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A NOTE ON SQUARE EXTENSIONS OF BANDS
Igor Dolinkal

Abstract. The construction of (associative) square extension of an idem-
potent groupoid (semigroup) was recently introduced by A. W. Marczak
and J. Plonka. They proved that all square extensions of a variety of
idempotent groupoids also form a variety. In this note we explicitely de-
scribe the free objects in semigroup varieties obtained from band varieties
by means of associative square extensions, which is done by solving the
corresponding word problems. As a consequence, we calculate the free
spectra and the p,-sequences of the considered varieties.
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In their recent paper [6], Marczak and Plonka defined a new algebraic con-
struction on idempotent groupoids, called square extension, in order to study
clone-theoretical properties of certain groupoids. Namely, let (I, *) be an idem-
potent groupoid. Assume we have given a family {A; : ¢ € I} of disjoint
sets, and for each 7,5 € I, a mapping h;; : A; — Ajs; such that the following
conditions hold:

(1) i€ A foralli € I,
(2) hij(i) =ixjforalli,jel,
(3) hii(a) =i, whenever a € A;.

Then we define the square extension of I to be a groupoid (A,-) such that
A = ;e Ai, with multiplication defined for all a € A; and b € A; by

ab = hij (CL)

We immediately note that for all b € A; we have ab = aj. Also, for all 4,j € I
we have ij = i * 7, so that [ is actually a subgroupoid of A.

However, if I is an idempotent semgiroup (a band), its arbitrary square
extension need not to be associative. Therefore, the authors of [6] define the
associative square extension of a band, by requiring that the square extension
preserves associativity, which turned out to be equivalent with the condition
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(4) hi*j’k(hi}j(l')) = hi,j*k(x) for all 1,7,k € I and x € A;.

Since we deal exclusively with semigroups in this note, we shall omit the ‘as-
sociative’ adjective in the sequel, and consider the above condition as a part of
the definition of the square extension.

Further, it was proved in Theorem 4.2 of [6] that the square extension is in
fact a varietal construction. Namely, if V is a variety of bands, then all square
extensions of members of V form a variety, which we denote by V*4. Moreover,
as shown in [6], there is a strong connection between the equational base for V
and V®4. After some simplification, we have the following result.

Theorem 1. ([6]) The variety V54 is defined (within the class of all semigroups)
by the identities (zy)? = z%y, xy? = xy, and u?® = v2, for all identities u = v
from a set Ey defining V within the variety B of all bands.

It is known that Ey can be chosen to be a singleton, cf. [2].

Our main objective here is to solve the (free) word problem for varieties
of the form V%4, i.e. to give a full (algorithmic) description of their equational
theories, which enables us to analyze the structure of their free algebras. As
a consequence, we shall derive a nice formula for the free spectrum of such
varieties (the sequence of cardinalities of finitely generated free algebras). To
this end, we consider first the square extensions of rectanguar bands, and then
varieties V°1 such that V contains SL, the variety of semilattices.

81. Before considering square extensions of rectangular bands, we are going
to take a look at the probably simplest examples of square extensions, the
inflations of bands. In general an inflation of a semigroup S is a retractive ideal
extension of S by a null semigroup N. If V is such an extension, this means
that we have a mapping £ : V — S such that £2 = ¢ (i.e. £ is a retraction) and
£ is an ideal homomorphism, so that for all a,b € V' we have

§(ab) = ag(b) = &(a)b = £(a)€(b).

If we want to construct an inflation from the given components, we need to
consider the set N* = N \ {0} and an arbitrary mapping ¢ : N* — S. The
multiplication in V' = N* U S is defined so that for all z € N, a € S we have
za = p(z)a and ax = ap(x), cf. [9].

Now, in a square extension A of a band I, it is easy to see that the mapping
¢ : A — I given by £(a) = a? is a retraction, but its image I is not always an
ideal of A, only a right ideal, since we have £(a)b = a?b = (ab)? = £(ab). A
characterization of inflations within square extensions is given in the following
result.

Proposition 2. Let A be a square extension of a band I. Then A is an inflation
of I if and only if all mappings h;; are constant, h;j(x) =i j. Moreover, every
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inflation V' of I can be obtained as a square extension of I with the mappings
hij as above and A; = £71(i), where £ : V — I is the corresponding retractive
ideal homomorphism.

Proof. Assume A is an inflation of I with the corresponding inflation homomor-
phism & : A — I. Then for all a € A; we have

It follows that h;;(a) = aj = £(a)j = ij = i *j. Conversely, if A is a square
extension of I with h;;(a) = i * j for all a € A;, then £(a) = a? is easily seen
to be a retracitve ideal homomorphism. Finally, for the last statement of the
proposition, it is straightforward to see that the given parameters h;; and A;
indeed define a square extension of I, provided A is an inflation of the band I.
O

Therefore, not every square extension is an inflation, as the following example
shows.

Example 3. Let X5 be the three-element semilattice consisting of elements
0,1,2 such that 0 < 1 and 0 < 2, while 1 and 2 are incomparable. Now add
a fourth element 3 and define 4g = {0,3}, 4; = {1} and Ay = {2}. Further,
let ho1 : Ao — Ao be the identity mapping on Ay and hoo : Ag — Ao be
the constant zero mapping (all the rest of the funcions h,j, ¢,j € {0,1,2}, are
defined in accordance with the square extension rules). Then it is not difficult
to see that we obtained a square extension of X3 which is not an inflation of the
latter semilattice.

Let us now turn to square extensions of rectangular bands. The result be-
low shows that examples of the above kind are actually impossible for such
extensions.

Theorem 4. FEvery square extension A of a rectangular band I is an inflation
of I.

Proof. Let RB denote the variety of rectangular bands. By Theorem 1, the
variety RB* is defined by (xy)? = 22y, xy?> = xy and (wyz)? = 2?. From the
second identity we have 23 = 2. Thus, we obtain

vy = zy® = x(yay)? = ayry’ey = zyzyzy = (zy)° = (zy)*,
2

implying zy = 2y, which suffices to see that the retraction £(z) = 2?2 is an
ideal homomorphism in every member of R, as required. O

It is known (e.g. from [3, 7]) that all inflations of semigroups belonging to
a variety V also form a variety, which is just equal to V V N, where N stands
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for the variety of null semigroups. Since RB has four subvarieties (the proper
ones are LZ, left zero bands, and RZ, right zero bands), from the cited papers
it also follows that RB V A has eight subvarieties, and their inclusion diagram
is the three-dimensional cube. Petrich in [8] gives equational bases for RBV N/,
LZV N and RZ V N, so that it is not difficult to conclude that in all of
these three varieties we have f; = 2, and for all n > 2, f,(RB*¥) = n? and
fn(LZ2%Y) = f,(RZ2%Y) = n (where f,,(V) refers to the free spectrum of V, the
size of n-generated V-free semigroup).

§2. In the rest of the paper we consider varieties of the form V%9, where V is
a variety of bands containing SL, the variety of semilattices. Example 3 above
shows that in such a case, V9 does not consist entirely of inflations. Also, every
identity u = v which may hold in V*9 (and thus in V) is necessarily homotypical,
meaning that the same variables occur both in u and v.

Let w be any (semigroup) word and V a semigroup variety. We say that w
is idempotent in V if V satisfies the identity w? = w. Further, let ¢(w) denote
the head of w, the leftmost variable of w.

Lemma 5. Let V be a variety of bands, SL C V. A word w is idempotent in
V34 if and only if £(w) occurs in w at least twice.

Proof. (<) Denote a = £(w) for short. Then w = awjawsy, where the words
w1, we may be empty. Using the square extension identities, we have

w? = (awlawg)2 = (awl)zawg = a(wla)2w2 = qwiaws = W.

(=) Let w be a word in which a = £(w) occurs only once, so that we have
w = au, with a not occurring in u, and suppose w is idempotent in V4. Then
a*u = (au)? = au. Since SL C V, the four-element square extension A of X3
from Example 3 belongs to V*4. Consider a valuation in A such that a is set
to 3, while all the other variables (from which the word w is constructed) have
value 1. Then u evaluates to 1, while a? is 0. Consequently, a?u also evaluates

to zero, while au becomes 3 -1 = ho1(3) = 3. A contradiction. ad

We turn to the solution of the word problem of a variety of the form V54.

Lemma 6. LetV be a variety of bands, SL C V), and let u,v be two idempotent
words in V34. The identity u = v holds in V34 if and only if it holds in V.

Proof. Assume that u = v holds in V. Then u? = v? is satisfied in V9, because
for each semigroup word w(z1, ..., z,), as a consequence of (zy)? = 2%y = 22y?,
we have w? = w(z?,...,22). However, by the given conditions, V59 satisfies
u? = v and v?> = v. Hence, u = v is true in V*4. The converse implication is
obvious, as V is a subvariety of V%4. a
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We now introduce a construction which will allow us to prove our main the-
orem. Let X be any set, and let F\,(X) denote the V-free band freely generated
by X. For a word w, let @ denote the element of Fy,(X) represented by w, i.e.
the class of all words (over X) V-equivalent to w. We define the following sets
and functions:

(1) Az = {u}U{(a,w) : w € FU{A}, aw =1, a does not occur in w}, where
A denotes the empty word,

(2) for each w,v € F, we define hg 5 : Az — Agw given by

a,W), a occurs in v,

(
(a,wv), x = (a,w), a does not occur in v.

It is indeed a routine to check that the above parameters determine a square
extension of the V-free band on X. This extension we denote by A(V, X).

Lemma 7. LetV be a variety of bands, SL C V), let u,v be two arbitrary words,
and let a be a variable not occurring in u and v. Then V1 satisfies au = av if
and only if V satisfies u = v.

Proof. (<) As in the previous lemma, if u = v holds in V, then u? = v? holds
in V*4. Therefore, V%9 satisfies au = au? = av? = av, as desired.

(=) Assume that au = av holds in V*4, and let X be the set of all variables
occurring in au (or av, which is the same, since SL C V). Then the identity
au = av holds in A(V, X) € V*9. Choose a valuation of variables from X in the
semigroup A(V, X) so that a becomes (a, A), while every variable z € X \ {a}
is replaced by T (in fact, by saying that F)(X) is freely generated by X, we
identify z with Z for all € X). Then au evalutes, by the above definition, to
(a, @), while av becomes (a,T), since a does not occur in v and v. It follows
that @ = v, and this can happen only if the identity u = v holds in V. O

Lemma 8. If a,b are different variables, u a word not containing a, and v a
word not containing b, then the identity au = bv cannot be true in a variety of
the form V1, where SL C V.

Proof. Assume to the contrary. Since SL C V), the identity au = bv must be
homotypical, so that it actually has the form auibus = bvsavy, where some of
the words wq,us,v1,v9 can be empty. Replace a — xz, b — yz, and all the
other variables by z. We obtain xzyz = yzxz, implying

ayr = x(yz)? = (zy)’z = Pyr = (yr)2® = ya® = yu,
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which, in turn, gives xyz = yxz. It follows that xyz = yxz holds in V¢, and
thus in S£%9. The latter variety also satisfies zyz = z(y2)? = z(2y)? = z2y,
yielding

zy = yry = y'r = (yr)* = (vy)? = 2’y = zyx = ya,

which leads to a contradiction, because Example 3 provides a noncommutative
square extension of a semilattice (3 -1 = ho1(3) = 3, while 1-3 = hyo(1) = 0).
O

Now we are ready to prove the main result of the paper, which describes the
structure of V-free semigroups in terms of V-free bands and square extensions.

Theorem 9. A(V, X) is isomorphic to Fysa(X), the V3%-free semigroup on the
set X.

Proof. We can represent Fysqa(X) so that it consists of elements w, where w
is a word over X, with w denoting the class of all words over X which are
V#d-equivalent to w. Consider the mapping ¥ : Fysa(X) — A(V, X) defined by

P(w) =

{ w, £(w) occurs in w at least twice,

(a,w), w = au, a does not occur in wu.

Note that the content of the previous four lemmata exactly amounts to saying
that 1 is well-defined and injective. Since v is obviously surjective, it remains
to show that it is a homomorphism.

So, let wy,wy be any words over X. If {(w;) occurs in wy at least twice, or
if it occurs in ws, then

Y(W1W2) = Y(wiws) = W1 Ws.

On the other hand, if (wy) occurs in wy at least twice, then ¢ (wq) = Wy, so
that
D(@)Y (W) = Wiy (Ws) = W1 (Y(W2))? = W12 = Wiy,

since by the definition of 1, (1)(w))? = w. If, however, w; = au such that a
occurs in wsy, but not in u, then, using some of the above arguments, we have

(@)Y (W2) = (a,0)p(W2) = (a,7) (¢ (@2))* =

= (a, W)Wy = hy, w,(a,U) = aGuWs = W1 Ws.

The other case is when w1 = au and a does not occur in © and wy. Then
(Wathz) = (a, uws), while

(@)Y (W2) = (a,0)(W2) = (a,7)(¢(@2))* =

= (a,w)Wy = hg, w,(a,7) = (a, TW2),
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establishing that v is indeed a homomorphic mapping. O

Immediately from the above theorem and the item (1) of the definition of
A(V, X), we have the following conclusion.

Corollary 10. Let V be a variety of bands such that SL C V. Denote f/, =
|Fysa(n)| and fr, = |Fy(n)|. Then f§ =0 and for alln > 1,

fvlz = fo +n(fo1+ 1)'

Therefore, all varieties of the form V39 are locally finite.

For example, if V = SL (SL£ is just the variety Ky from [6]), then f, =
2" — 1, and so f, = (n+2)2" ! — 1.

Finally, recall that for an algebra A, p,(A) denotes the number of all n-
ary term operations of A which depend on all of its variables for n > 1 (while
po(A) is the number of constant unary term operations of A). Furthermore,
the p,-sequence of a variety V is just the p,-sequence of any algebra generating
V, e.g. the V-free algebra over a countable set of free generators. For some
background concerning the theory of p,-sequences we refer to [4]. Now, since
we are working in this section with semigroup varieties that contain the variety
SL of semilattices, the determination of the p,-sequence of such a variety V
comes down to counting elements of Fy,(n) represented by words which include
occurences of all the generators. Hence, from our Theorem 9 we obtain

Corollary 11. Let V be a variety of bands such that SL C V. Denote p, =
(V) and p,, = pn (V). Then pj =0, p} =2 and for alln > 2,

p% = Pn +NPp—1-

For example, we have p, (S£%?) =n + 1 for all n > 1, as indicated in [5, 6].
On the other hand, for V = NB, the variety of normal bands, we have p, = n?
(moreover, N'B is uniquely determined by the sequence of square numbers, see
[1]), so that

PuNB*Y) =n? +n(n—1)2 =n(n? —n+1),

for all n > 2. Finally, if V is the variety LA B of left normal bands (or dually,
the variety RNB of right normal bands), we have p, = n, and so

Pu(LNBY) = n+n(n —1) = n?,

for all n > 2. Therefore, the p,-sequences of LN'B*? and N'B differ only in the
first term (p1 (LAB*Y) = 2, while p; (N'B) = 1).
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