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OPERATORS H, S AND P IN THE CLASSES OF
p-SEMIGROUPS AND p-SEMIRINGS

Vjekoslav Budimirović1, Branimir Šešelja2

Abstract. If p ∈ N , then a p-semigroup, introduced in [3], is a gener-
alization of the notion of an anti-inverse semigroup [2]. A similar notion
is a p-semiring. The aim of the paper was to investigate the closeness
of classes of these algebras under the operators H (homomorphisms), S
(subalgebras) and P (direct products). It is proved that for every p ∈ N
each of these classes is closed under H and P . Conditions under which
closeness under S also hold are presented. It turns out that for p even or
p = 4k + 3 both the class of p-semigroups and the one of p-semirings are
varieties. The corresponding identities are presented.
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1. Introduction

We advance some definitions from the paper [3].
Let (S, +) be a semigroup and p ∈ N . Further, let τp be a relation on S,

introduced by:

xτpy ⇐⇒ x + py + x = y ∧ py + x + py = x.

If xτpy for x, y ∈ S, then py is called the p-element of the element x. A
semigroup (S, +) is called a p-semigroup if each element has its p-element. For
a given p, let Πp denote the class of all p-semigroups, i.e.,

S ∈ Πp ⇐⇒ (∀x ∈ S)(∃y ∈ S)(xτpy).

Now we generalize the foregoing notions to the structure with two binary
operations.

As is known, a semiring (S, +, ·) is an algebra with two binary operations,
such that (S, +) and (S, ·) are semigroups:

x + (y + z) = (x + y) + z; x · (y · z) = (x · y) · z,
and the following distributivity laws are fulfilled:

x · (y + z) = (x · y) + (x · z); (x + y) · z = (x · z) + (y · z).
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By some authors, the first operation is commutative, and also neutral ele-
ment in the first semigroup (or in both) is required (see [4, 5]). In the present
paper, semirings are not generally supposed to satisfy any of these additional
properties.

Let (S, +, ·) be a semiring and p ∈ N . Let also θp be a relation on the
semiring S, introduced by

xθpy ⇐⇒ x + py + x = y ∧ py + x + py = x ∧ 4px2 = 4px,

i.e., xθpy ⇐⇒ xτpy ∧ 4px2 = 4px. If xθpy for x, y ∈ S, then py is called the
p-element of the element x. The semiring (S,+, ·) is called the p-semiring
if each element has its p-element. For a given p, let Σp denote the class of all
p-semirings, i.e.,

S ∈ Σp ⇐⇒ (∀x ∈ S)(∃y ∈ S)(xθpy).

An example of a p-semiring, when p is an arbitrary odd positive integer, is
given by the following tables.

+ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

· e a b c

e e e e e
a e a e a
b e e b b
c e a b c

The additive semigroup of this semiring is a group and it is a p-semigroup.
We will use the following results, proved in [3].

Lemma 1. Each element x of a p-semigroup has its own identity ex, where
ex = 4px.

Lemma 2. Let x be an arbitrary element of p-semigroup and k the smallest
positive integer such that kx = ex. Then k|4p.

Lemma 3. Let x be an arbitrary element of a p-semigroup and p = 4k + 3(k ∈
N0). Then 2px = ex.

Lemma 4. Let S be a semigroup and p an even positive integer, then

S ∈ Πp ⇐⇒ (∀x ∈ S)((4p + 1)x = x).

Lemma 5. If p = 4k + 1(k ∈ N0), then the generalized quaternion group is a
p-semigroup.
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2. On p-semigroups

Theorem 1. A homomorphic image of a p-semigroup is a p-semigroup.

Proof. Let f be a homomorphism which maps a p-semigroup (S1, +) onto a
semigroup (S2, +) and let x2 ∈ S2. Then there exists x1 ∈ S1 such that f(x1) =
x2. Since S1 is a p-semigroup, there exists y1 ∈ S1 for which x1τpy1, i.e., such
that x1 + py1 + x1 = y1 and py1 + x1 + py1 = x1. Therefore, for y2 = f(y1) we
have:
x2 + py2 + x2 = f(x1) + pf(y1) + f(x1) = f(x1 + py1 + x1) = f(y1) = y2,
py2 + x2 + py2 = pf(y1) + f(x1) + pf(y1) = f(py1 + x1 + py1) = f(x1) = x2.
So, (S2, +) is a p-semigroup. 2

Theorem 2. Let Si, i ∈ I be a family of semigroups and p ∈ N . Then
∏

(Si, i ∈
I) is a p-semigroup if and only if Si is a p-semigroup for every i ∈ I.

Proof. Let (Si,+), i ∈ I be a family of p-semigroups and x ∈ S. Then, for every
i ∈ I, there exists ai ∈ Si, such that x(i)τpai. Let a ∈ S be a function such that
a(i) = ai for every i ∈ I. Then

(x + pa + x)(i) = x(i) + pa(i) + x(i) = x(i) + pai + x(i) = ai = a(i), i ∈ I.
Hence, x + pa + x = a.

We also have (pa+x+pa)(i) = pa(i)+x(i)+pa(i) = pai +x(i)+pai = x(i),
so, pa + x + pa = x. Hence, xτpa.

Conversely, let S =
∏

i∈I

Si be a p-semigroup. Then for an arbitrary x ∈ S,

there exists a ∈ S, such that xτpa, respectively x+pa+x = a and pa+x+pa = x.
Let xi ∈ I, i ∈ I, be arbitrary elements from the semigroups Si. Let x ∈ S be a
function such that x(i) = xi for every i ∈ I. Then there exists a ∈ S such that
xτpa. Furthermore, (x+pa+x)(i) = a(i) and (pa+x+pa)(i) = x(i), respectively
x(i) + pa(i) + x(i) = a(i), and pa(i) + x(i) + pa(i) = x(i) for every i ∈ I. Since
x(i) = xi for every i ∈ I, then xi + pa(i)+xi = a(i) and pa(i)+xi + pa(i) = xi.
Thus, for each xi ∈ Si, i ∈ I there exists a(i) ∈ Si, such that xiτpa(i), so all the
semigroups Si, i ∈ I are p-semigroups. 2

Corollary 1. The class of p-semigroups (p ∈ N) is closed under the operators
H and P .

In the following we give necessary and sufficient conditions under which a
sub-semigroup of a p-semigroup is a p-semigroup too.

Theorem 3. Let p be an odd positive integer and S a p-semigroup. Then every
sub-semigroup of S is a p-semigroup if and only if 2px = ex for every x ∈ S.

Proof. Let each sub-semigroup of p-semigroup S be a p-semigroup and x an
arbitrary element from an arbitrary p-sub-semigroup A of S. If k is the smallest



130 V. Budimirović, B. Šešelja

positive integer such that kx = ex, then, by Lemma 2, k | 4p. The semigroup
〈x〉 = {ex, x, 2x, . . . , (k−1)x} is a sub-semigroup of the semigroup A. Since 〈x〉 is
a p-semigroup, then there exists r ∈ {0, 1, 2, . . . , k−1} such that y = rx(0x = ex)
and xτpy. Hence, x + p(rx) + x = rx, p(rx) + x + p(rx) = x. From the second
equality we have that r(2px) + x = x, respectively r(2px) = ex. If r is an odd
positive integer, then 2px = ex. If r = 0, then from the first equality we have
that 2x = ex, so 2px = ex. Let us consider the case when r is an even positive
integer. If r = 4r0(r0 ∈ N), then from the equality x + p(rx) + x = rx we have:
rpx + 2x = rx, r0(4px) + 2x = rx, 2x = rx ([2]). Since all elements of the cyclic
group 〈x〉 are distinct and r = 4r0 6= 2, we conclude that r can not be of the form
4r0. Let r = 4r2 + 2(r2 ∈ N0). Then from the equality x + p(rx) + x = rx we
get: r(px)+2x = rx, (4r2+2)(px)+2x = (4r2+2)x, r2(4px)+2px+2x = 4r2x+
2x, 2px+2x = 4r2x+2x, 2px+2x+(4p−2)x = 4r2x+2x+(4p−2)x, 2px+4px =
4r2x + 4px, 2px = 4r2x, p(2px) = p(4r2x), p−1

2 (4px) + 2px = r2(4px), 2px = ex.
Hence, in any case 2px = ex.

Conversely, let 2px = ex for every x ∈ S. Let x be an arbitrary element of
any sub-semigroup A of S. Let y = 2x. It is clear that y ∈ A. Furthermore:
x+py+x = x+p(2x)+x = 2x+2px = 2x = y, py+x+py = p(2x)+x+p(2x) = x,
so xτpy. Thus, the sub-semigroup A is a p-semigroup. 2

Theorem 4. Let p be an even positive integer or p = 4k + 3(k ∈ N0), and S a
p-semigroup. Then every sub-semigroup of S is a p-semigroup.

Proof. Let p = 4k + 3(k ∈ N0). By Lemma 3, 2px = ex for every x ∈ S, so, by
Theorem 3, each sub-semigroup of the semigroup S is a p-semigroup, too.

Let p be an even positive integer and let x be an arbitrary element of an
arbitrary sub-semigroup A of S. Then y = 2px + 2x is from the semigroup A,
too. Since p is even, then p(2px) = ex, so we have:

py + x + py = p(2px + 2x) + x + p(2px + 2x)
= p(2px) + 2px + x + p(2px) + 2px

= 2px + x + 2px = 4px + x = x,

x + py + x = x + p(2px + 2x) + x = p(2px) + 2px + 2x = 2px + 2x = y

Therefore, the sub-semigroup A is a p-semigroup. 2

Corollary 2. Let p be an even positive integer or p = 4k + 3(k ∈ N0). Then
the class of p-semigroups is closed under the operator S.

Summing up, we have the following.

Theorem 5. If p is even or p = 4k + 3(k = 0, 1, 2, . . .) then the class of p-
semigroups is a variety.
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We provide an explicit description of the above varieties.

Theorem 6. Let = be the variety of semigrups. The following holds:

(a) If p = 4k + 3(k ∈ N0) then Πp is an equational class determined by the
identity

(2p + 1)x = x;

(b) If p is even then Πp is an equational class determined by the identity

(4p + 1)x = x.

Proof. (a) Let S ∈ Πp. By Lemma 3, 2px = ex, respectively (2p + 1)x = x for
every x ∈ S.

Conversely, let (∀x ∈ S)((2p + 1)x = x). Let y = 2x and let us prove that
xτpy. We have:

x + py + x = x + p(2x) + x = x + (2p + 1)x = x + x = y,

py + x + py = p(2x) + x + p(2x) = 2px + (2p + 1)x = 2px + x = x.

(b) The proof follows by Lemma 4 immediately. 2

If p = 4k+1(k ∈ N0), then the class Πp is not a variety, since it is not closed
under the operator S. Indeed, if

S = {ea, a, 2a, . . . , (4p− 1)a, b, a + b, 2a + b, . . . , (4p− 1)a + b}
is a general quaternion group, then it has the property 2pa 6= ea. Hence,
Theorem 3 is not satisfied. Observe that there are semigroups in the class Πp

which satisfy conditions of Theorem 3. Such is, e.g., the cyclic group {ea, a}.

3. On p-semirings

Theorem 7 A homomorphic image of a p-semiring is a p-semiring.

Proof. Let f be a homomorphism which maps a p-semiring (S1, +, ·) onto a
semiring (S2, +, ·) and x2 ∈ S2. Similarly as in Theorem 1 we prove that there
exists y2 ∈ S2, such that x2τpy2. Furthermore

4px2
2 = 4p(f(x))2 = 4p(f(x) · f(x)) = 4pf(x · x)

= 4pf(x2) = f(4px2) = f(4px) = 4pf(x) = 4px2,

so x2θpy2. 2

Theorem 8. Let {Si, i ∈ I} be a family of p-semirings and p ∈ N . Then,
S =

∏

i∈I

Si is a p-semiring if and only if Si is a p-semiring for every i ∈ I.
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Proof. Let (Si,+, ·), i ∈ I, be p-semirings and x ∈ S. Similarly as in Theorem
2 we prove that there exists a ∈ S such that xτpa. Furthermore (4px2)(i) =
4px2(i) = 4px(i) = (4px)(i) for every i ∈ I, so 4px2 = 4px. Hence, xθpa.

Conversely, let S =
∏

i∈I

Si be a p-semiring. Similarly as in Theorem 2 we

prove that there exist a(i) ∈ Si such that xiτpa(i), for every xi ∈ Si, i ∈ I.
Since 4px2 = 4px, then (4px2)(i) = (4px)(i), thus 4px2(i) = 4px(i), for every
i ∈ I. Hence, xiθpa(i) for every i ∈ I, so all semirings Si, i ∈ I, are p-semirings.
2

Corollary 3. The class of p-semiring (p ∈ N) is closed under the operators H
and P .

Theorem 9. Let p be even or p = 4k + 3(k ∈ N0) and S a p-semiring. Then
every sub-semiring of S is a p-semiring.

Proof. If (S, +, ·) is a p-semiring, then (S,+) is a p-semigroup. If (A, +, ·) is
a sub-semiring of a p-semiring (S, +, ·), then (A, +) is a sub-semigroup of p-
semigroup (S, +). By Theorem 2.5., (A, +) is a semigroup. Since 4px2 = 4px
for every x ∈ S, then (A, +, ·) is a p-semiring. Hence, each sub-semiring of
p-semiring S is a p-semiring, too. 2

Corollary 4. The class Σp of p-semirings, for even p or p = 4k + 3(k ∈ N0)
is a variety.

Theorem 10. If p is an even integer, then Σp is an equational class determined
by the identities (4p+1)x = x and 4px2 = 4px. If p = 4k+3(k ∈ N0), then Σp is
an equational class determined by the identities (2p + 1)x = x and 4px2 = 4px.
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