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VARIATION OF AN ELEMENT IN THE MATRIX OF
THE FIRST DIFFERENCE OPERATOR AND MATRIX

TRANSFORMATIONS

Bruno de Malafosse1

Abstract. In this paper we deal with some new properties of the operator
of first difference represented by the infinite matrix ∆. We study the
operator represented by the perturbed matrix ∆′

pq (a′) obtained from ∆
by changing one element. Then we give necessary and sufficient conditions
for a matrix A to map sα

((
∆′

pq (a′)
)µ)

into sβ , µ being an integer.

AMS Mathematics Subject Classification (2000): 39B42

Key words and phrases: operator of first difference, perturbed matrix

1. Introduction

We are interested in the study of the first difference operator. This one can
be represented by the infinite matrix ∆. Many authors have given results on
this last operator, see for instance Malkowsky [8],[9], Kizmaz [2], Çolak and
Et [1] and more recently de Malafosse [6]. These authors gave many charac-
terizations of the operators A mapping the space (∆µ)−1 (l∞) into l∞, that
is A ∈ (l∞ (∆µ) , l∞). Malkowsky [8], [9] and Malkowsky and Parashar [7]
found new Schauder bases in the spaces c0 (∆µ) and c (∆µ). They gave many
results concerning AK and BK spaces considering the Λ-strongly null and Λ-
strongly convergent sequences and have studied extensions of some results given
by Wilansky [12]. Note that many authors have dealt with the Cesàro operator
and there is a simple relation between this operator and the operator repre-
sented by ∆. Recall that the spectrum of the Cesàro operator C1 in certain
spaces has been studied by Reade [11], Okutoyi [10] and de Malafosse [5]. Here
are recalled some properties of ∆ considered as an operator from the space sα

into itself. Further, as in [5], we deal with matrix perturbation and consider the
new matrix ∆′

pq (a′) obtained from ∆ by changing only one element in the p-th
row and in the q-th column of the infinite matrix and deduce some results on
the spaces sα

((
∆′

pq (a′)
)µ)

. Then we deal with matrix transformations between
matrix domains such as sα

((
∆′

pq (a′)
)µ)

or sβ .
The paper is organized as follows. In the second section we recall some results

and definitions concerning the infinite matrix theory. In the third section some
properties of the spaces sr (∆µ), sr

(
(∆+)µ)

and s1 (∆µ) are given. Next, we
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assert some results concerning the operators C1, ∆, ∆+ and Σ in relation to sr.
In the fourth section ∆ is replaced by ∆′

pq (a′), (the matrix obtained from ∆ by
replacing the coefficient apq by a′) and we study the new equation ∆′

pq (a′)X =
B.Then, under some conditions, we characterize the matrix transformations
mapping sα

(
∆′

pq (a′)
)

into sβ . Further, we give an upper bound of the distance
‖Xpq (a′)− Z‖s1

, where Z is the solution of ∆X = B and Xpq (a′) the solution
of equation ∆′

pq (a′)X = B, whenever it exists. In the final section, we deal
with matrix transformations lying in the set

(
sα

((
∆′

pq (a′)
)µ)

, sβ

)
, µ being a

given integer.

2. Notations and preliminary results

In the following, we shall consider infinite linear systems defined by

∞∑
m=1

anmxm = bn n = 1, 2, ...

Such a system can be written as a matrix equation AX = B, where A =
(anm)n,m≥1 and X, B are the one column matrices defined respectively by
(xn)n≥1 and (bn)n≥1. The following spaces have been defined, for instance, in
[3] and [5]. For a sequence α = (αn)n≥1, where αn > 0 for every n ≥ 1, we
consider the Banach algebra

Sα =

{
A = (anm)n,m≥1 / sup

n≥1

( ∞∑
m=1

|anm| αm

αn

)
< ∞

}
,(1)

normed by

‖A‖Sα
= sup

n≥1

( ∞∑
m=1

|anm| αm

αn

)
.(2)

Sα admits a unit element I = (δnm)n,m (δnm being equal to 1 if n = m and
equal to 0 otherwise). Denote by s the set of all sequences. We also define the
Banach space sα of one-row matrices by

sα =
{

X = (xn)n ∈ s / sup
n≥1

( |xn|
αn

)
< ∞

}
,(3)

normed by

‖X‖sα
= sup

n≥1

( |xn|
αn

)
.(4)

We shall say that the sequence X = (xn)n belongs to Γ if

lim
n→∞

(∣∣∣∣
xn−1

xn

∣∣∣∣
)

< 1.
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For any subset E of s, we put

AE = {Y ∈ s / ∃X ∈ E Y = AX} .(5)

If F is a subset of s, we shall denote

F (A) = FA = {X ∈ s / Y = AX ∈ F} .(6)

We can see that F (A) = A−1F . If A maps E into F , we write that A ∈ (E, F ).
It is well-known that A ∈ (s1, s1) if and only if A ∈ S1 (see [4]).

For any sequence ζ = (ζn)n≥1, we shall put Dζ = (ζnδnm)n,m≥1.
A being an infinite matrix, let us define the matrix A 〈t〉 = (a′nm)n,m≥1,

(with a′nn 6= 0 ∀n) obtained from A by addition of the row t = (tm)m≥1. In
the same way, set for any scalar u: tB 〈u〉 = (u, b1, b2, ...). Then we have the
following result given in [3], in which a∗ = (1/a′nn)n≥1:

Proposition 1 If ‖ I −Da∗A 〈t〉 ‖Sα
< 1 and Da∗B 〈u〉 ∈ sα, then solutions of

AX = B in the space sα are

X = [Da∗A 〈t〉]−1Da∗B 〈u〉 u ∈ C.

3. Some new properties of the operator ∆(µ),µ being any
real.

In this section we give some properties of ∆µ and (∆+)µ in relation to the
space sr and we investigate the spectrum of each operator represented by the
matrices C1, ∆, ∆+ and Σ in relation to the space sr.

3.1. Properties of ∆µ in relation to sr

The well-known operator ∆(µ):s → s, where µ is an integer ≥ 1, is repre-

sented by the infinite lower triangular matrix ∆µ, where ∆ =




1 O
−1 1
O . .


 .

We have for every X = (xn)n≥1, ∆X = (yn)n≥1 with y1 = x1 and yn =
xn−xn−1 if n ≥ 2. We can express the following result, in which ∆+ = t∆ and
e = (1, 1, ...).

Proposition 2 ([6]) i) The operator represented by ∆ is bijective from sr into
itself, for every r > 1 and ∆+ is bijective from sr into itself, for all r, 0 < r < 1.

ii) ∆+ is surjective and not injective from sr into itself, for all r > 1.

iii) ∀r 6= 1 and for every integer µ ≥ 1 (∆+)µ
sr = sr.

iv)We have successively
α) If µ is a real > 0 and µ /∈ N , then ∆µ maps sr into itself when r ≥ 1 but

not for 0 < r < 1.
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If −1 < µ < 0, then ∆µ maps sr into itself when r > 1 but not for r = 1.
β) If µ > 0 and µ /∈ N , then (∆+)µ maps sr into itself when 0 < r ≤ 1 but

not if r > 1.
If −1 < µ < 0, then (∆+)µ maps sr into itself for 0 < r < 1 but not for

r = 1.

v) For a given integer µ ≥ 1, we have successively




∀r > 1 : A ∈ (sr (∆µ) , sr) ⇔ sup
n≥1

( ∞∑
m=1

|anm| rm−n

)
< ∞,

∀r ∈]0, 1[: A ∈ (
sr

(
(∆+)µ)

, sr

) ⇔ sup
n≥1

( ∞∑
m=1

|anm| rm−n

)
< ∞.

vi) For every integer µ ≥ 1

s1 ⊂ s1 (∆µ) ⊂ s(nµ)n≥1
⊂

⋂
r>1

sr.

vii) If µ > 0 and µ /∈ N then q is the greatest integer strictly less than
(µ + 1). ∀r > 1

Ker
((

∆+
)µ )⋂

sr = span (V1, V2, ..., Vq) ,

where: {
V1 =t e, V2 =t

(
A1

1, A
1
2, ...

)
, V3 =t

(
0, A2

2, A
2
3, ...

)
, ...

Vq =t
(
0, 0, ..., Aq−1

q−1, A
q−1
q , ..., Aq−1

n , ...
)

;
(7)

Aj
i = i!

(i−j)! , with 0 ≤ j ≤ i, being the number of permutations of i things taken
j at a time.

3.2. Spectrum of each operator C1, ∆, ∆+ and Σ in relation to the
space sr

We give here some spectral properties of several well-known operators. Recall
that C1 = (anm)nm≥1 is the Cesàro operator of order 1, defined by the infinite
matrix {

anm = 1/n if m ≤ n,
anm = 0 otherwise.

(see [3], [5], [6], [7] and [12]). It is well-known that if Σ is the lower triangular
matrix whose all entries below the main diagonal are equal to 1, we have ∆−1 =
Σ. There exists a relation between these operators. Indeed D(n)n

C1 = Σ and
∆

(
D(n)n

C1

)
= I, which proves that C−1

1 = ∆D(n)n
. Here A is an operator

mapping sr into itself, r being a given real > 0. We shall denote by σ (A) its
spectrum, set of all complex numbers λ, such that (A− λI) as operator from
sr into itself, is not invertible. We obtain the next results.
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Theorem 3. ([6]) One has




i) σ (C1) = {0}⋃ {
1
n / n ≥ 1

}
,

ii) σ (∆) = D (1, 1/r) ,

iii) σ (∆+) = D (1, r) .

Note that i) has been shown in [5]. Analogously, concerning the operator Σ
one gets

Proposition 4. ([6]) Let r > 1. We have

i) 1
λ ∈ D (1, 1/r) ⇔ λ ∈ σ (Σ).

ii) For all λ /∈ σ (Σ), λI−Σ is bijective from sr into itself and if (λI − Σ)−1 =
(τnm)n,m≥1, then





τnn = 1
1−λ ∀n ≥ 1,

τnm = 1
(1−λ)2

(
−λ
1−λ

)n−m−1

if m ≤ n,
τnm = 0 otherwise.

(8)

4. Variation of an element in the infinite matrix ∆

In this section we are interested in the perturbed matrix ∆′
pq (a′) and deal

with the equation ∆′
pq (a′)X = B and matrix transformations from sα

(
∆′

pq (a′)
)

into sβ .

4.1. First properties of the equation ∆′
pq (a′)X = B

We study the case when only one element of ∆ is changed. So, we consider
a given row of index p, and a given column of index q and denote by a the term
apq of the matrix ∆. B being given, we study what becomes the solution of the
equation ∆X = B, when a is replaced by another element a′ in the matrix ∆;
∆′

pq (a′), (or ∆′ for short), will denote this new matrix.
We get the following result

Theorem 5. Let B be any sequence.

i) The equation ∆′X = B admits a unique solution either in the cases:
q ≤ p− 1, or q = p and a′ 6= 0, or q > p and a′ 6= −1.

ii) a- Let p < q. When
q∑

k=1

bk = 0 the equation ∆′
pq (−1)X = B admits

infinitely many solutions in s. If p = 1, these solutions are given for every
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scalar u by

tX =

(
u + b1, u + b1 + b2, ..., u

+
q−1∑

k=1

bk, u, u + bq+1, u + bq+1 + bq+2, ..., u +
n∑

k=q+1

bk, ...


 ;

and for p ≥ 2, these solutions are

tX =

(
b1, b1 + b2, ...,

p∑

k=1

bk, u

+
p+1∑

k=1

bk, ..., u +
q−1∑

k=1

bk, u, u + bq+1, ..., u +
n∑

k=q+1

bk, ...


 .

When
q∑

k=1

bk 6= 0 the equation ∆′
pq (−1)X = B does not admit any solution in

s.
b- If

p∑
k=1

bk = 0 the equation ∆′
pp (0) X = B admits infinitely many solutions

in s given for any scalar u by

tX =

(
u, u + b2, ..., u +

n∑

k=2

bk, ...

)
for p = 1,

and for p ≥ 2

tX =


b1, b1 + b2, ...,

p−1∑

k=1

bk, u, u + bp+1, u + bp+1 + bp+2, ..., u +
n∑

k=p+1

bk, ...


 .

When
p∑

k=1

bk 6= 0 the equation ∆′
pp (0) X = B does not admit any solution.

Proof. Assertion i). The result is trivial in the two first cases, since a triangle
whose elements on the main diagonal are all different from zero is invertible. It
remains to deal with the case when 1 ≤ p < q. Consider the case 1 < p < q.
We see that the equation ∆′X = B is equivalent to the system

{
−xn−1 + xn = bn if n = 1, 2..., p− 1, p + 1, ...;
−xp−1 + xp + a′xq = bp,

(9)

where we use the convention x0 = 0. We get

xn =
n∑

k=1

bk if n = 1, 2..., p− 1,(10)
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xn = xp +
n∑

k=p+1

bk if n = p + 1, ..., q.(11)

From the second equality given by (9) and (10) we obtain xp + a′xq =
p∑

k=1

bk.

Putting n = q in (11) we have −xp + xq =
q∑

k=p+1

bk. Since a′ 6= −1 one deduces

easily that

xn =





1
a′+1

n∑
k=1

bk − a′
a′+1

q∑
k=n+1

bk if n = p, ..., q − 1,

1
a′+1

q∑
k=1

bk, if n = q,

− a′
a′+1

q∑
k=1

bk +
n∑

k=q+1

bk, if n = q + 1, q + 2, ...

(12)

When p = 1 < q then the unique solution of equation ∆′X = B, is given by

xn =





n∑
k=1

bk − a′
a′+1

q∑
k=1

bk if n ≤ q − 1,

1
a′+1

q∑
k=1

bk if n = q,

n∑
k=1

bk − a′
a′+1

q∑
k=1

bk if n = q + 1, q + 2, ...

(13)

which completes the proof of i).
Assertion ii) a. If a′ = −1, take p ≥ 2. We deduce from i) that the equation

∆′
pq (−1)X = B admits a solution if xp−xq =

q∑
k=1

bk = −
q∑

k=p+1

bk that is, when

n∑
k=1

bk = 0. Then we can take xq = u as an arbritary scalar and the solutions

are given by

xn =





n∑
k=1

bk if n = 1, 2..., p− 1,

u +
n∑

k=1

bk if n = p, p + 1, ..., q − 1,

u +
n∑

k=q+1

bk if n = q + 1, ...

(14)

The case p = 1 < q can be studied in a similar way.
ii) b. If p ≥ 2 the equation ∆′

pp (0) X = B is equivalent to the systems

(S1)
{ −xn−1 + xn = bn if n = 1, 2, ..., p− 1,

−xp−1 = bp;
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and

(S2) {−xn−1 + xn = bn if n = p + 1, p + 2, ....

The second one is infinite. We get xn =
n∑

k=1

bk if n = 1, 2, ..., p − 1, and if

−xp−1 = bp = −
p−1∑
k=1

bk the system (S1) admits a unique solution. We conclude

using the system (S2) and setting xp = u, that xn = u +
n∑

k=p+1

bk if n =

p+1, .... If
p∑

k=1

bk 6= 0 then the system (S1) and equation ∆′
pp (0) X = B do not

admit any solution. We get an analogous result when p = 1. 2

Remark 1. Consider the case when p < q and let B = (bn)n be a sequence

such that
q∑

k=1

bk = 0. We note that equation ∆′
pq (a′)X = B, where a′ = −1

admits infinitely many solutions, and a slight variation of a′ implies that the
new equation ∆′

pq (a′)X = B does not admit a solution any more. We get a
similar result when p = q and a′ is the neighborhood of zero.

4.2. Operators mapping sα

(
∆′

pq (a′)
)

into sβ

In this subsection, under some conditions, we characterize the matrices A ∈
(E,F ), where E = sα

(
∆′

pq (a′)
)

and F = sβ . In order to assert the following
results we need the next lemmas.

Lemma 6. Let A = (anm)n,m≥1 and P = (pnm)n,m≥1 be two infinite matrices
satisfying for all n ≥ 1

∞∑

k=1

∞∑
m=1

|ankpkm|αm < ∞.(15)

Then A (PX) = (AP )X for all X ∈ sα.

Proof. If we set A (PX) = (yn)n≥1, then for every n ≥ 1:

yn =
∞∑

k=1

ank

( ∞∑
m=1

pkmxm

)
.

The series intervening in the second member being convergent, since (15) holds
and X ∈ sα. Condition (15) permits us to interchange the order of summation
in the expression of yn, which proves that A (PX) = (AP )X. 2

Remark 2.
Note that

∞∑
k=1

∞∑
m=1

|ankpkm|αm < ∞ if and only if
∞∑

m=1

∞∑
k=1

|ankpkm|αm < ∞.
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Now we shall consider the sequences α = (αn)n and β = (βn)n, whose
general terms are > 0. We get

Lemma 7. A ∈ (sα, sβ) if and only if

sup
n≥1

( ∞∑
m=1

|anm| αm

βn

)
< ∞.(16)

This result comes from the fact that A ∈ (sα, sβ) if and only if, for all
X ∈ s1, D1/βADαX ∈ s1. As we have seen in the preliminary results, this last
assertion is equivalent to D1/βADα ∈ S1.

We shall denote by Sα,β the linear vector space

Sα,β =

{
A = (anm)n,m≥1 / sup

n≥1

( ∞∑
m=1

|anm| αm

βn

)
< ∞

}
.

We see that Sα,α = Sα.
In the remainder of the subsection we shall suppose that the matrix A =

(anm)n,m≥1 satisfies the condition

∞∑
m=1

∞∑

k=m

|ank|αm < ∞, for all n.(17)

For every n, m ≥ 1 denote by σnm (ξ) the map defined for any scalar ξ by

σnm (ξ) =
p−1∑

k=m

ank + ξ

∞∑

k=p

ank,

and let Rnm =
∞∑

k=m

ank. Then we can give the supplementary conditions:

For a′ 6= −1

sup
n≥1

[
1
βn

( p−1∑
m=1

∣∣∣∣σnm

(
1

a′ + 1

)∣∣∣∣ αm +
q∑

m=p

∣∣∣∣∣∣∣∣∣

Rnm − a′
m−1∑
k=p

ank

a′ + 1

∣∣∣∣∣∣∣∣∣
αm

+
∞∑

m=q+1

|Rnm|αm

)]
< ∞;

(18)

for a′ 6= 0

sup
n≥1

[
1
βn

(
p−1∑
m=1

∣∣∣∣σnm

(
1
a′

)∣∣∣∣ αm +
1
|a′| |Rnp|αp +

∞∑
m=p+1

|Rnm|αm

)]
< ∞;

(19)
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sup
n≥1

[
1
βn

(
p−1∑
m=1

|σnm (−a′)|αm +
∞∑

m=p

|Rnm|αm

)]
< ∞;(20)

and

sup
n≥1

[
1
βn

(
q∑

m=1

|σnm (1− a′)|αm +
∞∑

m=q+1

|Rnm|αm

)]
< ∞.(21)

We obtain the following results.

Theorem 8.
i) If 1 < p < q and a′ 6= −1,

A ∈ (sα (∆′) , sβ) if and only if (18) holds.

ii) If p = q ≥ 2 and a′ 6= 0,

A ∈ (sα (∆′) , sβ) if and only if (19) holds.

iii) If q = p− 1,

A ∈ (sα (∆′) , sβ) if and only if (20) holds.

iv) If q < p− 1,

A ∈ (sα (∆′) , sβ) if and only if (21) holds.

Proof. Throughout the proof we shall set (∆′)−1 = (cnm)n,m≥1, A (∆′)−1 =

(c′nm)n,m≥1 and put for every n: χn =
∞∑

m=1

∞∑
k=1

|ank| |ckm|αm, when this double

series exists. i) Now A ∈ (sα (∆′) , sβ) if and only if A
(
(∆′)−1

X
)
∈ sβ for all

X ∈ sα. We can prove that

A
(
(∆′)−1

X
)

=
(
A (∆′)−1

)
X for all X ∈ sα.(22)

Indeed, we deduce from (12) in Theorem 5, that

cnm =





1 if 1 ≤ m ≤ n ≤ p− 1 or q + 1 ≤ m ≤ n,
1

a′+1 if p ≤ n and m ≤ n ≤ q, or 1 ≤ m ≤ q and q + 1 ≤ n;
− a′

a′+1 if p ≤ n < m ≤ q,

0 otherwise .

Since (17) holds, we can write

χn =
p−1∑
m=1

p−1∑

k=m

|ank|αm +
∞∑

m=q+1

∞∑

k=m

|ank|αm +
q∑

m=p+1

m∑

k=p

∣∣∣∣
anka′

a′ + 1

∣∣∣∣ αm +

1
|a′ + 1|




p∑
m=1

∞∑

k=p

|ank|αm +
q∑

m=p+1

q∑

k=m

|ank|αm +
q∑

m=p+1

∞∑

k=q+1

|ank|αm


 .
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Hence the series χn is convergent for every n ≥ 1 and using Lemma 6 and
Remark 2, identity (22) is proved. We see that under (17) A ∈ (sα (∆′) , sβ) if
and only if A (∆′)−1 ∈ Sα,β . The calculation gives

c′nm =





p−1∑
k=m

ank + 1
a′+1

∞∑
k=p

ank if 1 ≤ m ≤ p− 1,

− a′
a′+1

m−1∑
k=p

ank + 1
a′+1

∞∑
k=m

ank if p ≤ m ≤ q,

∞∑
k=m

ank if m ≥ q + 1;

for every n. And the condition A (∆′)−1 ∈ Sα,β is equivalent to (18), which
proves i).

ii) By a simple calculation we get

cnm =





1 if m ≤ n ≤ p− 1 or p + 1 ≤ m ≤ n,
1/a′ if n ≥ p and m ≤ p,
0 otherwise.

(23)

We see that for all n

χn =
p−1∑
m=1

p−1∑

k=m

|ank|αm +
∞∑

m=p+1

∞∑

k=m

|ank|αm +
p∑

m=1

∞∑

k=p

∣∣∣ank

a′

∣∣∣ αm.

And since (17) holds this series is convergent for every n. Reasoning as above,
we have for every n

c′nm =





p−1∑
k=m

ank + 1
a′

∞∑
k=p

ank if 1 ≤ m ≤ p− 1,

1
a′

∞∑
k=p

ank if m = p,

∞∑
k=m

ank if m ≥ p + 1.

We conclude writing that A (∆′)−1 ∈ Sα,β .
iii) Doing similar calculations, we obtain

cnm =





1 if m ≤ n ≤ p− 1 or p ≤ m ≤ n,
−a′ if n ≥ p and m ≤ p− 1,
0 otherwise.

(24)

We see that for each n

χn =
p−1∑
m=1

p−1∑

k=m

|ank|αm +
∞∑

m=p

∞∑

k=m

|ank|αm +
p−1∑
m=1

∞∑

k=p

|anka′|αm
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is convergent since (17) holds. Further, we get for every n

c′nm =





p−1∑
k=m

ank − a′
∞∑

k=p

ank if 1 ≤ m ≤ p− 1,

∞∑
k=m

ank if m ≥ p.

Reasoning as above we obtain iii).
Assertion iv). Here the equation ∆′X = B is equivalent to

{ −xn−1 + xn = bn if n = 1, 2..., p− 1, p + 1, ...
a′xq − xp−1 + xp = bp.

We deduce that the solution is




xn =
n∑

k=1

bk if n = 1, 2..., p− 1,

xn =
n∑

k=q+1

bk + (1− a′)
q∑

k=1

bk for n ≥ p.
(25)

Then

cnm =





1 if m ≤ n ≤ p− 1 and 1 ≤ m ≤ q, or q + 1 ≤ m ≤ n,
1− a′ if n ≥ p and 1 ≤ m ≤ q,

0 if m > n.

Under (17) we see that the series

χn =
q∑

m=1

p−1∑

k=m

|ank|αm +
∞∑

m=q+1

∞∑

k=m

|ank|αm

q∑
m=1

∞∑

k=p

|ank (1− a′)|αm

is convergent for every n ≥ 1 and identity (22) is proved. We conclude, since
for each n

c′nm =





p−1∑
k=m

ank + (1− a′)
∞∑

k=p

ank if 1 ≤ m ≤ q,

∞∑
k=m

ank if m ≥ q + 1.

Remark 3 Note that if A is a matrix satisfying (17), we have A ∈ (sα (∆′
11 (a′)) , sβ)

(a′ 6= 0) if and only if

sup
n≥1

[
1
βn

(
1
|a′| |Rn1|α1 +

∞∑
m=2

|Rnm|αm

)]
< ∞.(26)
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4.3. The distance between two solutions of an infinite linear system

Given B, let Xpq (a′) (or X ′ ) denote the solution of ∆′
pq (a′)X = B. We

shall denote by Z =
(

n∑
k=1

bk

)

n≥1

the unique solution of ∆X = B, for short.

Then we see that if q 6= p, p − 1, Z = Xpq (0); if p ≥ 2, then Z = Xpp−1 (−1)
and if p = q, Z = Xpp (1) for all p ≥ 1. We have the following results:

Corollary 9. For a given matrix B ∈ s1, and a given real a′, we have:
i) If q > p and a′ 6= −1,

‖Xpq (a′)− Z‖s1
=

∣∣∣∣∣
(

a′

a′ + 1

) q∑

k=1

bk

∣∣∣∣∣(27)

ii) If a′ 6= 0 for each p ≥ 1, we have

‖Xpp (a′)− Z‖s1
=

∣∣∣∣∣
(

a′ − 1
a′

) p∑

k=1

bk

∣∣∣∣∣ .(28)

iii) For all p ≥ 2:

‖Xpp−1 (a′)− Z‖s1
=

∣∣∣∣∣(a
′ + 1)

p−1∑

k=1

bk

∣∣∣∣∣ .(29)

iv) If q < p− 1 and a′ 6= −1 :

‖Xpq (a′)− Z‖s1
=

∣∣∣∣∣a
′

q∑

k=1

bk

∣∣∣∣∣(30)

Proof. i) is deduced from the proof of the previous theorem, since X ′ − Z =
(ξn)n≥1, where

ξn =





0 if n ≤ p− 1,

− a′
a′+1

q∑
k=1

bk if n ≥ p.

Hence ‖X ′ − Z‖s1
= supn≥p (|ξn|) =

∣∣∣∣
(

a′
a′+1

) q∑
k=1

bk

∣∣∣∣. If p = 1 one can verify

(27) using similar calculations. Analogously we can prove ii), iii) and iv) using
(23), (24) and (25) in the proof of Theorem 8.

5. Matrix transformations mapping sα

((
∆′

pq (a′)
)µ)

into sβ,

µ being any integer

In this section we generalize results given in [1], [6] and [7] concerning
matrices mapping s1 (∆µ) into s1. Malkowsky [7] introduced the sequence
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(
R

(µ)
nm

)
n,m≥1

, defined in the following way: R
(1)
nm = Rnm =

∞∑
k=m

ank, R
(s)
nm =

∞∑
k=m

R
(s−1)
nk ∀s ≥ 2. He proved that A ∈ (s1 (∆µ) , s1) if and only if





i) For every n, the series
∞∑

m=1
mµanm is convergent,

ii)supn

( ∞∑
m=1

∣∣∣R(µ)
nm

∣∣∣
)

< ∞.

In [1], a necessary and sufficient condition is given for A ∈ (s1 (∆+µ) , s1).
Let us recall the following result given in [6], in which we define for any µ ∈ C

(
µ + k − 1

k

)
=

{
µ (µ + 1) ... (µ + k − 1)

k!
if k > 0,

1 if k = 0 .

Theorem 10. Let µ be a complex number. Assume that A = (anm)n,m≥1 sat-
isfies the condition: for all n ≥ 1 and λ 6= 1

∞∑
m=1

∞∑

j=0

(
µ + j − 1

j

) |an,m+j |
|1− λ|µ+j

rm < ∞.(31)

For every λ 6= 1, we have A ∈ (sr ((∆− λI)µ) , sr) if and only if

sup
n≥1



∞∑

m=1

∣∣∣∣∣∣

∞∑

j=0

(
µ + j − 1

j

)
an,m+j

(1− λ)µ+j

∣∣∣∣∣∣
rm−n


 < ∞.(32)

Under (31) in which λ = 0 and r = 1, A ∈ (s1 (∆µ) , s1) if and only if

sup
n≥1




∞∑
m=1

∣∣∣∣∣∣

∞∑

j=0

(
µ + j − 1

j

)
an,m+j

∣∣∣∣∣∣


 < ∞.

Now, we need a result generalizing i) in Proposition 2.

Proposition 11. i) α ∈ Γ if and only if there exists ν ≥ 1 such that

γν = sup
n≥ν+1

(
αn−1

αn

)
< 1.

ii) If α ∈ Γ, then ∆ is bijective from sα into itself.
iii) Let r be a real > 0. Then ∆ is bijective from sr into itself if and only if

r > 1.
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Proof. i) is obvious. Assertion ii) Denote for any integer ν ≥ 1 by Σ(ν) the
infinite matrix 


[
∆(ν)

]−1
O

1
O .


 ,

where ∆(ν) is the finite matrix whose elements are those of the ν first rows and
of the ν first columns of ∆. We get Σ(ν)∆ = (anm)n,m≥1, with ann = 1 for
all n; an,n−1 = −1 for all n ≥ ν + 1; and anm = 0 otherwise. We see that if
α ∈ Γ, there exists an integer ν ≥ 1 such that

∥∥I − Σ(ν)∆
∥∥

sα
< 1. We see that

Σ(ν)B ∈ sα for all B ∈ sα. Then the equation ∆X = B being equivalent to
(
Σ(ν)∆

)
X = Σ(ν)B

admits only one solution in sα for all B ∈ sα. This proves that ∆ is bijective
from sα into itself.

Assertion iii). The necessity is a direct consequence of ii). Conversely, as-
sume that ∆ is bijective from sr into itself and let B = (rn)n≥1 ∈ sr. The

equation ∆X = B admits the unique solution X =
(

n∑
i=1

ri

)

n≥1

∈ sr. Then

n∑
i=1

ri

rn
=

r − rn+1

(1− r) rn
= O (1) as n →∞,

which implies that r > 1.

Remark 4. The converse of ii) in the previous proposition is false. Indeed,
consider the sequence α = (αn)n≥1 defined by

αn =
{

γ2j if n = 2j,
γ2j if n = 2j + 1,

for a given γ > 1. First we see that for all ν ≥ 1:supn≥ν+1

(
αn−1

αn

)
= 1, that

is α /∈ Γ. Furthermore, we see that
xn − xn−1

αn
=

xn

αn
− xn−1

αn−1

αn−1

αn
= O (1) as n →∞,

since
αn−1

αn
=

1
γ2

if n is even, and
αn−1

αn
= 1 if n is odd. This proves that

∆X ∈ sα for all X ∈ sα. Therefore the equation ∆X = B, where B ∈ sα

admits only one solution in sα, since there exists M > 0 such that
∣∣∣∣

n∑
k=1

bk

∣∣∣∣
γn

≤ M

∞∑

j=0

1
γ2j

≤ M
γ2

γ2 − 1
for all n.
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This proves that ∆ is bijective from sα into itself.

Here we deal with the matrix transformations mapping sα

((
∆′

pq (a′)
)µ)

into
sβ . We have

Theorem 12. Let µ, p, q be integers ≥ 1 and a′ any scalar. If α ∈ Γ and
αn+1

αn
= O (1) as n →∞, then

(
sα

(
(∆′)µ)

, sβ

)
= Sα,β .(33)

Proof. We only have to prove that sα (∆′) = sα for all p, q, a′. Then,
sα

(
(∆′)µ)

= sα and we deduce the theorem using Proposition 1.
First consider the case when p = q and a′ = 0. We are going to show

that sα (∆′) = sα. Take Z = (zn)n ∈ sα (∆′). Then B = ∆′Z ∈ sα, which
implies that the equation ∆+Xp = −Bp, where tXp = (xp, xp+1, ...) and tBp =
(bp+1, bp+2, ...) admits the solution tZp = (zp, zp+1, ...) in sα. Indeed, since
α ∈ Γ we have

∥∥∥I − Σ(ν)∆+ 〈e1〉
∥∥∥

sα

=
∥∥∥I − Σ(ν)∆

∥∥∥
sα

= sup
n≥ν+1

(
αn−1

αn

)
< 1;

and B ∈ sα implies

bn+p−1

αn
=

bn+p−1

αn+p−1

αn+p−1

αn+p−2
...

αn+1

αn
= O (1) as n →∞,

which proves that Bp 〈uo〉 ∈ sα. Using Proposition 1, we deduce that the
solutions of the equation ∆+Xp = −Bp belong to sα and can be written in the
form Xp = −∆−1Bp 〈u〉 for any scalar u. Then there exists a scalar uo such
that Zp = −∆−1Bp 〈uo〉 ∈ sα. We conclude that Z ∈ sα, since α ∈ Γ implies

zn

αn
=

zn

αn−p+1

αn−p+1

αn−p+2
...

αn−1

αn
= O (1) as n →∞.

We have proved that sα (∆′) ⊂ sα. Conversely, we see easily that Z = (zn)n ∈
sα implies ∆′Z ∈ sα, since α ∈ Γ.

Now we consider the case when q > p and a′ = −1. Take Z = (zn)n ∈
sα (∆′). Then B = ∆′X ∈ sα, reasoning as above we see that the equation
∆+Xq = −Bq, admits Zq = −∆−1Bq 〈uo〉 as a solution for a well chosen u0.
This proves that Z ∈ sα. Conversely, if X = (xn)n ∈ sα, then ∆′X ∈ sα.

Finally we consider the case when q > p and a′ 6= −1 or p = q and a′ 6= 0 or
q < p. Take Z = (zn)n ∈ sα (∆′). Then B = ∆′Z ∈ sα. As we have defined Σ(ν)

from ∆ in the proof of Proposition 11, we define here Σ′(ν) = (c′nm)n,m≥1 from
∆′. If we put Z = Σ′(ν0)Z ′ with ν0 = sup (p, q), then the equation ∆′Z = B is
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equivalent to
(
∆′Σ′(ν0)

)
Z ′ = B. One sees that the solution Z ′ = (z′n)n≥1 of the

previous equation satisfies




z′n = bn for n ≤ ν0,

z′ν0+1 =
ν0∑

m=1
c′ν0,mbm + bν0+1,

z′n − z′n−1 = bn if n ≥ ν0 + 2.

(34)

Then ∆Z ′ν0
= −Bν0 , where

tZ ′ν0
=

(
z′ν0+1, z

′
ν0+2, ...

)
and tB′

ν0
=

(
ν0∑

m=1

c′ν0,mbm + bν0+1, bν0+2, ..., bn, ...

)
.

Since α ∈ Γ, we deduce that Z ′ν0
and Z ∈ sα. We have shown that sα (∆′) ⊂ sα.

The converse is trivially verified. This proves that ∆′
pq (a′) is bijective from sα

into itself.

Remark 5. Note that we cannot have sα

(
∆′

pq (a′)
)

= sα for all p, q, µ ≥ 1.
Consider for instance the space s1

(
∆′

2,2 (0)
)
. It can be shown that

s1

(
∆′

2,2 (0)
)

=

{
t

(
x1, x2, x3, x3 + x4, ...,

n∑

k=3

xk, ...

)
/ (xn)n≥1 ∈ s1

}
,

and we see that X0 = (n)n ∈ s1

(
∆′

2,2 (0)
)− s1.

Remark 6. Note that in the cases when q > p and a′ 6= −1, or p = q and
a′ 6= 0, or p = q = 1 and a′ = 0, or q < p, (33) holds under the single
hypothesis α ∈ Γ.

Remark 7. Consider the case p = q ≥ 2 and a′ 6= 0 and let A = (anm)n,m≥1

be a matrix such that (17) holds. If α ∈ Γ, then (19) is equivalent to (16).
Indeed, from Theorem 8, we have A ∈ (

sα

(
∆′

pq (a′)
)
, sβ

)
iff (19) holds, and

we conclude using Theorem 13.
Analogously, assume that q = p− 1 and A satisfies condition (17). If α ∈ Γ,

(20) is equivalent to (16).

From Theorem 12 we deduce

Corollary 13. i) Let r1 and r2 be two reals, with r1 > 1 and r2 > 0 and p, q,
µ ≥ 1. Then

A ∈ (
sr1

((
∆′

pq (a′)
)µ)

, sr2

)
if and only if sup

n≥1

( ∞∑
m=1

|anm| r
m
1

rn
2

)
< ∞.

ii) If r1 > 1, we get

A ∈ (
sr1

((
∆′

pq (a′)
)µ)

, l∞
)

if and only if sup
n≥1

( ∞∑
m=1

|anm| rm
1

)
< ∞.
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Proof. i) We see that α = (rn
1 )n≥1 ∈ Γ, since αn−1

αn
= 1

r1
< 1, moreover

rn+p−1
1 /rn

1 = rp−1
1 = O (1) as n →∞. ii) is obvious.
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