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Abstract. We consider some basic properties of reduced products of in-
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1. Preliminaries

Throughout the article L is a first order language. The basic logical symbols
will be ¬ (negation), ∧ (conjunction) and ∃ (existential quantifier); the others
are defined by the basic ones in the standard way. The choice of the basic logical
symbols is irrelevant, but being accustomed to this one we keep on using it. A
theory T of the language L is a consistent deductively closed set of sentences;
hence, T ` ϕ means ϕ ∈ T . The class of models of a theory T will be denoted
by µ(T ). In general, models (of the language L) will be denoted by A, B, . . .,
while their domains will be A, B, . . .. We will be dealing mostly with reduced
products, thus a word about their notation. If Ai, i ∈ I, is a family of models
and if D is a filter over I, the reduced product of the given family of models
modulo D will be standardly denoted by

∏
D Ai. The elemenets of the reduced

product A =
∏

D Ai will be f1
A, f2

A, . . . , g1
A, g2

A, . . ., where f1, f2, . . . , g1, g2, . . .
(the elements of

∏
I Ai) are their representatives. This is not in accordance

with the standard terminology, but it will be helpful in defining statements.
By an infinite forcing system we understand simply a class of models of

the same language with the inclusion relation together with the infinite forcing
relation between the models of the class and the sentences defined in them.

2. Reduced products of infinite forcing systems

Infinite (or, in general, n-infinite – [4]) forcing relation does not suit com-
pletely (under the natural interpretation) the definition of forcing relation given
in [7], even if we accept to deal with classes rather than with sets. However,
this definition can be easily adapted to cover the case of infinite forcing. In any
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case we will not bother ourselves with it this time. Instead we are getting to
the point.

Let {Σi | i ∈ I} be a family of classes of models of the (same) language L,
let D be a proper filter over the index set I and let ΣD be a class of models
whose elements are reduced products of models from the classes Σi, i ∈ I,
modulo D –

∏
D Ai. Futhermore, let =D and ≤D be, respectively, the equality

and partial ordering relation of the class ΣD defined by:∏
D Ai =D

∏
D Bi iff {i ∈ I | Ai = Bi} ∈ D,∏

D Ai ≤D

∏
D Bi iff {i ∈ I | Ai ≤ Bi} ∈ D,

where = and ≤ are the ordinary identity and inclusion relations, respectively,
on the classes Σi, i ∈ I. In the sequel the set {i ∈ I | Ai ≤ Bi} will be denoted
by XA,B.

Lemma 2.1 If X
def= {i ∈ I | Σi is an inductive class} and if U is λ+-

complete ultrafilter (in the sense of definition given in [2]), then every increasing
chain of the lenght λ A0 ≤U A1 ≤U . . . ≤U Aα ≤U . . ., α < λ, has a supremum.

Proof. Let Aα =
∏

U Aα
i and for each pair α < β (< λ) let Xα,β = {i ∈ I |

Aα
i ≤ Aβ

i } (∈ U). For each j ∈ Y
def= X ∩ ⋂

0≤α<β<λ Xα,β let Bj =
⋃

γ<λ Aγ
j

and for each j ∈ Y c let us choose an arbitrary model Bj (from the class Σj).
Obviously, B =

∏
U Bi is an upper bound of the given chain. But if C =

∏
U Ci

is an upper bound of that chain too and if Zα
def= {i ∈ I | Aα

i ≤ Ci} (∈ U),
α < λ, then for any j ∈ Y ∩ ⋂

α<λ Zα we have Bj =
⋃

γ<λ Aγ
j ≤ Cj ; hence

B ≤U C. 2

Definition 2.2 Let D be a (proper) filter, A,B ∈ ΣD and A ≤D B. We will
write A ¹D B and say that A is D-elementary less than B iff for each formula
φ(v1, . . . , vk), k ≥ 0, holds:

A |= φ(f1
A, . . . , fk

A) iff B |= φ(g1
B , . . . , gk

B),

whenever Xj = {i ∈ I | f j(i) = gj(i)} ∈ D for each j = 1, . . . , k.

Lemma 2.3 (a) Let U be an ultrafilter and let A =
∏

U Ai, B =
∏

U Bi. If

X
def= {i ∈ I | Ai ¹ Bi} ∈ U , then A ¹U B;
(b) If U is λ+-complete ultrafilter and if for a given chain A0 ¹U A1 ¹U

. . . ¹U Aα ¹U . . ., α < λ (where Aα =
∏

U Aα
i ) holds: Xα,β

def= {i ∈ I |
Aα

i ¹U Aβ
i } ∈ U for each α < β (< λ), then the supremum of the chain is

U -elementary greater than each Aα.

Proof. (b) Let B =
∏

U Bi be the supremum of the chain. Of course, we can
assume that for each i ∈ ⋂

α<β<λ Xα,β Bi =
⋃

γ<λ Aγ
i . Now, if the elements

f1
Aα

, . . . , fk
Aα

and g1
B , . . . , gk

B are such that Xj
def= {i ∈ I | f j(i) = gj(i)} ∈ U ,
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j = 1, . . . , k, and if, for instance, B |= φ[g1
B , . . . , gk

B ], that is Y
def= {i ∈ I | Bi |=

φ[g1(i), . . . , gk(i)]} ∈ U , then for each i ∈ ⋂k
j=1 Xj ∩

⋂
α<β<λ Xα,β ∩ Y we

have Aα
i |= φ[f1(i), . . . , fk(i)]; thus Aα |= φ[f1

Aα
, . . . , fk

Aα
]. 2

Definition 2.4 The relation A D-infinitely forces φ(f1
A, . . . , fn

A), denoted by
A ‖=D φ(f1

A, . . . , fn
A), between a model A =

∏
D Ai (∈ ΣD) and a sentence

φ(f1
A, . . . , fn

A) of the language L(A) is defined inductively as follows:
(1) if φ(f1

A, . . . , fn
A) is atomic, then A ‖=D φ(f1

A, . . . , fn
A) iff {i ∈ I |

Ai ‖=i φ(f1(i), . . . , fn(i))} ∈ D, where ‖=i is the appropriate Robinson’s
infinite forcing relation ”of the class Σi”;

(2) if φ ≡ ψ ∧ θ, then A ‖=D φ iff A ‖=D ψ and A ‖=D θ;
(3) if φ ≡ ∃v ψ(v, f1

A, . . . , fn
A), then A ‖=D φ iff there exists fA ∈ A such

that A ‖=D ψ(fA, f1
A, . . . , fn

A)
and

(4) if φ(f1
A, . . . , fn

A) ≡ ¬ψ(f1
A, . . . , fn

A), then A ‖=D φ iff no B ”greater”
than A (A ≤D B) D-infinitely forces ψ(g1

B , . . . , gn
B), where g1

B , . . . , gn
B are the

elements of B such that Xk
def= {i ∈ I | fk(i) = gk(i)} ∈ D, k = 1, . . . , n.

The definition is correct, that is independent of the choice of the ”repre-
sentatives” both of models and of elements of these models. By this we mean:
if

∏
D Ai = A =D B =

∏
D Bi and if the elements f1

A, . . . , fn
A (∈ A) and

g1
B , . . . , gn

B (∈ B) are such that Xj
def= {i ∈ I | f j(i) = gj(i)} ∈ D for each

j = 1, . . . , n, then A ‖=D φ(f1
A, . . . , fn

A) iff B ‖=D φ(g1
B , . . . , gn

B) (for any
formula φ(v1, . . . , vn), n ≥ 0, of the language L). It is proved by a routine
induction on the complexity of the formula φ (as usual, the complexity of a for-
mula is determined by the number of logical connectives and quantifiers in it).
The case ”φ is atomic” is trivial. Just for illustration let us consider the case
”φ ≡ ¬ψ(v1, . . . , vn)”. Let us suppose that A ‖=D φ(f1

A, . . . , fn
A), while B does

not D-infinitely forces φ(g1
B , . . . , gn

B). Hence, for some C ∈ ΣD, B ≤D C and
C D-infinitely forces ψ(h1

C , . . . , hn
C), where the elements h1

C , . . . , hn
C (∈ C) are

such that Yj
def= {i ∈ I | gj(i) = hj(i)} ∈ D, j = 1, . . . , n. But XA,C ⊇ {i ∈

I | Ai = Bi} ∩ XB,C ∈ D and {i ∈ I | f j(i) = hj(i)} ⊇ Xj ∩ Yj ∈ D
(j = 1, . . . , n), contradictory to the assumption that A D-infinitely forces
¬ψ(f1

A, . . . , fn
A).

Lemma 2.5 Let A,B ∈ ΣD and let φ(f1
A, . . . , fn

A), ψ be sentences defined in
A. It holds:

(1) A cannot D-infinitely force both φ and ¬φ;
(2) if A ≤D B and A ‖=D φ(f1

A, . . . , fn
A), then B ‖=D φ(g1

B , . . . , gn
B) for

each gk
B, k = 1, . . . , n, such that {i ∈ I | fk(i) = gk(i)} ∈ D.

(3) if A ‖=D φ, then A ‖=D ¬¬φ;
A ‖=D ¬φ iff A ‖=D ¬¬¬φ;
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(4) if A ‖=D φ or A ‖=D ψ, then A ‖=D ¬(¬φ∧¬ψ) (that is A ‖=D φ∨ψ);

(5) if A ‖=D ¬∃v¬ψ(v), then A ‖=D ¬¬ψ(fA) for each fA ∈ M .

Proof. Let us just remark that in the case of (4) we do not have the inverse
implication. A counterexample is given in [4] for the case of one class but by
someone’s wish it could be easily adapted to be more appropriate for a ”filter
story”. 2

The next theorem (the version of ÃLos theorem for ultraproducts of infinite
forcing systems) is in some way comparable with 1.8 from [3].

Theorem 2.6 Let U be an ultrafilter over the index set I, let A ∈ ΣU and let
φ(f1

A, . . . , fn
A) be a sentence defined in A. It holds:

A ‖=U φ(f1
A, . . . , fn

A) iff {i ∈ I | Ai ‖=i φ(f1(i), . . . , fn(i))} ∈ U.

Proof. A routine induction by the complexity of the formula φ(v1, . . . , vn). The
case φ is atomic is a part of the definition. Let us still consider the case φ ≡ ¬ψ.

Let A ‖=U ¬ψ(f1
A, . . . , fn

A) and let us suppose that X
def= {i ∈ I | Ai ‖=i

¬ψ(f1(i), . . . , fn(i))} 6∈ U . For each j ∈ Xc let Bj be an extension of the
model Aj which infinitely forces ψ(f1(j), . . . , fn(j)). If C =

∏
U Ci, where

Ci =
{

Ai i ∈ X
Bi i ∈ Xc , then A ≤U C and, by inductive assumption, C ‖=U

ψ(f1
C , . . . , fn

C), a contradiction.

Let us assume now that X
def= {i ∈ I | Ai ‖=i ¬ψ(f1(i), . . . , fn(i))} ∈

U , but that A does not U -infinitely force ¬ψ(f1
A, . . . , fn

A). If A ≤U B ‖=U

ψ(g1
B , . . . , gn

B), where Xk = {i ∈ I | fk(i) = gk(i)} ∈ U , k = 1, . . . , n, and

if Y
def= {i ∈ I | Bi ‖=i ψ(g1(i), . . . , gn(i))} (∈ U), then ∅ = XA,B ∩ X ∩⋂n

k=1 Xk ∩ Y ∈ U , a contradiction again. 2

Naturally, if U is a principal ultrafilter nothing new is obtained. Namely, we
have (compare with 1.5 from [3])

Corollary 2.7 If U is a principal ultrafilter over the index set I, i. e. U =
{X ∈ P (I) | j ∈ X} for some j ∈ I, then the partial orderings 〈ΣU ,≤U 〉 and
〈Σj ,⊆〉 are isomorphic and

A ‖=U φ(f1
A, . . . , fk

A) iff Aj ‖=j φ(f1(j), . . . , fk(j)),

where, of course, A =
∏

U Ai.

Hence, we will be only interested in ultraproducts (of infinite forcing systems)
corresponding to nonprincipal ultrafilters.



Reduced products of infinite forcing systems 97

3. Generic models

In accordance with the definition of infinitely generic models we introduce

Definition 3.1 A model A (=
∏

D Ai) of the class ΣD is D-infinitely generic
iff for any sentence φ(f1

A, . . . , fn
A) defined in A either A ‖=D φ(f1

A, . . . , fn
A) or

A ‖=D ¬φ(f1
A, . . . , fn

A).

Lemma 3.2 If U is an ultrafilter over the index set I, then it holds:

(a) if X
def= {i ∈ I | Ai is an infinitely generic model } ∈ U , then A =∏

U Ai is U -infinitely generic;
(b) a model A ∈ ΣU is U -infinitely generic iff for each sentence φ(f1

A, . . .,
fk

A) defined in A

A ‖=U φ(f1
A, . . . , fk

A) iff A |= φ(f1
A, . . . , fk

A).

Proof. (a) Let φ(f1
A, . . . , fn

A) be any sentence defined in A and let Y
def= {i ∈

X | Ai ‖=i φ(f1(i), . . . , fn(i))}, Z
def= {i ∈ X | Ai ‖=i ¬φ(f1(i), . . . , fn(i))}.

Since Y ∪Z = X, one of the sets Y,Z is in U , and if, for instance, Y ∈ U , then
by the previous theorem A ‖=U φ(f1

A, . . . , fn
A).

(b) Due to ÃLos theorem and the definition of infinite forcing we have for any
model B from ΣU and for any atomic formula ψ(g1

B , . . . , gr
B) defined in it:

B ‖=U ψ(g1
B , . . . , gr

B) iff B |= ψ(g1
B , . . . , gr

B).

The rest is the matter of the induction. 2

Remark. The item (b) can be given in an apparently weaker form:
a model A is U -infinitely generic iff for each sentence of the form ¬φ(f1

A, . . . ,
fk

A) (defined in M) holds:

A ‖=U ¬φ(f1
A, . . . , fk

A) iff A |= ¬φ(f1
A, . . . , fk

A).

Corollary 3.3 If A and B are U -infinitely generic and if A ≤U B, then A ¹U

B.

Proof. A direct consequence of 2.5(2) and the previous lemma (b). 2

Lemma 3.4 Let U be an ultrafilter and let X
def= {i ∈ I | Σi be an inductive

class } ∈ U . Then every model from ΣU is (U−)less than some U -infinitely
generic model.

Proof. It follows directly from the known fact that in an inductive class every
model is contained in some infinitely generic model and 3.2(a). 2
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Corollary 3.5 Let U be an ultrafilter and let X
def= {i ∈ I | Σi be an inductive

class} ∈ U . If a model A ∈ ΣU is U -elementary less than each U -infinitely
generic model B ”greater” than A (A ≤U B), then A is U -infinitely generic.

Proof. We show by induction on the complexity of the formula φ(v1, . . . , vk),
k ≥ 0, that for all f1

A, . . . , fk
A holds:

A ‖=U φ(f1
A, . . . , fk

A) iff A |= φ(f1
A, . . . , fk

A).

Surely, only the case φ ≡ ¬ψ(v1, . . . , vk) is of interest. Let A |= ¬ψ(f1
A, . . . , fk

A)
and let us suppose that A does not U -infintely force ¬ψ(f1

A, . . . , fk
A). But if B is

U -infinitely generic model such that A ≤U B and B ‖=U ψ(g1
B , . . . , gk

B), where

Xj
def= {i ∈ I | f j(i) = gj(i)} ∈ U , j = 1, . . . , k (the existence of such model

is guaranteed by the previous lemma and 2.5(2)), then also B |= φ[g1
B , . . . , gk

B ],
contradictory to A ¹U B (and the starting assumption). 2

Let U be an ultrafilter over the index set I. At this momoment we can
neither prove nor offer a counterexample to the following:

I a model A =
∏

U Ai ∈ ΣU is U -infinitely generic iff {i ∈ I | Ai is an
infinitely generic model of the class Σi} ∈ U ;

II A ¹U B iff {i ∈ I | Ai ¹ Bi} ∈ U .
As for the first case we have already noted that implication ⇐= holds. The

same implication equally well (and equally obvious) holds in the second case
too. Obviously, on condition that X

def= {i ∈ I | Σi is inductive, generalized
elementary class } ∈ U , the second statement implies the first one.

In the next theorems we will assume that the statements I and II are fulfiled.
But firstly

Definition 3.6 Let D be a filter. A subclass S ⊆ ΣD is D-model-consistent
with ΣD iff for any model A ∈ ΣU there exists a model B ∈ S such that
A ≤D B.

Theorem 3.7 If U is an ω+-complete ultrafilter, X
def= {i ∈ I | Σi is inductive} ∈

U and if the conditions I and II are fulfiled, then the class of all U -infinitely
generic models, in notation LΣU

, is a unique subclass S of ΣU satisfying:
(1) S is U -model-consistent with ΣU ;
(2) S is U -model complete, i.e. for all A,B ∈ S holds: A ≤U B =⇒ A ¹U

B;
(3) S contains any other subclass of ΣU which satisfies the conditions (1)

and (2).

Proof. We have already shown that LΣU
satisfies conditions (1) and (2). Let

D be a subclass of ΣU which satisfies these conditions too. We are to show
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that D ⊆ LΣU
. Let A0 ∈ D, let us suppose that A0 does not U -infinitely force

¬φ(f1
A0

, . . . , fk
A0

) and let A0 ≤U A1 ∈ LΣU
and A1 ‖=U φ(g1

A1
, . . . , gk

A1
),

where Xj
def= {i ∈ I | f j(i) = gj(i)} ∈ U , j = 1, . . . , k. Since both LΣU

and
D are U -model-consistent with ΣU we can construct a chain A0 ≤U A1 ≤U

A2 ≤U . . . ≤U An ≤U . . ., where A2m ∈ D, A2m+1 ∈ LΣU , m ≥ 0. Due
to U -model completeness of the classes D and LΣU

Lemma 2.3 implies that
the supremum of the given chain, let it be Aω, is U -elementary greater than
each Ai. Thus A0 |= φ(f1

A0
, . . . , fk

A0
). In a similar way we can prove that

from A0 ‖=U ¬φ(f1
A0

, . . . , fk
A0

) follows A0 |= ¬φ(f1
A0

, . . . , fk
A0

); whence, A0 is
U -infinitely generic model. 2

Theorem 3.8 If U is an ω+-complete ultrafilter, X
def= {i ∈ I | Σi is inductive}

∈ U and if the conditions I and II are fulfilled, then the class of all U -infinitely
generic models, in notation LΣU , is a unique subclass S of ΣU satisfying:

(1) S is U -model-consistent with ΣU ;

(2) S is U -model complete, i.e. for all A,B ∈ S holhds: A ≤U B =⇒
A ¹U B;

(3) if a model A (∈ ΣU ) is U -elementary less than each model B from S
”greater” than A (A ≤U B), then A is in S.

Proof. We have proved that LΣU satisfies the given conditions. If a subclass D
satisfies the same conditions, it is shown in the same way as in the proof of the
previous theorem that LΣU

⊆ D (and we already have the inverse inclusion).2

The next lemma is an immediate consequence of ÃLos theorem.

Lemma 3.9 Let U be an ultrafilter over I and let Σi = µ(Ti), i ∈ I. Then
Th(ΣU ) def= {φ ∈ SENT (L) | A |= φ for each A ∈ ΣU} =

∏
U Ti.

Proof. We recall that
∏

U Ti
def= {ψ ∈ SENT (L) | {i ∈ I | Ti ` ψ} ∈ U} ([5]).

The inclusion
∏

U Ti ⊆ Th(ΣU ) is obvious. On the other hand if φ 6∈ ∏
U Ti,

i.e. if X
def= {i ∈ I | Ti ` φ} 6∈ U , let for each j ∈ Xc Aj be a model of

Tj ∪ {¬φ}. Now if we choose from each class Σk, k ∈ X, an arbitrary model,
Ak, then A =

∏
U Ai ` ¬φ and φ 6∈ Th(ΣU ). 2

Theorem 3.10 Let U be an ultrafilter and let Σi = µ(Ti ∩Π1) for each i ∈ I.
If we put ΣF

U
def= Th({A ∈ ΣU | A is U -infinitely generic}), then

ΣF
U =

∏
U

TF
i ,

where TF
i is the infinite forcing companion of Ti, i ∈ I.
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Proof. Let us suppose firstly φ 6∈ ∏
U TF

i (that is X
def= {i ∈ I | TF

i ` φ} 6∈ U).
For j ∈ Xc let Aj be infinitely generic model satisfying ¬φ. If we choose the
other models Ak, k ∈ X, arbitrary, then A =

∏
U Ai is U -infinitely generic

model and A |= ¬φ.
Let us assume now φ 6∈ ΣF

U and let A =
∏

U Ai be an U -infinitely generic

model which satisfies ¬φ; hence X
def= {i ∈ I | Ai |= ¬φ} ∈ U and A ‖=U ¬φ.

Let Y
def= {i ∈ I | TF

i ` φ} and for j ∈ X ∩ Y let Bj be infinitely generic
model extending Aj ; the other models Bk, k ∈ (X ∩ Y )c we choose arbitrarily.
If Y were in U , it would imply that B =

∏
U Bi is an U -infinitely generic model

extending A (A ≤U B) and U -infinitely forcing φ, a contradiction.2
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