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DERIVAL AUTOMORHISMS OF GROUPS AND A
CLASSIFICATION PROBLEM

Mihai Chis!, Codruta Chis?

Abstract. In this paper, we define a class of automorphisms of groups —
the class of derival automorphisms, and determine all finite groups with
no more than three orbits with respect to the action of their groups of
derival automorphisms.
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1. Introduction

Let G be a group, N a characteristic subgroup of G, and « an automorphism
of G. Since a(N) = N, for any g € G holds a(gN) = a(g)N, so that we can
define a function

a:G/N — G/N : gN +— a(g)N,

which is obviously an automorphism of G/N.
Remark 1. The function

a— @ : Aut(G) — Aut(G/N)
is a homomorphism of groups.

Proof. For any g € G, and any «, 8 € Aut(G) we have
aoB(gN) = (a0 B)(9)N = a(B(g))N =

=a(B(g)N) =a(B(gN)) = (@0 B)(gN).

Definition 2. The kernel of this homomorphism is a subgroup of the automor-
phism group of the group G. We shall call the elements of this kernel N-al
automorpisms of the group G. They are precisely those automorphisms which
leave invariant the cosets of the characteristic subgroup N.
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Remark 3. In the manner described above, one can define various classes of
automorphisms of a group.

Definition 4. For N = Z(G), the center of the group G, the automorphisms
which invariate the cosets of Z(G) are called the central automorphisms of G.

Definition 5. Taking N = G’, we shall call derival automorphisms of G the
automorphisms which invariate the cosets of the commutator subgroup G’ of the
group G. The group of derival automorphisms of G will be denoted D(G).

Lemma 6. Fvery inner automorphism is a derival automorphism.

Proof. Let g € G be an arbitrary element of G, and iy : G — G : 2 +— g lag

the inner automorphism associated with g. Then

ig(x) = g 'ag =ax g eg = zfz, 9] € 2G',  (Y)z € G,

hence i4(2G’") = 2G’, (V)x € G, and i, is a derival automorphism of the group
G. O

Corollary 7. Inn(G) < D(G).

Definition 8. Let N < Aut(G) be a group of automorphisms of G. N acts
naturally on G via

(v,9)—v(g), (VveN,geq.
We shall call N'-orbits the orbits of G with respect to this action.

Remark 9. Let S C G be a subset of G which is invariant with respect to the
action of N, i.e. v(S) = S holds for anyv € N'. Then S is a union of N -orbits.

Proof. Since S is N-invariant, for any s € S we have
s € orbp(s) = {v(s)lv e N} C S.

Hence S C |J orba(s) C S, so that S = | orba(s). O
ses ses
Notation. We shall denote by n(G) the number of A-orbits of G. If S C G

is a N-invariant subset of G, ng(S) will be the number of A-orbits in which
decomposes S.

Obviously, if S is a M-invariant subset of G, then G\ S is also N -invariant, and
the following equality holds:

n(G) =ng(S) + ng(G\ 9).

Notation. For some particular classes of automorphisms of a group G we shall
use the following notations:
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o N = Aut(G): a(G) = # of Aut(G)-orbits, ag(S) = # of Aut(G)-orbits in a
characteristic subset S of G;

e N = Inn(G): k(G) = # of Inn(G)-orbits= # of conjugacy classes of G,
kq(S) = # of Inn(G)-orbits= # of conjugacy classes in a normal subset S of
G;

e N =C(G): ¢(G) = # of C(G)-orbits, ce(S) = # of C(G)-orbits in a C(G)-
invariant subset S of G;

o N =D(G): d(G) = # of D(G)-orbits, dg(S) = # of D(G)-orbits in a D(G)-
invariant subset S of G.

Let M,N < Aut(G) be subgroups of the automorphism group of a group
G, with M < N. Then every N-orbit is M-invariant, hence it is a union of
M-orbits.

Corollary 10. Let S be a N-invariant subset of G, and let ng(S) and mea(S)
be the number of N -orbits, respectively M-orbits of S. Then ng(S) < mg(S).

Proof. S decomposes into N-orbits, which decompose into M-orbits. The
inequality is now obvious. O

2. Some bounds for d(G)

Theorem 11. The number d(G) of D(G)-orbits of a group G is not greater
than the number of conjugacy classes of G.

Proof. This follows immediately from the fact that Inn(G) < D(G) and that
the conjugacy classes of the group G are precisely the orbits with respect to the
natural action of Inn(G) on G. O

Theorem 12. Let G be a group, D(G) the group of derival automorphisms of G,
N < Aut(G) a subgroup of the automorphism group of G such that D(G) < N,
and S an N -invariant subset of G. Then the following inequalities hold:

d(G) > da(S)+na(G\S)
d(G) > ng(S)+dg(G\S)
A > n(G)

Proof. Since D(G) < N, we have the inequalities dg(S) > ng(S) and dg(G \
S) > ng(G\ S), which prove the result. a

Remark 13 From the definition of derival automorphisms follows that every
D(G)-orbit is contained in a coset of the commutator subgroup G’ in G. As a
consequence we have the inequality

d(G) > G : ).
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Corollary 14 The following inequality holds:
d(G) > de(G) + |G : G| - 1.

Proof. G\ G’ is a D(G)-invariant subset of G and dg(G\G') > |G : G'|—1 = #
of cosets of G’ contained in G\ G'. O

Remark 15. Since D(G) < Aut(G) and G’ is a chracteristic subgroup of G,
we can refine the previous inequality. We have dg(G') > ag(G'), hence

d(G) > ag(G")+ |G : G'| - 1.
Theorem 16. d(G) = |G : G'| if and only if G is abelian.

Proof. If G is abelian, then G’ = 1 and D(G) = {l¢}, so that d(G) = |G| =
|G : G'|.

If d(G) = |G : G'| then from the inequality above follows that ag(G’) = 1,
hence G’ =1 and G is abelian. O

Theorem 17. If G is a group with |G : G'| = 2, then D(G) = Aut(G) and
d(G) = a(G).

Proof. Because |G/G'| = 2, we have Aut(G/G') = {1¢/¢}, hence the kernel of
the group homomorphism

a—a: Aut(G) — Aut(G/G")

is Aut(G). But D(G) was defined to be exactly this kernel. We obtain D(G) =
Aut(G) and then obviously d(G) = a(G). O

3. Groups with few D(G)-orbits

In this section we are going to determine all finite groups G with no more
than three D(G)-orbits. We shall discuss seperately the cases d(G) = 1, d(G) =
2, and d(G) = 3.

3.1. The case d(G) =1
Theorem 18. d(G) =1 if and only if G = 1.

Proof. Obviously, if G = 1, then d(G) = 1.

Suppose now that d(G) = 1. Because d(G) > a(G), we have a(G) = 1. The
group G has only one orbit with respect to the action of Aut(G). Hence all
elements of G have the same order, and since o(1) = 1, this order is 1. G
contains then only the unit element, so G = 1. O
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3.2. The case d(G) =2
Theorem 19 d(G) =2 if and only if G = Z.

Proof. It G = Zy then d(G) = d(Zs) = 2.
Let now G be a finite group with d(G) = 2. Since G # 1, we have a number
of Aut(G)-orbits a(G) # 1. But then, because a(G) < d(G), we must have
a(G) = 2. 1char G, so that one Aut(G)-orbit is {1}. The second Aut(G)-orbit
is then G\ {1}. The elements in this orbit must have the same order, a number
p € N with p > 2. This number is necessarily a prime. Hence G is a p-group.
If G is nonabelian, then p? | |G : G’|. Because of the inequality |G : G'| <
d(G) = 2, we obtain p? < 2, which is impossible for any prime p. The group G
is then abelian, so that |G| = |G : G’| = d(G) = 2. But then G & Zs. O

3.3. The case d(G) =3

Theorem 20. d(G) = 3 if and only if G = Z3 or G = (AD,)", the product
with amalgamated factor groups of n copies of the dihedral group D,, where p
is a prime and n € N, n > 1.

Proof. We shall prove first that d(Zs3) = d((AD,)") = 3.
Zs is abelian, hence d(Z3) = |Zs| = 3. (AD,)" is nonabelian and has the
following presentation

(ADp)" =< ai,az,...,an,b|(a;)? = 1,[a;,a;] = 1,v’ =1, (aib)2 =1>.

We determine first the Aut(G)-orbits of G = (AD,)™. The following subsets of G
are obviously characteristic: 1, G'\{1} =< a1 > X <ag > X...X < a, > \{1},
G\ G' = G'b. We shall prove that they are precisely the Aut(G)-orbits of G:

e The orbit of the unit element is {1}.

e Any two elements a; and a;, with 4,5 € {1,2,...,n}, i # j, lie in the same
orbit, because if 7 = (i, ), then the function given by aj — a(x), (V)k =1,n
and b — b can be extended to an automorphism of GG, which interchanges a;
and a;.

If now a € G'\ {1,a;,as,...,a,}, then a belongs to the orbit of a;, because
the function a; — a, a; — a;, (V)i = 2,n, b — b can be extended to an
automorphism of G, which sends a; into a.

These two remarks prove that the characteristic subset G’ \ {1} is one Aut(G)-
orbit of G.

e Any element ¢ € G\ G’ belongs to the orbit of the element b, because the
function given by a; — a;, (V)i = 1,n, b — ¢ can be extended to an automor-
phism of G. This proves that G \ G’ is also one Aut(G)-orbit of G.

Since |G : G'| = 2, every automorphism of G is a derival automorphism, hence
d(@) = a(G) = 3.

We have proved that the groups Zz and (AD,)"™ have each exactly three D(G)-
orbits. We shall prove now that every finite group G with exactly three D(G)-
orbits is isomorphic either with Zz or with (AD,)" for some prime p and some
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natural number n.

Let G be a finite group with d(G) = 3. Because of the inequality a(G) < d(G),
we have a(G) € {1,2,3}. Obviously, the case a(G) =1 is impossible.

If a(G) = 2, then as in the case d(G) = 2 follows that G is an abelian p-group,
and then |G| = |G : G'| = d(G) = 3, hence G = Zs.

Let now a(G) = 3. The two nontrivial D(G)-orbits coincide with the two non-
trivial Aut(G)-orbits. Let x and y be representatives of these two nontrivial
orbits. One could encounter then the following situations:

(a) o(z) = o(y) = p, with p a prime.
(b) o(x) = p, o(y) = p?, with p a prime.
(c) o(z) = p, o(y) = q, with p and ¢ different primes.

In the cases (a) or (b), the group G would be a p-group, which cannot be
nonabelian, since then we would have 3 = d(G) > |G : G'| = p? > 3. But if
G is abelian then |G| = |G : G'| = d(G) = 3, and G = Z3. This is impossible
because a(Z3) = 2.

Hence the only possible case is (c), and G is nonabelian. Then we have G’ # 1,
and ag(G’) > 2. From the inequality d(G) > |G : G'| + ag(G’) — 1 we obtain
that |G : /| < 2.

From the theorem of Cauchy, we know that for any prime r which divides the
order of a finite group there is an element of order r in that group. Since in the
group G there are only elements of orders 1, p, and ¢, the only primes which
divide |G| are p and ¢. From Burnside’s p®q®- theorem follows that G is a soluble
group, hence G # G’, and |G : G| > 2.

We conclude that |G : G'| = 2, so that 2 is divisor of |G|, and the orbits of G
with respect to the action of Aut(G) and D(G) are 1, G'\ {1}, and G\ G'. We
can assume that ¢ = 2 and p is an odd prime. Since |G : G’| = 2, the orbit of
elements of order 2 is G\ G’, and the orbit of elements of order p is G’ \ {1}.
G’ is thus a p-group with all elements of order p. Also, G’ cannot have any
characteristic subgroup, because such a subgroup would then be a characteris-
tic subgroup H of G, and G would have at least 4 Aut(G)-orbits: 1, H \ {1},
G'\ H, and G\ G'. Hence, G’ is a characteristic simple p-group. Thus it is an
elementary abelian p-group. Let {ai,as,...,a,} be a minimal generating set
for G’ and b € G\ G'. Because every element of the orbit G\ G’ = G’'b of b has
order 2, the group G has the following presentation:

G =<ay,as,...,a,,0/(a;)’ =1,[a;,a;] = 1,02 = 1,((1ib)2 =1>.

The group G is then the product with amalgamated factor groups of the n
groups < a;,b >, i = 1,n, which are all isomorphic with the dihedral group D,,.
We conclude that in this case G = (ADp)".

This completes the proof. O
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