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DERIVAL AUTOMORHISMS OF GROUPS AND A
CLASSIFICATION PROBLEM

Mihai Chiş1, Codruţa Chiş2

Abstract. In this paper, we define a class of automorphisms of groups –
the class of derival automorphisms, and determine all finite groups with
no more than three orbits with respect to the action of their groups of
derival automorphisms.
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1. Introduction

Let G be a group, N a characteristic subgroup of G, and α an automorphism
of G. Since α(N) = N , for any g ∈ G holds α(gN) = α(g)N , so that we can
define a function

α : G/N −→ G/N : gN 7−→ α(g)N,

which is obviously an automorphism of G/N .

Remark 1. The function

α 7−→ α : Aut(G) −→ Aut(G/N)

is a homomorphism of groups.

Proof. For any g ∈ G, and any α, β ∈ Aut(G) we have

α ◦ β(gN) = (α ◦ β)(g)N = α(β(g))N =

= α(β(g)N) = α(β(gN)) = (α ◦ β)(gN).

Definition 2. The kernel of this homomorphism is a subgroup of the automor-
phism group of the group G. We shall call the elements of this kernel N -al
automorpisms of the group G. They are precisely those automorphisms which
leave invariant the cosets of the characteristic subgroup N .
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Remark 3. In the manner described above, one can define various classes of
automorphisms of a group.

Definition 4. For N = Z(G), the center of the group G, the automorphisms
which invariate the cosets of Z(G) are called the central automorphisms of G.

Definition 5. Taking N = G′, we shall call derival automorphisms of G the
automorphisms which invariate the cosets of the commutator subgroup G′ of the
group G. The group of derival automorphisms of G will be denoted D(G).

Lemma 6. Every inner automorphism is a derival automorphism.

Proof. Let g ∈ G be an arbitrary element of G, and ig : G −→ G : x 7−→ g−1xg
the inner automorphism associated with g. Then

ig(x) = g−1xg = xx−1g−1xg = x[x, g] ∈ xG′, (∀)x ∈ G,

hence ig(xG′) = xG′, (∀)x ∈ G, and ig is a derival automorphism of the group
G. 2

Corollary 7. Inn(G) ≤ D(G).

Definition 8. Let N ≤ Aut(G) be a group of automorphisms of G. N acts
naturally on G via

(ν, g) 7−→ ν(g), (∀)ν ∈ N , g ∈ G.

We shall call N -orbits the orbits of G with respect to this action.

Remark 9. Let S ⊆ G be a subset of G which is invariant with respect to the
action of N , i.e. ν(S) = S holds for any ν ∈ N . Then S is a union of N -orbits.

Proof. Since S is N -invariant, for any s ∈ S we have

s ∈ orbN (s) = {ν(s)|ν ∈ N} ⊆ S.

Hence S ⊆ ⋃
s∈S

orbN (s) ⊆ S, so that S =
⋃

s∈S

orbN (s). 2

Notation. We shall denote by n(G) the number of N -orbits of G. If S ⊆ G
is a N -invariant subset of G, nG(S) will be the number of N -orbits in which
decomposes S.
Obviously, if S is a N -invariant subset of G, then G\S is also N -invariant, and
the following equality holds:

n(G) = nG(S) + nG(G \ S).

Notation. For some particular classes of automorphisms of a group G we shall
use the following notations:
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• N = Aut(G): a(G) = # of Aut(G)-orbits, aG(S) = # of Aut(G)-orbits in a
characteristic subset S of G;
• N = Inn(G): k(G) = # of Inn(G)-orbits= # of conjugacy classes of G,
kG(S) = # of Inn(G)-orbits= # of conjugacy classes in a normal subset S of
G;
• N = C(G): c(G) = # of C(G)-orbits, cG(S) = # of C(G)-orbits in a C(G)-
invariant subset S of G;
• N = D(G): d(G) = # of D(G)-orbits, dG(S) = # of D(G)-orbits in a D(G)-
invariant subset S of G.

Let M,N ≤ Aut(G) be subgroups of the automorphism group of a group
G, with M ≤ N . Then every N -orbit is M-invariant, hence it is a union of
M-orbits.

Corollary 10. Let S be a N -invariant subset of G, and let nG(S) and mG(S)
be the number of N -orbits, respectively M-orbits of S. Then nG(S) ≤ mG(S).

Proof. S decomposes into N -orbits, which decompose into M-orbits. The
inequality is now obvious. 2

2. Some bounds for d(G)

Theorem 11. The number d(G) of D(G)-orbits of a group G is not greater
than the number of conjugacy classes of G.

Proof. This follows immediately from the fact that Inn(G) ≤ D(G) and that
the conjugacy classes of the group G are precisely the orbits with respect to the
natural action of Inn(G) on G. 2

Theorem 12. Let G be a group, D(G) the group of derival automorphisms of G,
N ≤ Aut(G) a subgroup of the automorphism group of G such that D(G) ≤ N ,
and S an N -invariant subset of G. Then the following inequalities hold:

d(G) ≥ dG(S) + nG(G \ S)
d(G) ≥ nG(S) + dG(G \ S)
d(G) ≥ n(G).

Proof. Since D(G) ≤ N , we have the inequalities dG(S) ≥ nG(S) and dG(G \
S) ≥ nG(G \ S), which prove the result. 2

Remark 13 From the definition of derival automorphisms follows that every
D(G)-orbit is contained in a coset of the commutator subgroup G′ in G. As a
consequence we have the inequality

d(G) ≥ |G : G′|.
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Corollary 14 The following inequality holds:

d(G) ≥ dG(G′) + |G : G′| − 1.

Proof. G\G′ is a D(G)-invariant subset of G and dG(G\G′) ≥ |G : G′|−1 = #
of cosets of G′ contained in G \G′. 2

Remark 15. Since D(G) ≤ Aut(G) and G′ is a chracteristic subgroup of G,
we can refine the previous inequality. We have dG(G′) ≥ aG(G′), hence

d(G) ≥ aG(G′) + |G : G′| − 1.

Theorem 16. d(G) = |G : G′| if and only if G is abelian.

Proof. If G is abelian, then G′ = 1 and D(G) = {1G}, so that d(G) = |G| =
|G : G′|.
If d(G) = |G : G′| then from the inequality above follows that aG(G′) = 1,
hence G′ = 1 and G is abelian. 2

Theorem 17. If G is a group with |G : G′| = 2, then D(G) = Aut(G) and
d(G) = a(G).

Proof. Because |G/G′| = 2, we have Aut(G/G′) = {1G/G′}, hence the kernel of
the group homomorphism

α 7→ α : Aut(G) −→ Aut(G/G′)

is Aut(G). But D(G) was defined to be exactly this kernel. We obtain D(G) =
Aut(G) and then obviously d(G) = a(G). 2

3. Groups with few D(G)-orbits

In this section we are going to determine all finite groups G with no more
than three D(G)-orbits. We shall discuss seperately the cases d(G) = 1, d(G) =
2, and d(G) = 3.

3.1. The case d(G) = 1

Theorem 18. d(G) = 1 if and only if G = 1.

Proof. Obviously, if G = 1, then d(G) = 1.
Suppose now that d(G) = 1. Because d(G) ≥ a(G), we have a(G) = 1. The
group G has only one orbit with respect to the action of Aut(G). Hence all
elements of G have the same order, and since o(1) = 1, this order is 1. G
contains then only the unit element, so G = 1. 2
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3.2. The case d(G) = 2

Theorem 19 d(G) = 2 if and only if G ∼= Z2.

Proof. If G ∼= Z2 then d(G) = d(Z2) = 2.
Let now G be a finite group with d(G) = 2. Since G 6= 1, we have a number
of Aut(G)-orbits a(G) 6= 1. But then, because a(G) ≤ d(G), we must have
a(G) = 2. 1 char G, so that one Aut(G)-orbit is {1}. The second Aut(G)-orbit
is then G \ {1}. The elements in this orbit must have the same order, a number
p ∈ N with p ≥ 2. This number is necessarily a prime. Hence G is a p-group.

If G is nonabelian, then p2 | |G : G′|. Because of the inequality |G : G′| ≤
d(G) = 2, we obtain p2 ≤ 2, which is impossible for any prime p. The group G
is then abelian, so that |G| = |G : G′| = d(G) = 2. But then G ∼= Z2. 2

3.3. The case d(G) = 3

Theorem 20. d(G) = 3 if and only if G ∼= Z3 or G ∼= (∧Dp)n, the product
with amalgamated factor groups of n copies of the dihedral group Dp, where p
is a prime and n ∈ N, n ≥ 1.

Proof. We shall prove first that d(Z3) = d((∧Dp)n) = 3.
Z3 is abelian, hence d(Z3) = |Z3| = 3. (∧Dp)n is nonabelian and has the
following presentation

(∧Dp)n =< a1, a2, . . . , an, b|(ai)p = 1, [ai, aj ] = 1, b2 = 1, (aib)2 = 1 > .

We determine first the Aut(G)-orbits of G = (∧Dp)n. The following subsets of G
are obviously characteristic: 1, G′\{1} =< a1 > × < a2 > × . . .× < an > \{1},
G \G′ = G′b. We shall prove that they are precisely the Aut(G)-orbits of G:
• The orbit of the unit element is {1}.
• Any two elements ai and aj , with i, j ∈ {1, 2, . . . , n}, i 6= j, lie in the same
orbit, because if τ = (i, j), then the function given by ak 7−→ aτ(k), (∀)k = 1, n
and b 7−→ b can be extended to an automorphism of G, which interchanges ai

and aj .
If now a ∈ G′ \ {1, a1, a2, . . . , an}, then a belongs to the orbit of a1, because
the function a1 7−→ a, ai 7−→ ai, (∀)i = 2, n, b 7−→ b can be extended to an
automorphism of G, which sends a1 into a.
These two remarks prove that the characteristic subset G′ \ {1} is one Aut(G)-
orbit of G.
• Any element c ∈ G \ G′ belongs to the orbit of the element b, because the
function given by ai 7−→ ai, (∀)i = 1, n, b 7−→ c can be extended to an automor-
phism of G. This proves that G \G′ is also one Aut(G)-orbit of G.
Since |G : G′| = 2, every automorphism of G is a derival automorphism, hence
d(G) = a(G) = 3.
We have proved that the groups Z3 and (∧Dp)n have each exactly three D(G)-
orbits. We shall prove now that every finite group G with exactly three D(G)-
orbits is isomorphic either with Z3 or with (∧Dp)n for some prime p and some
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natural number n.
Let G be a finite group with d(G) = 3. Because of the inequality a(G) ≤ d(G),
we have a(G) ∈ {1, 2, 3}. Obviously, the case a(G) = 1 is impossible.
If a(G) = 2, then as in the case d(G) = 2 follows that G is an abelian p-group,
and then |G| = |G : G′| = d(G) = 3, hence G ∼= Z3.
Let now a(G) = 3. The two nontrivial D(G)-orbits coincide with the two non-
trivial Aut(G)-orbits. Let x and y be representatives of these two nontrivial
orbits. One could encounter then the following situations:

(a) o(x) = o(y) = p, with p a prime.

(b) o(x) = p, o(y) = p2, with p a prime.

(c) o(x) = p, o(y) = q, with p and q different primes.

In the cases (a) or (b), the group G would be a p-group, which cannot be
nonabelian, since then we would have 3 = d(G) ≥ |G : G′| = p2 > 3. But if
G is abelian then |G| = |G : G′| = d(G) = 3, and G ∼= Z3. This is impossible
because a(Z3) = 2.
Hence the only possible case is (c), and G is nonabelian. Then we have G′ 6= 1,
and aG(G′) ≥ 2. From the inequality d(G) ≥ |G : G′| + aG(G′) − 1 we obtain
that |G : G′| ≤ 2.
From the theorem of Cauchy, we know that for any prime r which divides the
order of a finite group there is an element of order r in that group. Since in the
group G there are only elements of orders 1, p, and q, the only primes which
divide |G| are p and q. From Burnside’s paqb- theorem follows that G is a soluble
group, hence G 6= G′, and |G : G′| ≥ 2.
We conclude that |G : G′| = 2, so that 2 is divisor of |G|, and the orbits of G
with respect to the action of Aut(G) and D(G) are 1, G′ \ {1}, and G \G′. We
can assume that q = 2 and p is an odd prime. Since |G : G′| = 2, the orbit of
elements of order 2 is G \ G′, and the orbit of elements of order p is G′ \ {1}.
G′ is thus a p-group with all elements of order p. Also, G′ cannot have any
characteristic subgroup, because such a subgroup would then be a characteris-
tic subgroup H of G, and G would have at least 4 Aut(G)-orbits: 1, H \ {1},
G′ \H, and G \G′. Hence, G′ is a characteristic simple p-group. Thus it is an
elementary abelian p-group. Let {a1, a2, . . . , an} be a minimal generating set
for G′ and b ∈ G \G′. Because every element of the orbit G \G′ = G′b of b has
order 2, the group G has the following presentation:

G =< a1, a2, . . . , an, b|(ai)p = 1, [ai, aj ] = 1, b2 = 1, (aib)2 = 1 > .

The group G is then the product with amalgamated factor groups of the n
groups < ai, b >, i = 1, n, which are all isomorphic with the dihedral group Dp.
We conclude that in this case G ∼= (∧Dp)n.
This completes the proof. 2
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Timişoara, 1997

[3] Coxeter, H. S. M., Moser, W. O. J., Generators and Relators for Discrete Groups,
3rd ed (Russian transl.), Ed.”Nauka”, Moscow, 1980

[4] Huppert, B., Endliche Gruppen, Springer-Verlag, Berlin, Heidelberg, New York,
1967

Received by the editors December 20, 2000.


