THE HOMOGENEOUS LIFT ^{*}_G ON THE COTANGENT BUNDLE

Petre Stavre¹, Liviu Popescu¹

Abstract. R. Miron ([3]) by means of the Sasaki lift $\overset{\circ}{G}$ introduced a new lift G which is 0-homogeneous on $\widetilde{TM} = TM \setminus \{0\}$. Some geometrical properties are studied using the almost complex structure F which preserves the properties of homogenity. In this paper, we similarly studied the case of the cotangent bundle $\widetilde{T^*M} = T^*M \setminus \{0\}$ with a 0-homogeneous lift $\overset{\circ}{\mathbf{G}}$, using ([5]).

AMS Mathematics Subject Classification (2000): 53C15, 53C55, 53C60

Key words and phrases: nonlinear connection, adapted basis, homogeneous lift, self-curvature, non-holonomy distorsion, self-torsion, almost complex structure

1. Introduction

Let (T^*M, π^*, M) be a cotangent bundle, where M is a C^{∞} -differentiable, real n-dimensional manifold and the vertical distribution V on T^*M (V is the kernel of the submersion $\pi^* : T^*M \to M$), which is the integrable distribution. If M is a paracompact manifold there exists a C^{∞} - distribution H on T^*M which is supplementary to the vertical distribution V, such as the Whitney sum $TT^*M = HT^*M \oplus VT^*M$ holds. Also, H is called a nonlinear connection Non T^*M .

If (U, φ) is a local chart on M and (x^i) being the coordinates of the point $p \in M$, $p \in \varphi^{-1}(x) \in U$ then a point $u \in \pi^{*-1}(U), \pi^*(u) = p$ has the coordinates $(x^i, \tau_i), (i = \overline{1, n})$. The natural basis of the module $\mathcal{X}(T^*M)$ is given by $(\partial_i = \frac{\partial}{\partial x^i}, \partial^r = \frac{\partial}{\partial \tau_r})$. Given a nonlinear connection N on T^*M ([1]), there exist a single system of functions $N_{ia}(x, \tau)$ such that $\delta_k = \partial_k + N_{ka}(x, \tau)\partial^a$ and (δ_k, ∂^a) is a local basis of $\mathcal{X}(T^*M)$, which is called the adapted basis to N. We have the dual basis $(dx^i, \delta \tau_a = d\tau_a - N_{ka}(x, \tau)dx^k)$. For $X \in \mathcal{X}(T^*M)$ is obtained a unique decomposing $X = hX + vX, hX \in H, vX \in V$ and for $\omega \in \mathcal{X}^*(T^*M)$ we have $\omega = h\omega + v\omega$ where $(h\omega)(X) = \omega(hX), (v\omega)(X) = \omega(vX)$. In the adapted basis (δ_k, ∂^a) we have $X = X^i \delta_i + X_a \partial^a$ and $\omega = \omega_i dx^i + \omega^a \delta \tau_a$.

The 1-form $\tau = \tau_i dx^i$ is a horizontal 1-form field $(h\tau = \tau)$ on T^*M , which is

¹Faculty of Mathematics, University of Craiova, 13, Al. I. Cuza st., Craiova 1100, Romania. pstavre@hotmail.com; livpop@hotmail.com

called the fundamental 1-form on T^*M . The Liouville 1-form $\tau^v = \tau_r \partial^r$ is a vertical 1-form $(v\tau^v = \tau^v)$. The field of 2- form Ω given by

(1)
$$\Omega(X,Y) = -v[hX,vY], \quad \forall X,Y \in \mathcal{X}(T^*M)$$

is called the *curvature of the nonlinear connection* N. If $\Omega(\delta_j, \delta_k) = \Omega_{jk(a)} \partial^a$ then we have

(2)
$$\Omega_{jk(a)}(x,\tau) = -R_{jk(a)}(x,\tau), \quad R_{jk(a)} = \delta_j N_{ka} - \delta_k N_{ja}.$$

Evidently, *H* is integrable if and only if $\Omega = 0$. The almost symplectic structure θ to *N* is given by $\theta = \delta \tau_r \wedge dx^r$ ([1]). If

(3)
$$\overline{\tau} = \frac{1}{2} \tau_{kr} dx^k \wedge dx^r, \quad \tau_{kr} = N_{kr}(x,\tau) - N_{rk}(x,\tau)$$

then we obtain the exterior differential

(4)
$$d\tau = \theta + \overline{\tau}; \ d\theta = -d\overline{\tau} = -\frac{1}{6} \sum_{(jkr)} R_{jk(r)} dx^j \wedge dx^k \wedge dx^r - \partial^s \tau_{ij} \delta\tau_s \wedge dx^i \wedge dx^j.$$

Let N be a fixed nonlinear connection on T^*M and $\overset{*}{G}$ a pseudo-Riemannian structure on T^*M , with the property $\overset{*}{G} = h \overset{*}{G} + v \overset{*}{G}$. In the adapted basis we have

(5)
$$\overset{*}{G} = g_{ij}(x,\tau) dx^i \otimes dx^j + \overline{g}^{rs}(x,\tau) \delta\tau_r \otimes \delta\tau_s.$$

We consider an almost complex structure $\stackrel{*}{F}$ on T^*M , $\stackrel{*}{F}: \mathcal{X}(T^*M) \to \mathcal{X}(T^*M)$ given by ([1])

(6)
$$\overset{*}{F}(\delta_k) = g_{kr}\partial^r, \quad \overset{*}{F}(\partial^r) = -g^{rs}\delta_s, \quad \overset{*}{F}^2 = -I.$$

If $\overset{*}{G}(FX, FY) = \overset{*}{G}(X, Y), \forall X, Y \in \mathcal{X}(T^*M)$ then $\overline{g}^{rs}(x, \tau) = g^{rs}(x, \tau)$, where $g_{ik}g^{ks} = \delta_i^s$ and

(7)
$$\overset{*}{G} = g_{ij}(x,\tau) dx^i \otimes dx^j + g^{rs}(x,\tau) \delta\tau_r \otimes \delta\tau_s.$$

The structure $(T^*M, \overset{*}{G}, \overset{*}{F})$ is called *almost Hermitian structure*. We have

(8)
$$\theta(X,Y) = \overset{*}{G} (X, \overset{*}{F} Y)$$

and it results that θ is the almost symplectic structure associated with $(\overset{*}{G}, \overset{*}{F})$. The space $(M, g^{rs}(x, \tau)) = \overset{*}{H}^{n}$ is called a *generalized Hamilton space* ([1]). The homogeneous lift $\overset{*}{\mathbf{G}}$ on the cotangent bundle

Definition 1. (5) The tensor field $\stackrel{*}{\Omega}$ defined by

(9)
$$\hat{\Omega}(X,Y) = v\mathcal{N}(hX,hY), \quad \forall X,Y \in \mathcal{X}(T^*M)$$

is called self-curvature of the nonlinear connection N, where \mathcal{N} is the Nijenhuis tensor of the almost complex structure $\overset{*}{F}$

$$\mathcal{N}(X,Y) = [\overset{*}{F}X, \overset{*}{F}Y] - \overset{*}{F}[\overset{*}{F}X,Y] - \overset{*}{F}[X, \overset{*}{F}Y] + \overset{*^{2}}{F}[X,Y], \ \forall X, Y \in \mathcal{X}(T^{*}M).$$

Definition 2. ([5]) The tensor field $\omega = \stackrel{*}{\Omega} - \Omega$ is called the non-holonomy distorsion of the space $(T^*M, \overset{*}{G}, \overset{*}{F})$ relative to $\overset{*}{H}$ ⁿ.

Definition 3. ([5]) The tensor field $\overset{*}{t}$ defined by

(10)
$$\overset{*}{t}(X,Y) = h\mathcal{N}(vX,vY), \quad \forall X,Y \in \mathcal{X}(T^*M)$$

is called the self-torsion of nonlinear connection N.

Remark 1. ([5]) The almost complex structure $\stackrel{*}{F}$ is a complex structure if and only if $\stackrel{*}{\Omega}=0$, $\stackrel{*}{t=0}$. Then $(T^*M, \stackrel{*}{G}, \stackrel{*}{F})$ is a Hermitian space.

2. The case of Riemannian structure.

Let $(M, g_{ij}(x))$ be a Riemannian space and $(T^*M, \overset{*}{G}, \overset{*}{F})$ its cotangent bundle and $g^{rs}(x)$ with $g_{ik}(x)g^{ks}(x) = \delta_i^s$. We consider

(11)
$$\overset{c}{N_{kr}}(x,\tau) \stackrel{def}{=} \tau_s \Gamma^s_{rk}(x).$$

where $\Gamma^s_{rk}(x)$ are the Christoffel symbols of g. Evidently, $\{\overset{c}{N}_{kr}(x,\tau)\}$ are the coefficients of nonlinear connection on $\widetilde{T^*M} = T^*M \setminus \{0\}$ which is 1homogeneous on the fibres. Using $\overset{c}{N}_{kr}$ we consider $\delta_k = \partial_k + \overset{c}{N}_{kr} (x,\tau)\partial^r$; $\delta \tau_k = d\tau_k - \overset{c}{N}_{ik} (x, \tau) dx^i.$ We get

$$\begin{pmatrix} 12 \\ \end{pmatrix} \qquad \qquad h \stackrel{*}{\leftarrow} (x) dx^{i}$$

(12)
$$h \stackrel{*}{G} = g_{ij}(x) dx^{i} \otimes dx^{j}, \quad v \stackrel{*}{G} = g^{rs}(x) \delta\tau_{r} \otimes \delta\tau_{s},$$

(13)
$$\hat{G} = h \hat{G} + v \hat{G}, \quad \hat{G} = g_{ij}(x) dx^i \otimes dx^j + g^{rs}(x) \delta \tau_r \otimes \delta \tau_s.$$

If $\overset{*}{h_t}: (x, \tau) \to (x, t\tau), \forall t \in \mathbf{R}$ ($\overset{*}{h_t}$ is a homothety) we have

(14)
$$\begin{pmatrix} * & * \\ G \circ h_t \end{pmatrix}(x,\tau) = g_{ij}(x)dx^i \otimes dx^j + t^2g^{rs}(x)\delta\tau_r \otimes \delta\tau_s \neq \overset{*}{G}(x,\tau).$$

Proposition 1. $\overset{*}{G}$ is a globally defined Riemannian metric on $\widetilde{T^*M}$ and is not homogeneous on the fibres of T^*M .

The space $(M, g^{rs}(x, \tau) = g^{rs}(x))$ is a particular Hamilton space. We consider $\overset{*}{F}$ with $g^{rs}(x, \tau) = g^{rs}(x)$. We have:

Proposition 2. $\overset{*}{F}$ depends only on q and is globally defined on T^*M .

Proposition 3. The almost complex structure $\overset{*}{F}$ is integrable (or complex structure) if and only if $\Omega = 0$.

Proof. From $\partial^r g_{sk}(x) = 0$ we obtain $\omega = 0$, $\stackrel{*}{\Omega} = \Omega$. From (10) we get

$$t^{*(r)(s)i} = g^{sk}\partial_k(g^{ri}) - g^{rk}\partial_k(g^{si}) + g^{sk}\partial^r(\overset{c}{N}_{kj})g^{ji} - g^{rk}\partial^s(\overset{c}{N}_{kj})g^{ij}.$$

But $\overset{c}{N}_{kj}(x,\tau) = \tau_s \Gamma^s_{jk}(x)$ and $g^{sk} g^{ji} g^{rm} \partial_k g_{jm} = -g^{sk} \partial_k g^{ri}$ then $\overset{*}{t}^{(r)(s)i} = 0.$ Since $\Omega_{jk(r)} = -R_{jk(r)}$ and

(15)
$$R_{jk(r)} = \tau_s r_{skj}^s$$

where r_{rki}^{s} is the curvature tensor of Levi-Civita connection, we get:

Proposition 4. The almost complex structure $\overset{*}{F}$ is integrable if and only if the space (M, g) is locally flat.

Remark 2. If n = 2, then the surface (M, g) is locally isometric with a plane.

Proposition 5. The space $(T^*M, \overset{*}{G}, \overset{*}{F})$ is an almost Kählerian space. The space $(\widetilde{T^*M}, \overset{*}{G}, \overset{*}{F})$ is a Kählerian space if and only if (M, g) is locally flat.

Proof. Since
$$\tau_{jr} = N_{jr}(x,\tau) - N_{rj}(x,\tau) = \tau_s(\Gamma_{rj}^s - \Gamma_{jr}^s) = 0$$
 and $\sum_{(jkr)} R_{jk(r)} = 0$ we get $d\theta = 0$.

The proposition is similar to Miron's results given for the tangent bundle (\widetilde{TM}, G, F) .

3. The homogeneous lift $\overset{*}{\mathbf{G}}$ of a Riemannian metric

We consider

(16)
$$H(x,\tau) = g^{rs}(x)\tau_r\tau_s.$$

Evidently, H is 2-homogeneous on the fibres of the cotangent bundle $\widetilde{T^*M}$. If $\overset{*}{\mathbf{G}}$ is defined by

(17)
$$\overset{*}{\mathbf{G}} = g_{ij}(x)dx^{i} \otimes dx^{j} + \frac{r^{2}}{H}g^{rs}(x)\delta\tau_{r} \otimes \delta\tau_{s}$$

where r > 0 is a constant, then we get:

The homogeneous lift $\overset{*}{\mathbf{G}}$ on the cotangent bundle

Theorem 1. The following properties hold: 1° The pair $(\widetilde{T^*M}, \overset{*}{\mathbf{G}})$ is a Riemannian space depending only on the metric g. 2° $\overset{*}{\mathbf{G}}$ is 0-homogeneous on the fibres of $\widetilde{T^*M}$. 3° The distributions N and V are ortogonal with respect to $\overset{*}{\mathbf{G}}$

$$\overset{*}{\mathbf{G}}(hX, vY) = 0, \quad \forall X, Y \in \mathcal{X}(T^*M).$$

Let $\overset{*}{\mathbf{F}}$ be the linear mapping $\overset{*}{\mathbf{F}}: \mathcal{X}(T^*M) \to \mathcal{X}(T^*M)$ given by

(18)
$$\mathbf{F}(\delta_k) = \frac{\sqrt{H}}{r} \mathbf{F}(\delta_k), \quad \mathbf{F}(\partial^r) = \frac{r}{\sqrt{H}} \mathbf{F}(\partial^r).$$

Theorem 2 $\stackrel{*}{\mathbf{F}}$ has the following properties:

1° $\overset{*}{\mathbf{F}}$ is an almost complex structure on $\widetilde{T^*M}$.

 $2^{\circ} \overset{*}{\mathbf{F}}$ depends only on the metric g.

 $\mathscr{F} \stackrel{*}{\mathbf{F}}$ is homogeneous on the fibres of $\widetilde{T^*M}$.

Proof. We have
$$\mathbf{F}^2(\delta_j) = \mathbf{F}^*(\frac{\sqrt{H}}{r}g_{jk}\partial^k) = -\frac{\sqrt{H}}{r}g_{jk}\frac{r}{\sqrt{H}}g^{ki}\delta_i = -\delta_j \text{ and } \mathbf{F}^2(\partial^k) = \mathbf{F}^*(-\frac{r}{\sqrt{H}}g^{ki}\delta_i) = -\frac{r}{\sqrt{H}}g^{ki}\frac{\sqrt{H}}{r}g_{is}\partial^s = -\partial^k.$$

Theorem 3. If we consider

we get: 1° $\begin{pmatrix} * \\ \mathbf{G}, \mathbf{F} \end{pmatrix}$ is an almost Hermitian structure on $\widetilde{T^*M}$. 2° $\stackrel{*}{\theta}$ is the associated almost symplectic structure.

Proof. 1° Follows from the equations $\overset{*}{\mathbf{G}} (\overset{*}{\mathbf{F}} X, \overset{*}{\mathbf{F}} Y) = \overset{*}{\mathbf{G}} (X, Y).$ 2° $\overset{*}{\theta} (X, Y) = \overset{*}{\mathbf{G}} (X, \overset{*}{\mathbf{F}} Y).$

Proposition 6. $\stackrel{*}{\theta}$ cannot be an integrable structure.

Proof. $d \stackrel{*}{\theta} = r(d \frac{1}{\sqrt{H}}) \land \theta \neq 0.$

Let \mathbb{N} be the Nijenhuis tensor of the homogeneous structure \mathbf{F} .

Proposition 7. In the adapted basis we have the unique decomposition

$$\begin{cases} \mathbb{N}(\delta_j, \delta_k) = \mathbb{N}_{jk}^i \delta_i + \mathbb{N}_{jk(r)} \partial^r, \\ \mathbb{N}(\delta_j, \partial^r) = \mathbb{N}_j^{(r)i} \delta_i + \mathbb{N}_{j(k)}^{(r)} \partial^k, \\ \mathbb{N}(\partial^s, \partial^r) = \mathbb{N}^{(s)(r)i} \delta_i + \mathbb{N}_{(k)}^{(s)(r)} \partial^k, \end{cases}$$

P. Stavre, L. Popescu

.□

with

(20)
$$\begin{cases} \mathbb{N}_{kj(i)} = \frac{H^2}{r^2} \mathbb{N}_j^{(r)s} g_{rk} g_{is} = -\frac{H}{r^2} \mathbb{N}_{(i)}^{(r)(s)} g_{sj} g_{rk}, \\ \mathbb{N}_{\alpha\beta}^i = \mathbb{N}_{\alpha(j)}^{(k)} g^{ij} g_{k\beta} = -\frac{H}{r^2} \mathbb{N}^{(r)(s)i} g_{r\alpha} g_{s\beta}. \end{cases}$$

Proposition 8. We have the following relations

(21)
$$\begin{cases} \mathbb{N}_{kj(s)} = \frac{1}{r^2} (\tau_j \delta_k^l - \tau_k \delta_j^l) g_{ls} - R_{kj(s)}, & \mathbb{N}_{kj}^i = 0, \\ \mathbb{N}_j^{(k)s} = \frac{1}{H} (g^{ks} g_{jr} \tau^r - g_{jr} g^{rs} \tau^k) - \frac{r^2}{H} g^{kr} g^{is} R_{rj(i)}, & \mathbb{N}_{j(r)}^{(k)} = 0, \\ \mathbb{N}_{(s)}^{(k)(j)} = \frac{r^2}{H} g^{ji} g^{kr} R_{ri(s)} + \frac{1}{H} (\delta_s^j \tau^k - \delta_s^k \tau^j), & N^{(r)(s)i} = 0. \end{cases}$$

where $\tau^r = g^{rs} \tau_s$.

Proof. Follows from
$$N^{(r)(s)i} = t^{*(r)(s)i} = 0$$
 and $\delta_k(H) = 0$

Theorem 4. $\overset{*}{\mathbf{F}}$ is a complex structure if and only if

(22)
$$R_{kj(s)} = \frac{1}{r^2} \left(\tau_j \delta_k^l - \tau_k \delta_j^l \right) g_{ls}(x).$$

From (15) and (22) we obtain

(23)
$$r_{rkj}^s = \frac{1}{r^2} \left(g_{rk} \delta_j^s - g_{rj} \delta_k^s \right)$$

Theorem 5. The almost complex structure $\overset{*}{\mathbf{F}}$ is a complex structure on $\widetilde{T^*M}$ if and only if the Riemannian space (M,g) is of constant curvature $K = \frac{1}{r^2}$.

Remark 3. For n = 2, (M, g) is locally isometric with a sphere of radius r.

Corollary 1. The almost Hermitian structure $\begin{pmatrix} * \\ \mathbf{G}, \mathbf{F} \end{pmatrix}$ is a Hermitian structure on $\widetilde{T^*M}$ if and only if the space (M, g) is of constant curvature.

From (19) we get:

Corollary 2. The structure $\begin{pmatrix} * \\ \mathbf{G}, \mathbf{F} \end{pmatrix}$ on $\widetilde{T^*M}$ cannot be an almost Kählerian structure.

From (23) we have

(24)
$$r_{ij} = \frac{n-1}{r^2} g_{ij} = (n-1)Kg_{ij}, \quad (n>1)$$

where r_{rk} is the Ricci tensor and

(25)
$$\overline{r} = \frac{n(n-1)}{r^2} > 0; \quad \overline{r} = n(n-1)K.$$

 $(\overline{r} \text{ is the scalar curvature and } K = \frac{1}{r^2} > 0 \text{ is the curvature of } (M,g)).$

The homogeneous lift $\overset{*}{\mathbf{G}}$ on the cotangent bundle

Corollary 3. If the structure $\begin{pmatrix} * \\ \mathbf{G}, \mathbf{F} \end{pmatrix}$ is a Hermitian structure on $\widetilde{T^*M}$ then (M, g) is an Einstein space with positive scalar curvature.

Since $r_{ij} = r_{ji}$ then from (24) we get:

Corollary 4. If the almost complex structure $\overset{*}{\mathbf{F}}$ is a complex structure then $(M, r_{ij}(x))$ is a Riemannian space.

References

- Miron, R., Hamilton geometry, Seminarul de mecanica, No. 3, Univ. Timisoara, 1987.
- [2] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces. Theory and Applications, Kluwer Academic Publishers, no. 59 (1994).
- [3] Miron R., The homogeneous lift of a Riemannian metric, An. St. Univ. "A. I. Cuza" Iasi, (to appear)
- [4] Stavre P., On Lagrange and Hamilton Spaces, Studia Univ. Babeş-Bolyai Cluj, Mat. XXXIV, 1 (1989).
- [5] Stavre P., On the integrability of the structures $(T^*M, (G, F))$, Algebras, Groups and Geometries, Handronic Press, SUA, vol. 16, 107-114, (1999).

Received by the editors April 20, 2000