Novi SAD J. MATH. 141

VoL. 32, No. 1, 2002, 141-158

VARIATION OF AN ELEMENT IN THE MATRIX OF
THE FIRST DIFFERENCE OPERATOR AND MATRIX
TRANSFORMATIONS

Bruno de Malafosse!

Abstract. In this paper we deal with some new properties of the operator
of first difference represented by the infinite matrix A. We study the
operator represented by the perturbed matrix Ay, (a’) obtained from A
by changing one element. Then we give necessary and sufficient conditions
for a matrix A to map sa ((A;q (a’))“) into sg, pu being an integer.
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1. Introduction

We are interested in the study of the first difference operator. This one can
be represented by the infinite matrix A. Many authors have given results on
this last operator, see for instance Malkowsky [8],[9], Kizmaz [2], Colak and
Et [1] and more recently de Malafosse [6]. These authors gave many charac-
terizations of the operators A mapping the space (A#)™'(1%) into [*°, that
is A € (I (A*),1*°). Malkowsky [8], [9] and Malkowsky and Parashar [7]
found new Schauder bases in the spaces c¢o (A*) and ¢ (A#). They gave many
results concerning AK and BK spaces considering the A-strongly null and A-
strongly convergent sequences and have studied extensions of some results given
by Wilansky [12]. Note that many authors have dealt with the Cesaro operator
and there is a simple relation between this operator and the operator repre-
sented by A. Recall that the spectrum of the Cesaro operator Cy in certain
spaces has been studied by Reade [11], Okutoyi [10] and de Malafosse [5]. Here
are recalled some properties of A considered as an operator from the space s,
into itself. Further, as in [5], we deal with matrix perturbation and consider the
new matrix A} (a’) obtained from A by changing only one element in the p-th
row and in the ¢g-th column of the infinite matrix and deduce some results on
the spaces sq (A, (o’ ))#) Then we deal with matrix transformations between
matrix domains such as sq ((A7, (a")") or sg.

The paper is organized as follows. In the second section we recall some results
and definitions concerning the infinite matrix theory. In the third section some
properties of the spaces s, (A*), s, ((A*)") and s; (A*) are given. Next, we
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assert some results concerning the operators C;, A, AT and ¥ in relation to s,.
In the fourth section A is replaced by A}, (a’), (the matrix obtained from A by
replacing the coefficient a,, by a’) and we study the new equation A}, (a') X =
B.Then, under some conditions, we characterize the matrix transformations
mapping So (A;q (a/ )) into sg. Further, we give an upper bound of the distance
| Xpq (a') = Z||,,, where Z is the solution of AX = B and X, (a’) the solution
of equation A, (a’) X = B, whenever it exists. In the final section, we deal
with matrix transformations lying in the set (sq ((A;q (a’))“) ,$3), 1 being a
given integer.

2. Notations and preliminary results

In the following, we shall consider infinite linear systems defined by
Z ApmTm =b, n=1,2,..
m=1

Such a system can be written as a matrix equation AX = B, where A =
(@nm)y,.m>1 @nd X, B are the one column matrices defined respectively by
(acn)n>1 and (b,),,~;- The following spaces have been defined, for instance, in
[3] and [5]. For a sequence o = (), ~;, where a, > 0 for every n > 1, we
consider the Banach algebra

[e%S) o,

(1) Sa = {A = (anm)n,mZI / sup (Z |anm| > < OO} )

n>1 \, 1 Qp
normed by

> e

2 Alle =su G| —= | .
@ e
S, admits a unit element I = (5nm)n,m (0nm being equal to 1 if n = m and

equal to 0 otherwise). Denote by s the set of all sequences. We also define the
Banach space s, of one-row matrices by

3) o= {X = @wes /s () <o .

n>1 Qp
normed by
(4) 1., =sup (221,
* p>1 \ On

We shall say that the sequence X = (z,),, belongs to I" if

lim (
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For any subset F of s, we put

(5) AE={Y es/3XeE Y =AX}.

If F' is a subset of s, we shall denote
(6) F(A)=Fs={Xe€s/Y=AX e F}.

We can see that F'(A) = A71F. If A maps E into F, we write that A € (E, F).
It is well-known that A € (s1,s1) if and only if A € 57 (see [4]).

For any sequence ¢ = ((n),,>;, We shall put D¢ = (Cndnm),, n>1-

A being an infinite matrix, let us define the matrix A (t) = (al,,,)nm>1,
(with af,, # 0 Vn) obtained from A by addition of the row ¢t = (t,,),,~,- In
the same way, set for any scalar u: ‘B (u) = (u,b1,ba,...). Then we have the
following result given in (3], in which a* = (1/al,,,), >1:

Proposition 1 If || I — D, A(t) ||s.< 1 and Dy« B {u) € 34, then solutions of
AX = B in the space s, are

X =Dy A1) 'De=B(u) ueC.

3. Some new properties of the operator A" being any
real.

In this section we give some properties of A* and (AT)" in relation to the
space s, and we investigate the spectrum of each operator represented by the
matrices C1, A, AT and ¥ in relation to the space s,.

3.1. Properties of A* in relation to s,

The well-known operator AW:s — s, where p is an integer > 1, is repre-
1 (@)
sented by the infinite lower triangular matrix A*, where A= | —1 1
0] .
We have for every X = (zy),51, AX = (Yn),>; With y1 = 1 and y, =
Ty, — Tp_1 if n > 2. We can express the following result, in which A* = ‘A and
e=(1,1,..).

Proposition 2 ([6]) i) The operator represented by A is bijective from s, into
itself, for everyr > 1 and AT is bijective from s, into itself, for allr, 0 <7 < 1.

ii) AT is surjective and not injective from s, into itself, for all v > 1.
iii) Vr # 1 and for every integer u > 1 (AT) s, = s,.

i) We have successively
a) If pis a real > 0 and pu ¢ N, then A¥ maps s, into itself when r > 1 but
not for 0 <r < 1.
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If =1 < p <0, then A" maps s, into itself when r > 1 but not for r = 1.

B)If >0 and u ¢ N, then (AT)" maps s, into itself when 0 < r <1 but
not if r > 1.

If =1 < pu < 0, then (AT)" maps s, into itself for 0 < r < 1 but not for
r=1.

v) For a given integer p > 1, we have successively

n>1

Vr>1:A€ (s (A"),s,) & sup <Z anm|rm_"> < 00,

m=1

W0 A€ (s, (A%)).5,) & sup (Z ann| r'”") < o.

vi) For every integer p > 1

s1 C s1(AM) C S(ni), 5, C ﬂ S
r>1

vit) If p > 0 and p ¢ N then q is the greatest integer strictly less than
(u+1). Vr>1

Ker ((AJF)“ ) ﬂsr = span (V1, Va2, ..., V),

where:

Vi=te Vo='(A],A},..), V5="(0,43,43,.),...
(7) {

v, =t ((),(),...,A‘f‘1 Ag*l,...,Agfl,...);

q—1>

AZ = (zj—;),, with 0 < j <14, being the number of permutations of i things taken

j at a time.

3.2. Spectrum of each operator C;, A, A"t and ¥ in relation to the
space s,

We give here some spectral properties of several well-known operators. Recall
that C1 = (@nm),ym,>q 15 the Cesaro operator of order 1, defined by the infinite

matrix
apm = 1/n i m <n,
Apm =0 otherwise.

(see [3], 5], [6], [7] and [12]). It is well-known that if ¥ is the lower triangular
matrix whose all entries below the main diagonal are equal to 1, we have A™! =
Y. There exists a relation between these operators. Indeed D(n)nCl =Y and
A (D(n)nC’l) = I, which proves that C’l_l = AD(,) . Here A is an operator
mapping s, into itself, r being a given real > 0. We shall denote by o (A4) its
spectrum, set of all complex numbers A, such that (A — A\I) as operator from
s, into itself, is not invertible. We obtain the next results.
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Theorem 3. ([6]) One has

Note that i) has been shown in [5]. Analogously, concerning the operator X
one gets

Proposition 4. (/6]) Let r > 1. We have
i)y €D(1,1/r) & Xeo (D).

i) For all X ¢ o (X), X=X is bijective from s, into itself and if (N — X) ™" =
(Tnm)n,mzp then

1
Tnn — T—x vn Z 1, .
n—m-—
(8) Tnm = (1_1>\)2 (%) me < n,
Tnm = 0 otherwise.

4. Variation of an element in the infinite matrix A

In this section we are interested in the perturbed matrix A} (a’) and deal
with the equation A’ (a’) X = B and matrix transformations from s, (A7, (a’))
into sg.

4.1. First properties of the equation A} (a') X = B

We study the case when only one element of A is changed. So, we consider
a given row of index p, and a given column of index ¢ and denote by a the term
apq of the matrix A. B being given, we study what becomes the solution of the
equation AX = B, when a is replaced by another element a’ in the matrix A;
A}, (a'), (or A for short), will denote this new matrix.

We get the following result

Theorem 5. Let B be any sequence.

i) The equation A'’X = B admits a unique solution either in the cases:
g<p—1,0rq=panda #0, orq>p anda # —1.

a

ii) a- Let p < q. When ) by = 0 the equation A} (=1)X = B admits
k=1

infinitely many solutions in s. If p = 1, these solutions are given for every
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scalar u by

tX = <u+b1,u+b1+b27...7u

q—1 n
+Zbk,u,u+bq+1,u+bq+1—|—bq+2,...,u—|— Z bey .o |
k=1 k=q+1

and for p > 2, these solutions are

p
tX = (bl,bl +boy s Y bk
k=1

p+1 q—1 n
D bkt > bkt u A bgga, e u At Y by
k=1 k=1 k=q+1

q
When 7 b # 0 the equation A}, (—1) X = B does not admit any solution in
b- If 37 b = 0 the equation A}, (0) X = B admits infinitely many solutions
k=1
in s giwen for any scalar u by

n
X = (u,u + boy ., u+ Zbk, > forp=1,
k=2

and for p > 2
p—1 n
X = [ b1,by+boy o D bkt by, u A by + bppa, et > by
k=1 k=p+1
P
When » by, # 0 the equation A}, (0) X = B does not admit any solution.
k=1

Proof. Assertion i). The result is trivial in the two first cases, since a triangle
whose elements on the main diagonal are all different from zero is invertible. It
remains to deal with the case when 1 < p < ¢. Consider the case 1 < p < gq.
We see that the equation A’X = B is equivalent to the system

9)

—ZTp 1tz =0b, ifn=12...p—1p+1,..;
—Zp_1+xp + 'y = by,

where we use the convention xy = 0. We get

(10) Tn =Y b ifn=1,2.,p—1,
k=1
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(11) Ty = Tp + Z b ifn=p+1,..,q
k=p+1

P
From the second equality given by (9) and (10) we obtain z, + o’z = Y by.
k=1

q

Putting n = ¢ in (11) we have —x, + x4, = Y, by. Since o’ # —1 one deduces
k=p+1

easily that

’

n q
u,ilzbk—aﬁiﬂ by ifn=p,..,q-1,

k=1 k=n+1
q
(12) =z, = e kz_:l b, ifn=q,
q
,a/_H > by + Z br, fn=q+1,¢q+2,.
k=1 k=q+1

When p = 1 < ¢ then the unique solution of equation A’X = B, is given by

M:

q
Zbk ifn<qg-1,
k:1

Eod
3 I

q
(13) o= P> b ifn=gq,
k=
b

q
Z ifn=qg+1,¢+2,..

nMs

which completes the proof of i).
Assertion ii) a. If «’ = —1, take p > 2. We deduce from i) that the equation

q
A}, (=1) X = B admits a solution if z,, -z, = Z b = — . > b that is, when
=p+1

>~ bxy = 0. Then we can take x, = u as an arbritary scalar and the solutions

k=1
are given by

> by ifn=1,2...,p—1,
(14) Ty = u+ > by ifn=pp+1,...,q—1,
k=1

n
ut+ >, by ifn=qg+1,..
k=q+1

The case p = 1 < ¢ can be studied in a similar way.
ii) b. If p > 2 the equation A}/ (0) X = B is equivalent to the systems

—Zp1+T,=b, ifn=12..p—1,
(Sl) { 1 p

—Tp—1 = bp;
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and
(S2) {—-2p-1+x,=0b, ifn=p+1,p+2 ..
The second one is infinite. We get x, = > by if n = 1,2,...,p — 1, and if
k=1
p—1
—Zp_1 = by, = — ) by the system (S;) admits a unique solution. We conclude

k=1

n
using the system (S2) and setting x, = u, that z, = u+ >, b, ifn =

k=p+1
P
p+1,.... If > by # 0 then the system (S1) and equation A}, (0) X = B do not
k=1
admit any solution. We get an analogous result when p = 1. O

Remark 1. Consider the case when p < q and let B = (by), be a sequence

q

such that ) by = 0. We note that equation A}, (a') X = B, where ' = —1
k=1

admits infinitely many solutions, and a slight variation of a' implies that the

new equation A}, (a') X = B does not admit a solution any more. We get a

similar result when p = q and o’ is the neighborhood of zero.

4.2. Operators mapping s, (A;q (a)) into sz

In this subsection, under some conditions, we characterize the matrices A €
(E,F), where E = s, (A}, (a/)) and F = sg. In order to assert the following
results we need the next lemmas.

Lemma 6. Let A = (anm),, ,n>1 and P = (Ppm),, > be two infinite matrices
satisfying for allm > 1 - B

(15) Z Z |Gk Prm | Qm < 00.
k=1m=1
Then A(PX) = (AP) X for all X € s,.

Proof. 1f we set A(PX) = (yn),,>,, then for every n > 1:

%) oo
Yn = Z Qnk <Z pkmxm> .
k=1 m=1

The series intervening in the second member being convergent, since (15) holds
and X € s,. Condition (15) permits us to interchange the order of summation
in the expression of y,,, which proves that A (PX) = (AP) X. ad

Remark 250

oo oo oo
Note that > > |ankPm| m < 00 if and only if > > |ankPrm| am < oo.
k=1m=1 m=1k=1
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Now we shall consider the sequences o = (a,), and § = (8,),, whose
general terms are > 0. We get

Lemma 7. A € (sq,s3) if and only if

(16) sup <Z |G | Oﬁlm> < 00.

n>1 me1

This result comes from the fact that A € (sq,sg) if and only if, for all
X € 81, D1ygADoX € s1. As we have seen in the preliminary results, this last
assertion is equivalent to Dy,3AD, € 5.

We shall denote by S, g the linear vector space

Sa,ﬁ = {A = (anm)n,m21 / Sgp <Z ‘anm| Og:) < OO} .

nz m=1

We see that Sy o0 = Sq.
In the remainder of the subsection we shall suppose that the matrix A =
(@nm),, m>q satisfies the condition

oo o0

(17) Z Z |ank| am < 00, for all n.

m=1k=m

For every n, m > 1 denote by o, (£) the map defined for any scalar £ by
p—1 e’
Tnm (f) = Z Ak + fzank;
k=m k=p

oo
and let Ry, = Y. ank. Then we can give the supplementary conditions:

k=m
For o' # —1
m—1
p—1 q an - a/ Z Ank

su i o L Ay + Z F=p «

(18) nzli ﬂn m=1 o a'+1 " m=p @ +1 "
+ > |an|am>] < o0;
m=q+1
for a’ #0
1 (= 1 1 >
sup [5 <Z Onm (a’) O + m | Rnp| o + Z |an|am>‘| < 005
n>1 n m=1 m=p-+1
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(20) sup [5 <Z |0 nm (—a)| c, + Z |an|am>1 < 00;
n =1

n>1 m=p
and
21 sup Onm (1 —a" )| am + Rom| am 00.
o s (-t 3 Ao <

We obtain the following results.

Theorem 8.
i)Ifl<p<gqandd # -1,

A € (54 (A"),s5) if and only if (18) holds.
it) Ifp=q>2andd #0,

A € (sq (A"),s5) if and only if (19) holds.
i) Ifg=p—1,

A € (sq (A"),s5) if and only if (20) holds.
w) Ifg<p—1,

A € (sa (A"),s5) if and only if (21) holds.
Proof. Throughout the proof we shall set (A/)™' = (Cnm)pm>1 AN =
(Chm)nm>1 and put for every n: x, = §1 k§ |@nk| |Chm| Qm, when this double
series exists. 1) Now A € (s (A'), sg) if and only if A ((A’)_1 X) € sp for all
X € s,. We can prove that
(22) A ((A’)‘1 X) - (A (A’)_l) X for all X € sq.
Indeed, we deduce from (12) in Theorem 5, that

1 fl<m<n<p-—-lorg+1<m<n,

1 .
- 751 ifp<mandm<n<gorl<m<gandg+1<mn;
—a fp<n<m<yg,
0 otherwise .

Since (17) holds, we can write
P

-1 p—1

Xn = |ank|am+ Z Z|ank|am+ Z Z

=1k=m m=q+1 k=m m=p+1 k=p

P 00 q q q oo
|a—|—1| ZZ|ank|am+ Z Z\ank|am+ Z Z k| Qm

m=1k=p m=p+1 k=m m=p+1 k=qg+1

anka
/+1

3
o>~
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Hence the series x, is convergent for every m > 1 and using Lemma 6 and
Remark 2, identity (22) is proved. We see that under (17) A € (sq (A7), sp) if
and only if A(A’)™" € S, 5. The calculation gives

p—1 00
1 .
> Gkt g D Gnk if1<m<p-1,
k=m k=
m—1 00
’ 4 .
Cnm = *a/a? Z ank+%+1 Z Ank 1fp§m§Q7
k=p k=m
o
> nk ifm>q+1;
k=m

for every n. And the condition A (A')™' € Sa,p s equivalent to (18), which
proves i).
ii) By a simple calculation we get

1 ifm<n<p—lorp+1<m<n,
(23) Cnm =14 1/d if n > p and m < p,
0 otherwise.
We see that for all n
p—1 p—1 o) 0 p oo a
k
=5 Sledant 3 3 leasdan+ 3 3% a,.
m=1k=m m=p+1 k=m m=1k=p

And since (17) holds this series is convergent for every n. Reasoning as above,
we have for every n

p—1 1 00
Do Gnk 7 Y Gk fl<m<p-—1,
k=m k=p
/ 1 X .
Cnm = ?Zank lfm:p’
k=p

oo
> ank ifm>p+ 1.
k=m

We conclude writing that A (A))"' € S, 5.
iii) Doing similar calculations, we obtain

1 ifm<n<p—1lorp<m<nmn,
(24) Cnm = —a if n > p and m < p—1,
0 otherwise.

We see that for each n

p—1 p—1 00 p—1 oo

Xn = Z Z |ank‘am+ Z Z |ank:|04m+ Z Z|an/€a/|am

m=1k=m m=p k=m m=1k=p



152 B. de Malafosse

is convergent since (17) holds. Further, we get for every n

p—1 o]
Zank*alzank lflgmgpr
c — k=m k=p
nm o0
> ank if m > p.
k=m

Reasoning as above we obtain iii).
Assertion iv). Here the equation A’X = B is equivalent to

—ZTp1+xT,=0b, ifn=12...p—1,p+1,..
'y —xp_1+xp = by

We deduce that the solution is

Tp= Y. by fn=12.,p—1,

(25) " g
Tp= Y bp+(1—ad)> by forn>p.
k=q+1 k=1
Then
1 ifm<n<p—landl<m<gqg,orqg+1<m<n,
Cam=14 1—d ifn>pandl1<m<yg,
0 if m > n.

Under (17) we see that the series

q

p—1 [e] [e%e] q o0
Xn = Z Z |ank| tm + Z Z |ank| Cm Z Z|a’”k (1-ad)|am

m=1k=m m=q+1 k=m m=1k=p

is convergent for every n > 1 and identity (22) is proved. We conclude, since
for each n

p—1 00
S oang+(1—a') > ank if1<m<yg,
k=p

= k=m

oo
Y Gk ifm>qg+1.
k=m

Remark 3 Note that if A is a matriz satisfying (17), we have A € (sqo (Al (a')), s5)
(@' #0) if and only if

1 (1 >
(26) sup [g (W |Roafon+ ) |an|am>] < 0.

n>1 m—2
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4.3. The distance between two solutions of an infinite linear system

Given B, let X, (a’) (or X’ ) denote the solution of A} (a') X = B. We

n

shall denote by Z = (Z bk> the unique solution of AX = B, for short.
k=1 n>1

Then we see that if ¢ # p, p— 1, Z = X,,4(0); if p > 2, then Z = X, (—1)

and if p = ¢, Z = X, (1) for all p > 1. We have the following results:

Corollary 9. For a given matriz B € s1, and a given real a’, we have:
i) Ifq>pandd # —1,

(27) 1Xpq (@) = 21, = ‘<+1> S,

k=1

it) If a’ # 0 for each p > 1, we have

(28) X (a') = 21|, = ‘(‘ 1) S

iii) For all p > 2:

(29) [ Xpp—1(a’) — ZHsl =

p—1
(@' +1) Z by
k=1

w)Ifg<p—1anda #—1:

q

G/Zbk

k=1

(30) 1 Xpq (a) = Z”s1 =

Proof. i) is deduced from the proof of the previous theorem, since X' — Z =

(én),,>1, Where
0 ifn<p-—1,

, 4
&n = — ot b ifn>p.
k=1

Hence || X' — Z||,, = sup,>, (|6.]) = . If p =1 one can verify

, q
(##1) 2 b
(27) using similar calculations. Analogously we can prove ii), iii) and iv) using
(23), (24) and (25) in the proof of Theorem 8.

5. Matrix transformations mapping s, ((A;q (a’))u) into sg,
it being any integer

In this section we generalize results given in [1], [6] and [7] concerning
matrices mapping s (A*) into s;. Malkowsky [7] introduced the sequence
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(Rﬁﬁ%) = defined in the following way: RY — R, = S ank, R =

k=m

> R;‘Z_l) Vs > 2. He proved that A € (s1 (A*),s1) if and only if

k=m

&)
i) For every n, the series Y. mMay,,, is convergent,
m=1

ii)sup,, ( 21 R ) < 0.
m=

In [1], a necessary and sufficient condition is given for A € (s; (A1), s1).
Let us recall the following result given in [6], in which we define for any p € C

<M+k—1>{ plp+1) . (p+k—1) k0,

il
k 1 ifh=0.

Theorem 10. Let i be a complex number. Assume that A = (anm)mm>1 sat-
isfies the condition: for allm > 1 and X\ # 1 B

— +j-1 |an,m+“ m
1) S5 (HHT ) dmeln <o
, J [1— A
For every X\ # 1, we have A € (s, (A — X)), s,) if and only if
- - H +] -1 An,m+j m—n
32 sup ( . ) ——r < 00.
( ) n>1 THZ:1 Jgo 7 (1 _ )\)N“I’J
Under (31) in which A=0 andr =1, A € (s1 (A"),s1) if and only if
s (3 Z( nti-l )an,mﬂ <.
nzl \ m=1|j=0 J
Now, we need a result generalizing i) in Proposition 2.

Proposition 11. i) o € T if and only if there exists v > 1 such that

Oy —
Y = sup ( - 1><1~
n>v+1 (67

it) If « € T, then A is bijective from s, into itself.
i11) Let r be a real > 0. Then A is bijective from s, into itself if and only if
r>1.
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Proof. i) is obvious. Assertion ii) Denote for any integer v > 1 by () the
infinite matrix

[AW] 0

0

where A®™) is the finite matrix whose elements are those of the v first rows and
of the v first columns of A. We get SWA = (@nm)yy m>1, With an, = 1 for
all n; ap 1 = —1for alln > v+ 1; and appm =0 otherwise. We see that if
a € T, there exists an integer v > 1 such that HI — Z(”)AHSQ < 1. We see that

YW B e s, for all B € s,. Then the equation AX = B being equivalent to
(z®a)x =x@p

admits only one solution in s, for all B € s,. This proves that A is bijective
from s, into itself.

Assertion iii). The necessity is a direct consequence of ii). Conversely, as-
sume that A is bijective from s, into itself and let B = ("), -, € s,. The

n

equation AX = B admits the unique solution X = (E 7‘1) € .. Then
=1 n>1

n
(3
i;r r— ot
= =0(1) asn— oo,
rn 1—=r)rm

which implies that r» > 1.

Remark 4. The converse of ii) in the previous proposition is false. Indeed,
consider the sequence o = (av,),,>, defined by

w77 ifn=2j
" Y ifn=2j+1,

Ot
for a given v > 1. First we see that for all v > 1:sup,>,. <nl) =1, that
> s
is o ¢ T'. Furthermore, we see that

Tp — Tp—1 o T Tp—1 QAp—1 -0 (1) as 1 —s 00
- - — )
Qp Qp Op—1 Qn

On—1

since =— L if n is odd. This proves that
@

n Y Qp
AX € s, for all X € so. Therefore the equation AX = B, where B € s,
admits only one solution in s, since there exists M > 0 such that

<MZ—<M il 1 for all n.
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This proves that A is bijective from s, into itself.

Here we deal with the matrix transformations mapping s, ((A;q (a'))“) into
s3. We have

Theorem 12. Let i, p, q be integers > 1 and o’ any scalar. If « € T and

Gnil =0 (1) as n — oo, then
Qnp

(33) (sa ((A)") ,55) = Sa,p-

Proof. We only have to prove that s, (A’) = s, for all p, ¢, a’. Then,
Sa ((A")") = s, and we deduce the theorem using Proposition 1.

First consider the case when p = ¢ and @’ = 0. We are going to show
that so (A') = so. Take Z = (z,),, € sa (A’). Then B = A'Z € s,, which
implies that the equation A* X, = —B,, where 'X,, = (zp, Tpt1,...) and 'B), =
(bp+1,bpt2,...) admits the solution *Z, = (2, zp+1,...) In Sq. Indeed, since
a € T" we have

HI— SOAT (e1)

- HI— SMA

Qp—1
= sup < = ) <1
Sa n>v+1 &7

and B € s, implies

b 1 b 1 & —1 « 1
ntpol _ e ntpel ML —0(1)  as n— oo,

Qn Untp—1 Qntp—2 Qp

which proves that B, (u,) € So. Using Proposition 1, we deduce that the
solutions of the equation AT X, = —B,, belong to s, and can be written in the
form X, = —A~!'B, (u) for any scalar u. Then there exists a scalar u, such
that Z, = —A~'B, (u,) € so. We conclude that Z € s,, since o € I implies

as n — o0.

an Zn anprrl [e77 } o O(].)
Qp Un—p+1 On—p+2 (e70)

We have proved that s, (A") C s,. Conversely, we see easily that Z = (z,),, €
S implies A’'Z € s, since o € T.

Now we consider the case when ¢ > p and ' = —1. Take Z = (z,), €
Sq (A"). Then B = A’X € s,, reasoning as above we see that the equation
A*X, = —B,, admits Z, = —A7'B, (u,) as a solution for a well chosen ug.

This proves that Z € s,. Conversely, if X = (z,,), € sq, then A'X € s,.

Finally we consider the case when ¢ > p and @’ # —1 or p = q and o’ # 0 or
q < p. Take Z = (2,),, € 54 (A’). Then B = A’Z € s,. As we have defined %)

from A in the proof of Proposition 11, we define here ¥/(*) = (Crim)pm>q from

A'. If we put Z = X/("0) 7’ with vy = sup (p, q), then the equation A’Z = B is
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equivalent to (A’Y/(*0)) Z’ = B. One sees that the solution Z’ = (z},),,~, of the
previous equation satisfies

zl = by, for n < vy,
Vo
(34) zll/oJrl = Z c;/O,mbm + bl/o+l7
m=1
zl — 2z 1 =by if n>wp+ 2.

Then AZ], = —B,,, where

Yo
trzl / / tn! /
2y, = (ZVOH,zVOJrQ,...) and "B, = ( E Cug.mbm + bug 11, bug 42, -y by, ) .

m=1

Since a € T', we deduce that Z,, and Z € s,. We have shown that s, (A") C s,.
The converse is trivially verified. This proves that A7 (a’) is bijective from s,
into itself.

Remark 5. Note that we cannot have s, (A;)q (a’)) = 84 for all p, q, p > 1.
Consider for instance the space s1 (A5, (0)). It can be shown that

S1 (A/Q,Q (0)) = {t <$1,3327333,3?3 + T4, ---,Zl"k, ) / (xn)n21 € 31}7
k=3

and we see that Xo = (n),, € s1 (A4 (0)) — s1.

Remark 6. Note that in the cases when q > p and o’ # —1, or p = ¢ and

a #0, orp=gqg=1andd =0, or q < p, (33) holds under the single

hypothesis o € T'.

Remark 7. Consider the case p =g > 2 and o’ # 0 and let A = (anm), ,n>1

be a matriz such that (17) holds. If a € T', then (19) is equivalent to (16).
Indeed, from Theorem 8, we have A € (so (A}, (), sp) iff (19) holds, and

we conclude using Theorem 13.

Analogously, assume that ¢ = p—1 and A satisfies condition (17). If a € T,
(20) is equivalent to (16).

From Theorem 12 we deduce

Corollary 13. i) Let r1 and ro be two reals, with r1 > 1 and r9 > 0 and p, ¢,
w>1. Then

A € (87“1 ((Alpq (a/)>“) 787"2) Zf and Only Zf igfi (Tnz_:l |anm| :;g) < 0.
i) If ry > 1, we get
A€ (s, ((A;q (a'))#) %) if and only if itg) (Z |G| r{”) < 00.

m=1
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Proof. i) We see that o = (r{),~; € T, since “2=1 = % < 1, moreover
PPl e — b=l — O (1) as n — oo. ii) is obvious.
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