TAYLOR-TYPE EXPANSION OF THE k-TH DERIVATIVE OF THE DIRAC DELTA IN $u\left(x_{1}, \ldots x_{n}\right)-t$.

Manuel A. Aguirre ${ }^{1}$

Abstract

We obtain an expansion of Taylor style of the distribution $\delta^{(k)}\left(u\left(x_{1}, \ldots x_{n}\right)-t\right)$ where $u\left(x_{1}, \ldots x_{n}\right) \in C^{\infty}\left(R^{n}\right)$ without critical points and t is a real number. In particular, we obtain the expansion of the distribution $\delta^{(k)}\left(P+m^{2}\right)($ see $([3]),([4])$ and ([5])), where m is a positive real number and $P=P(x)=x_{1}^{2}+x_{2}^{2}+\ldots x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2}, p+q=n$ dimension of the space. AMS Mathematics Subject Classification (1991): 46F10, 46F12

Key words and phrases: Theory of distributions

1. Introduction

Let ϕ_{t} denote a distribution of one variable t. Let $u \in C^{\infty}\left(R^{n}\right)$ be such that (n-1)-dimensional manifold $u\left(x_{1}, \ldots x_{n}\right)=0$ has no critical point.

By $\phi_{u(x)}$ Leray(c.f. [2], p. 102) designates the distribution defined on R^{n} by

$$
\begin{equation*}
\left\langle\phi_{u(x)}, \varphi(x)\right\rangle=\left\langle\phi_{t}, \psi(t)\right\rangle([2], \text { page 102) } \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(t)=\int_{u(x)=t} \varphi(x) w_{u}(x, d x) \tag{2}
\end{equation*}
$$

and $\varphi \in C_{o}^{\infty}\left(R^{n}\right)$ is the set of infinitely differentiable functions with compact support and w_{u} is a (n-1)-dimensional exterior differential form on u defined as

$$
\begin{equation*}
d u \wedge w_{u}=d x_{1} \wedge d x_{2} \wedge \ldots \wedge d x_{n} \tag{3}
\end{equation*}
$$

By assumption, in the neighborhood of any point of the surface we can introduce a local coordinate system $u_{1}, u_{2}, \ldots u_{n}$ such that one of the coordinates, say u_{j} is $u\left(x_{1}, \ldots x_{n}\right)$ and such that the transformation from x_{i} to $u_{i}, i=1,2, \ldots$ is given by infinitely differentiable function with the positive Jacobian $D\binom{x}{u}([1], \mathrm{p} .220)$.

If, in particular, in the neighborhood of the given point

$$
\begin{equation*}
\frac{\partial u}{\partial x_{1}}>0 \tag{4}
\end{equation*}
$$

[^0]we may take the u_{1} coordinate to be
(5)
\[

$$
\begin{array}{cc}
u_{1}= & u\left(x_{1}, x_{2}, \ldots x_{n}\right)-t \\
u_{2}= & x_{2} \\
\vdots & \vdots \\
u_{n}= & x_{n}
\end{array}
$$
\]

then

$$
\begin{equation*}
w_{u}=D\binom{x}{u} d u_{2} \ldots d u_{n} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
D\binom{x}{u}=\left[D\binom{u}{x}^{-1}\right]^{-1}=\frac{1}{\frac{\partial u}{\partial x_{1}}} \tag{7}
\end{equation*}
$$

Therefore, $\operatorname{from}(6)$ and(7) we have

$$
\begin{equation*}
w_{u}=w_{u}(u, d u)=\frac{d u_{2} \ldots d u_{n}}{\frac{\partial u}{\partial x_{1}}} \tag{8}
\end{equation*}
$$

From (5) and taking into account(4), it follws that there exists such a function $\alpha=\alpha\left(u_{2}, \ldots u_{n}\right) \in C^{\infty}\left(R^{n}\right)$ such that

$$
\begin{equation*}
x_{1}=\alpha\left(u_{2}, \ldots u_{n}\right) \tag{9}
\end{equation*}
$$

Therefore, from (2) and considering the formulae (5),(6) and(7) we have,

$$
\begin{equation*}
\psi(t)=\int_{u_{1}=o} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) w_{u}(u, d u) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)=\varphi\left(x_{1}, x_{2}, \ldots x_{n}\right) \tag{11}
\end{equation*}
$$

and $w_{u}(u, d u)$ is defined by (8).
On the other hand from [1], p. 230, formula 6, we have,

$$
\begin{equation*}
\left\langle\delta^{(k)}\left(G\left(x_{1}, x_{2}, \ldots x_{n}\right), \varphi\left(x_{1}, x_{2}, \ldots x_{n}\right)\right\rangle=(-1)^{k} \int_{G(x)=0} w_{k}(\varphi)\right. \tag{12}
\end{equation*}
$$

$k=0,1,2, \ldots$, where $x=\left(x_{1}, x_{2}, \ldots x_{n}\right), G\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is such an infinite differentiable function that

$$
\begin{gather*}
\operatorname{grad} G=\left(\frac{\partial G}{\partial x_{1}}, \frac{\partial G}{\partial x_{2}}, \ldots \frac{\partial G}{\partial x_{n}}\right) \neq 0 \tag{13}\\
w_{k}(\varphi)=\frac{\partial^{k}}{\partial u_{1}^{k}}\left\{D\binom{x}{u} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right\} d u_{2} \ldots d u_{n} \tag{14}
\end{gather*}
$$

$$
\begin{array}{cc}
w_{o}=\varphi \cdot w, \\
u_{1}= & G\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
u_{2}= & x_{2} \\
\vdots & \vdots \tag{16}\\
u_{n}= & x_{n},
\end{array}
$$

φ_{1} is defined by equation(11), w$=w_{u}$ is the differential form defined by (6) and

$$
\begin{equation*}
D\binom{x}{u}=\left[D\binom{u}{x}^{-1}\right]^{-1}=\frac{1}{\frac{\partial G}{\partial x_{1}}} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\partial G}{\partial x_{1}}>0 \tag{18}
\end{equation*}
$$

Otherwise, from [1], p. 211, formula $8, \delta^{(k)}\left(G\left(x_{1}, x_{2}, \ldots x_{n}\right)\right.$ can be written as,

$$
\begin{gather*}
\left\langle\delta^{(k)}(G(x), \varphi\rangle=(-1)^{k} \int_{G=0} f_{u_{1}}^{(k)}\left(0, u_{2}, \ldots u_{n}\right) d u_{2} \ldots d u_{n}=\right. \\
(-1)^{k} \int_{G=0}\left[\frac{\partial^{k}}{\partial u_{1}^{k}} f_{u_{1}}^{(k)}\left(0, u_{2}, \ldots u_{n}\right)\right]_{u_{1}=0} d u_{2} \ldots d u_{n} \tag{19}
\end{gather*}
$$

where

$$
\begin{equation*}
f\left(u_{1}, u_{2}, \ldots u_{n}\right)=\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) D\binom{x}{u} \tag{20}
\end{equation*}
$$

φ_{1} is defined by equation (11) and $D\binom{x}{u}$ by (17).
From(2) and(4), taking into account(15), we have

$$
\begin{equation*}
\psi(0)=\int_{u(x)=0} \varphi w=\langle\delta(u(x), \varphi(x)\rangle \tag{21}
\end{equation*}
$$

In this paper we obtain an expansion of Taylor style of the distribution $\delta^{(k)}\left(u\left(x_{1}, \ldots x_{n}\right)-t\right)$ where $u\left(x_{1}, \ldots x_{n}\right) \in C^{\infty}\left(R^{n}\right)$ whithout critical point, t is a real number and $\delta^{(k)}\left(u\left(x_{1}, \ldots x_{n}\right)-t\right)$ is defined by (19).
2. The expansion of $\delta^{(k)}\left(u\left(x_{1}, \ldots x_{n}\right)-t\right)$

We begin by showing a lemma of expansion of $\psi(t)$ defined by (2).
Lemma 1 Let $\psi(t)$ be the function defined by (2). Then the following expansion for $\psi(t)$ in powers of t is valid:

$$
\begin{equation*}
\psi(t)=\sum_{\nu=o}^{\infty} a_{\nu}(\varphi) t^{\nu} \tag{22}
\end{equation*}
$$

for every $\varphi \in C_{o}^{\infty}\left(R^{n}\right)$, where,

$$
\begin{gather*}
a_{\nu}(\varphi)=\frac{1}{\nu!} \int_{G=0} w_{\nu}(\varphi) \tag{23}\\
G=G\left(x_{1}, \ldots x_{n}\right)=u\left(x_{1}, \ldots x_{n}\right) \tag{24}
\end{gather*}
$$

$w_{\nu}(\varphi)$ is defined by (14).
Proof. From(10) and (4) we have

$$
\begin{equation*}
\psi(t)=\int_{u_{1}=o} \varphi_{1}\left(u(x)-t, u_{2}, \ldots u_{n}\right) w_{u}(u, d u) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{1}=u(x)-t \tag{26}
\end{equation*}
$$

On the other hand, $\varphi_{1}\left(u(x)-t, u_{2}, \ldots u_{n}\right)$ has the following Taylor series expansion in the neighborhood of $t=0$
(27) $\varphi_{1}\left(u(x)-t, u_{2}, \ldots u_{n}\right)=\sum_{\nu \geq o} \frac{(-1)^{\nu}}{\nu!}\left\{\left[\frac{d^{\nu}}{d t^{\nu}} \varphi_{1}\left(u(x)-t, u_{2}, \ldots u_{n}\right)\right]_{t=o}\right\} t^{\nu}$.

Considering that $\varphi_{1} \in C_{o}^{\infty}\left(R^{n}\right)$ and the convergence uniform of the series (27), from (25) and (27) we have

$$
\begin{equation*}
\psi(t)=\sum_{\nu \geq o} \frac{(-1)^{\nu}}{\nu!}\left\{\int_{u_{1}=o}\left[\frac{d^{\nu}}{d t^{\nu}} \varphi_{1}\left(u(x)-t, u_{2}, \ldots u_{n}\right)\right]_{t=o} w_{u}(u, d u)\right\} t^{\nu} \tag{28}
\end{equation*}
$$

On the other hand, taking into account (26), we obtain
(29) $\left[\frac{d^{\nu}}{d t^{\nu}} \varphi_{1}\left(u(x)-t, u_{2}, \ldots u_{n}\right)\right]_{t=o}=\left[\frac{\partial^{\nu}}{\partial u_{1}^{\nu}} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right]_{u_{1}=u(x)}(-1)^{\nu}$,
therefore, from (29) we have

$$
\begin{gather*}
\int_{u_{1}=o}\left[\frac{d^{\nu}}{d t^{\nu}} \varphi_{1}\left(u(x)-t, u_{2}, \ldots u_{n}\right)\right]_{t=o} w_{u}(u, d u)= \\
\int_{u_{1}=o}\left[(-1)^{\nu} \frac{\partial^{\nu}}{\partial u_{1}^{\nu}} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right]_{u_{1}=u(x)} w_{u}(u, d u) . \tag{30}
\end{gather*}
$$

Considering that the form w_{u} does not depend on the choice of $u_{1}, u_{2}, \ldots u_{n}$ coordinate system (see[1], p. 222), then using (26), if $t=o$ is $u_{1}=u\left(x_{1}, x_{2}, \ldots x_{n}\right)$, thus, from (30) we obtain

$$
\begin{gather*}
\int_{u_{1}=o}\left[\frac{\partial^{\nu}}{\partial u_{1}^{\nu}} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right]_{u_{1}=u(x)} w_{u}(u, d u)= \tag{31}\\
\int_{u(x)=o}\left[\frac{\partial^{\nu}}{\partial u_{1}^{\nu}} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right]_{u_{1}=o} w_{u}(u, d u)
\end{gather*}
$$

Substituting (30) in(28) and taking into account(31) we arrive at

$$
\begin{equation*}
\psi(t)=\sum_{\nu \geq o} \frac{(-1)^{\nu}}{\nu!}\left\{\int_{u(x)=o}\left[\frac{\partial^{\nu}}{\partial u_{1}^{\nu}} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right]_{u_{1}=o} w_{u}(u, d u)\right\} t^{\nu} \tag{32}
\end{equation*}
$$

On the other hand, considering the invariance from $w(u, d u)$ on the hypersuface S given by the equation $G\left(x_{1}, \ldots x_{n}\right)=0$ ([1], p. 222), the following property is valid:

$$
\begin{align*}
& {\left[\frac{\partial}{\partial u_{1}} \varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right]_{u_{1}=u(x)=o} \cdot w_{u}(u, d u)=} \\
& {\left[\frac{\partial}{\partial u_{1}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) \cdot w_{u}(u, d u)\right\}\right]_{u_{1}=u(x)=o}} \tag{33}
\end{align*}
$$

In fact, from (8) we have

$$
\begin{gather*}
\frac{\partial}{\partial u_{1}} w_{u}(u, d u)=\frac{\partial}{\partial u_{1}}\left\{\left(\frac{\partial u}{\partial x_{1}}\right)^{-1}\right\} d u_{2} \ldots d u_{n}= \tag{34}\\
(-1)\left\{\frac{\partial}{\partial u_{1}}\left(\frac{\partial u}{\partial x_{1}}\right)\right\} \cdot\left(\frac{\partial u}{\partial x_{1}}\right)^{-2} d u_{2} \ldots d u_{n}
\end{gather*}
$$

On the other hand, considering (9) we obtain

$$
\begin{gather*}
\frac{\partial}{\partial u_{1}}\left(\frac{\partial u}{\partial x_{1}}\right)=\frac{\partial}{\partial u_{1}}\left(\frac{\partial}{\partial \alpha} u\left(\alpha, u_{2}, \ldots u_{n}\right)\right)= \tag{35}\\
\frac{\partial}{\partial \alpha}\left(\frac{\partial u}{\partial \alpha}\right) \cdot \frac{\partial \alpha}{\partial u_{1}}+\frac{\partial}{\partial u_{2}}\left(\frac{\partial u}{\partial \alpha}\right) \cdot \frac{\partial u_{2}}{\partial u_{1}}+\ldots+\frac{\partial}{\partial u_{n}}\left(\frac{\partial u}{\partial \alpha}\right) \cdot \frac{\partial u_{n}}{\partial u_{1}}=\frac{\partial^{2} u}{\partial \alpha^{2}} \cdot \frac{\partial \alpha}{\partial u_{1}}
\end{gather*}
$$

From (9),

$$
\begin{equation*}
\frac{\partial \alpha}{\partial u_{1}}=0 \tag{36}
\end{equation*}
$$

thus, from (35) and (36) we have

$$
\begin{equation*}
\frac{\partial}{\partial u_{1}}\left(\frac{\partial}{\partial x_{1}} u\left(\alpha, u_{2}, \ldots u_{n}\right)\right)=0 \tag{37}
\end{equation*}
$$

From (34) and considering (37) we arrive at

$$
\begin{equation*}
\frac{\partial}{\partial u_{1}} w_{u}(u, d u)=0 \tag{38}
\end{equation*}
$$

Therefore, from(38) we conclude that the property (33) is valid.
Now, using the property (33), we have,

$$
\begin{align*}
& {\left[\frac{\partial^{\nu}}{\partial u_{1}^{\nu}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right)\right\}\right]_{u_{1}=u(x)=o} \cdot w_{u}(u, d u)=} \\
& {\left[\frac{\partial^{\nu}}{\partial u_{1}^{\nu}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) \cdot w_{u}(u, d u)\right\}\right]_{u_{1}=u(x)=o}} \tag{39}
\end{align*}
$$

$\nu=0,1,2, \ldots$
Substituting (39) in (32) we obtain

$$
\begin{equation*}
\psi(t)=\sum_{\nu \geq o} \frac{1}{\nu!} \int_{u(x)=o}\left\{\frac{\partial^{\nu}}{\partial u_{1}^{\nu}}\left[\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) w_{u}(u, d u)\right]\right\}_{u_{1}=o} t^{\nu} \tag{40}
\end{equation*}
$$

From (40) and considering (8), (11),(19) and (20), we have

$$
\begin{equation*}
\psi(t)=\sum_{\nu \geq o} \frac{(-1)^{\nu}}{\nu!}\left\langle\delta^{(\nu)}(u(x)), \varphi(x)\right\rangle \cdot t^{\nu} \tag{41}
\end{equation*}
$$

Otherwise, from (41) and (12) we have

$$
\begin{equation*}
\psi(t)=\sum_{\nu \geq o} \frac{1}{\nu!}\left(\int_{u(x)=o} w_{\nu}(\varphi)\right) t^{\nu} \tag{42}
\end{equation*}
$$

where $w_{\nu}(\varphi)$ is defined by (14).
Finally, from (42) we conclude the Lemma 1, formula (22).
We observe from (41) that we have obtained a series expansion of $\delta(u(x)-t)$.
In fact, from (2) and (21) we obtain

$$
\begin{gather*}
\psi(t)=\int_{u(x)=t} \varphi w=\int_{u(x)-t=o} \varphi(x) w(x . d x)= \tag{43}\\
\langle\delta(u(x)-t), \varphi(x)\rangle
\end{gather*}
$$

and from(41) we have

$$
\begin{equation*}
\psi(t)=\left\langle\sum_{\nu \geq o} \frac{(-1)^{\nu}}{\nu!} \delta^{(\nu)}(u(x)) t^{\nu}, \varphi(x)\right\rangle \tag{44}
\end{equation*}
$$

Therefore, from (43) and (44) we obtain the following formula:

$$
\begin{equation*}
\delta(u(x)-t)=\sum_{\nu \geq o} \frac{(-1)^{\nu}}{\nu!} \delta^{(\nu)}(u(x)) t^{\nu} \tag{45}
\end{equation*}
$$

On the other hand, a series expansion of $\delta^{(k)}(u(x)-t)$ can be considered as a generalization from the formula (45) which we will study in the following theorem:

Theorem 2 Let $u\left(x_{1}, \ldots x_{n}\right) \in C^{\infty}\left(R^{n}\right)$ be such that (n-1)-dimensional manifold $u\left(x_{1}, \ldots x_{n}\right)-t=0$ has no critical point, then the following formula is valid,

$$
\begin{equation*}
\delta^{(k)}(u(x)-t)=\sum_{q \geq o} \frac{(-1)^{q}}{q!} \delta^{(k+q)}(u(x)) t^{q} \tag{46}
\end{equation*}
$$

where t is a real number and $\delta^{(\nu)}\left(G\left(x_{1}, \ldots x_{n}\right)\right)$ is defined by (12) or(19).

Proof. From (40) we have,

$$
\begin{equation*}
\psi(t)=\sum_{\nu \geq o} L_{\nu} \frac{t^{\nu}}{\nu!} \tag{47}
\end{equation*}
$$

where,

$$
\begin{equation*}
L_{\nu}=\int_{u(x)=o} \frac{\partial^{\nu}}{\partial u_{1}^{\nu}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) w_{u}(u, d u)\right\} \tag{48}
\end{equation*}
$$

Considering that the series (27) exibits uniform convergence, from (28) and (48) we have,

$$
\begin{gather*}
\frac{d^{k} \psi(t)}{d t^{k}}=\sum_{\nu \geq k} L_{\nu} \frac{t^{\nu-k}}{(\nu-k)!}=\sum_{q \geq o} L_{q+k} \frac{t^{q}}{q!}= \\
\sum_{q \geq o}\left[\int_{u(x)=o} \frac{\partial^{q+k}}{\partial u_{1}^{q+k}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) \cdot w_{u}(u, d u)\right\}\right] \frac{t^{q}}{q!}= \tag{49}\\
\sum_{q \geq o}\left\{\int_{u(x)=o}\left[\frac{\partial^{q+k}}{\partial u_{1}^{q+k}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) \cdot D\left(\frac{x}{u}\right)\right\}\right] d u_{2} \ldots d u_{n}\right\} \frac{t^{q}}{q!} .
\end{gather*}
$$

From (49) and taking into account (14) and (15) we obtain

$$
\begin{array}{cc}
\frac{d^{k} \psi(t)}{d t^{k}}= & \sum_{q \geq o}\left(\int_{u(x)=o} w_{q+k}(\varphi)\right) \frac{t^{q}}{q!}= \\
\sum_{q \geq o}(-1)^{q+k}\left\langle\delta^{(k+q)}(u(x)), \varphi\right\rangle \frac{t^{q}}{q!} \tag{50}
\end{array}
$$

Now, from (12) and (14) we have

$$
\begin{equation*}
\left\langle(-1)^{k} \delta^{(k)}(u(x)-t), \varphi\right\rangle=\int_{u_{1}=o} w_{k}(\varphi) \tag{51}
\end{equation*}
$$

where,

$$
\begin{equation*}
w_{k}(\varphi)=\frac{\partial^{k}}{\partial u_{1}^{k}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) \cdot D\left(\frac{x}{u}\right)\right\} d u_{2} \ldots d u_{n} \tag{52}
\end{equation*}
$$

From (51), (52) and considering (29) we obtain

$$
\begin{gather*}
\left\langle(-1)^{k} \delta^{(k)}(u(x)-t), \varphi\right\rangle= \\
\int_{u_{1}=o} \frac{\partial^{k}}{\partial u_{1}^{k}}\left\{\varphi_{1}\left(u_{1}, u_{2}, \ldots u_{n}\right) \cdot D\left(\frac{x}{u}\right)\right\} d u_{2} \ldots d u_{n}= \\
\left.\int_{u_{1}=o} \frac{\partial^{k}}{\partial u_{1}^{k}} \varphi_{1}(u(x)-t), u_{2}, \ldots u_{n}\right) \cdot w_{u}(u, d u)= \\
\left.\int_{u_{1}=o}(-1)^{k} \frac{d^{k}}{d t^{k}}\left\{\varphi_{1}(u(x)-t), u_{2}, \ldots u_{n}\right) \cdot w_{u}(u, d u)\right\}= \tag{53}\\
\left.\frac{d^{k}}{d t^{k}}\left\{\int_{u_{1}=o}(-1)^{k}\left\{\varphi_{1}(u(x)-t), u_{2}, \ldots u_{n}\right) \cdot w_{u}(u, d u)\right\}\right\}= \\
\frac{d^{k}}{d t^{k}}\left\{\int_{u_{1}=t} \varphi(x) w(x, d x)\right\}=\frac{d^{k} \psi(t)}{d t^{k}} .
\end{gather*}
$$

By (50) and (53) we conclude the proof of the theorem.
In particular, putting

$$
\begin{equation*}
u(x)-t=P(x)+m^{2} \tag{54}
\end{equation*}
$$

in (46), where m is a positive real number,

$$
\begin{equation*}
P=P(x)=x_{1}^{2}+x_{2}^{2}+\ldots x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2} \tag{55}
\end{equation*}
$$

$p+q=n$ (dimension of the space), we obtain the following

$$
\begin{equation*}
\delta^{(k)}\left(m^{2}+P\right)=\sum_{q \geq o} \frac{\left(m^{2}\right)^{q}}{q!} \delta^{(k+q)}(P) \tag{56}
\end{equation*}
$$

The formula (56) appears in [3] (formula (77)) under conditions n being odd, in [4], (formulae (38) and (39)) for two cases: a) p and q being even and b) p and q being odd. Finally, the formula (56) appears in [5] independently of p, q and n, where $p+q=n$ is the dimension of the space.

References

[1] Gelfand, I. M., Shilov, G. E., Generalized Functions, Vol. I, Academic Press, New York 1964.
[2] Leray, J., Hyperbolic Differential Equations, The Institute for Advanced Study, Princeton, New jersey, 1957.
[3] Manuel Aguirre T., The expansion and Fourier's transform of $\delta^{(k-1)}\left(m^{2}+P\right)$, Integral Transforma and Special Functions, Vol. 3, No. 2, pp. 113-134, 1995.
[4] Manuel Aguirre T., The expansion of $\delta^{(k-1)}\left(m^{2}+P\right)$, Integral Transform and Special Functions, Vol. 8, No. 1-2, pp. 139-148, 1999.
[5] Manuel Aguirre T., The expansion in series (of Taylor types) of ($k-1$) derivative of Dirac's delta in $m^{2}+P$, to appear.

Received by the editors September 20, 2000

[^0]: ${ }^{1}$ Núcleo Consolidado de Matemática Pura y Aplicada, NUCOMPA, Facultad de Ciencias Exactas, UNCentro, Pinto 399, C.P. 7000 ,ARGENTINA, e-mail:maguire@exa.edu. ar

