¢1 is defined by equation (11) and D(7) by (17).
From(2) and(4), taking into account(15), we have
(21) w0 = [ ow=(@,ew)
u(x)=0

In this paper we obtain an expansion of Taylor style of the distribution
) (u(zy, ...zn) — t) where u(zy, ...z,,) € C°(R™) whithout critical point, ¢ is a
real number and 6 (u(z1, ...z,) —t) is defined by (19).

2. The expansion of 6 (u(zy,...z,) —t)

We begin by showing a lemma of expansion of 1(t) defined by (2).
Lemma 1 Let(t) be the function defined by (2). Then the following expansion
for 1(t) in powers of t is valid:

(22) B(t) = ay(p)t”
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for every p € C5°(R™), where,

(23) ale) = [ o)
“Je=o0
(24) G =G(x1,..xp) = u(x1,...Tn),
w, (@) is defined by (14).
Proof. From(10) and (4) we have
(25) o(t) = / o) — bz )
where
(26) up = ulx) —t

On the other hand, ¢;(u(x) —t, ua, ...u,) has the following Taylor series expan-
sion in the neighborhood of ¢t = 0

(27) o1(u(@) — tug, .un) = D (=1)” { {du o1 (u(@) — t, us, ...un)]t_o} £

V! dtv
v>o0

Considering that ¢; € C5°(R™) and the convergence uniform of the series (27),
from (25) and (27) we have

(28) v(t) =) (’:!)V {/u_ [;l;cpl(u(x) t,uz,...un)]t_o wu(u,du)}t”.

v>o

On the other hand, taking into account (26), we obtain

dv o y
(29) Litucpl(u(x) —t,us, un)] o = [ngl(ul, Uo, un)} B (-1)7,

therefore, from (29) we have

fulzo [ddtil:’wl (u({E) - t7 Uz, unﬂ =0 wu(u, du) =
(30)

ful:o {(—1)1, 6@;{ o1 (u1, uz, un)] - wy, (u, du).

uy=u(x
Considering that the form w, does not depend on the choice of uy,us,...u,, co-
ordinate system (see[l], p. 222), then using (26), if t = 0 is u1 = u(z1,x2, ...2n),
thus, from (30) we obtain

ful:o {%@1(’&1,’&2, ...un)]m:u(z) wy, (u, du) =

(31) )
fu(I):o {aa—ﬁcpl(ul,’u?, un)} Wy (u, du).

UuU1=0
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Substituting (30) in(28) and taking into account(31) we arrive at

(32) v =3 (_V1!)v {/(m) O {aa; o1 (tn, 1z, i )LIOwu(u,du)}t”.

v>o

On the other hand, considering the invariance from w(u, du) on the hypersuface
S given by the equation G(x1,...z,) = 0 ([1], p. 222),the following property is
valid:

Wy (u, du) =

[a%lﬁﬂl(ul, u2, Un)}
ur=u(x)=o0

o (52 {1 (un, uz, i) (o, )}

ui=u(z)=o0

In fact, from (8) we have
d d ou )
5o wu(u du) = Fur {(az“l) }duQ...dun =

{2 (2)) (2) " dus..du,

On the other hand, considering (9) we obtain

(34)

) 2 (82) = o (druto s ) =
2(3e). B 4 2 (2u).Quy . 42 () Qin= Ly 0o

From (9),

(36) % o

thus, from (35) and (36) we have

0 0

From (34) and considering (37) we arrive at

(38) wy (u, du) = 0.

duy

Therefore, from(38) we conclude that the property (33) is valid.
Now, using the property (33), we have,

[;T {1 (u1, uz, ~~-un)}} Wy (u, du) =

ui=u(z)=o0

) [3077:? {1 (ur, ug, . un) wy (u, du)}]

ui=u(z)=o0
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v=20,1,2,...
Substituting (39) in (32) we obtain

(40) ;}y' / e o{@ul gol(ul,ug,...un)wu(u,du)]}mzo .
From (40) and considering (8), (11),(19) and (20), we have
(a1) v = Y E (50 i), o) 1

Otherwise, from (41) and (12) we have

(42) v =3 ( / N wm)) .

v>o0

where w, (¢) is defined by(14).
Finally, from (42) we conclude the Lemma 1, formula (22). ad

We observe from (41) that we have obtained a series expansion of §(u(z)—1).
In fact, from (2) and (21) we obtain

B0 = [yt P = foay i Pl@V0(ad) =

(0(u(z) — 1), ¢(x))

(43)

and from(41) we have

(44) u(t) = <Z EV50 tuaee, sa(x)> .
Therefore, from (43) and (44) we obtain the following formula:
(45) d(u(x) —t) = Z #5(”) (u(x))t”.

On the other hand, a series expansion of (%) (u(z) — t) can be considered
as a generalization from the formula (45) which we will study in the following
theorem:

Theorem 2 Let u(x1,...x,) € C®(R™) be such that (n-1)-dimensional man-
ifold u(xy,..xp) —t = 0 has no critical point, then the following formula is
valid,

K (=D? <&
(46) 0F) (u(w) —t) = =6 F ) (u(w))ee.

o 7

where t is a real number and 6% (G (21, ...z,,)) is defined by (12) or(19).
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Proof. From (40) we have,
tV
(47) w(t) = ; L,
v>o

where,

(48) L, = / o {1 (u1, Uz, ..tn )wy (u, du)} .

(z)=o0 8“’?

Considering that the series (27) exibits uniform convergence, from (28) and (48)
we have,

dk v—k q
dlfk(t) =2k Ll’ﬁ =20 L‘I*’k% -
q+k q
19) T [futmrmo g Lr(uns v i) dw)}] G =
1

Zqzo {fu(z):o [5221% {@1(U1,U2, wlp).D (%) }} dugdun} ’;l'

From (49) and taking into account (14) and (15) we obtain

d* ‘
dqflgt) = Zqu (fu(m):o wq+k(<p)) % =

2 (—1)7tk (6050 (u(z)), ) L2

q=o

(50)

Now, from (12) and (14) we have
(51) (0@ - 0.0) = [ wnle,
where,

k
(52) wi(p) = 2

= ailL]i:
From (51), (52) and considering (29) we obtain
(=1)" 6 (u(z) — 1), ¢) =

ful:o % {o1(ur, u2, ...up).D (£) } dus...du, =

{@1(“1,%62, Up).D (%) } dus...du,.

ful:o %}@1 (u(x) —t), ug, ...ty wy (u, du) =
oo (1P {1 (@) — 1), ua, coctt) wa (u, du) } =
e { LoV 1 (o) = )02, ) ()} | =

k

Y k
L s @, dr)} = LHO.
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By (50) and (53) we conclude the proof of the theorem. O
In particular, putting

(54) u(z) —t = P(z) +m?
in (46), where m is a positive real number,
(55) P=Pz)=ai+a5+ .00 — 05 — .. — Topy,

p + g = n (dimension of the space), we obtain the following

(56) dM(m? 4+ P) = Z @(wvﬂ)(p)

o 7

The formula (56) appears in [3] (formula (77)) under conditions n being odd,
in [4], (formulae (38) and (39)) for two cases: a) p and ¢ being even and b) p
and gbeing odd. Finally, the formula (56) appears in [5] independently of p, ¢
and n, where p + ¢ = n is the dimension of the space.
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