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THE HOMOGENEOUS LIFT
∗
G ON THE COTANGENT

BUNDLE

Petre Stavre1, Liviu Popescu1

Abstract. R. Miron ([3]) by means of the Sasaki lift
◦
G introduced a

new lift G which is 0-homogeneous on T̃M = TM\{0}. Some geometrical
properties are studied using the almost complex structure F which pre-
serves the properties of homogenity. In this paper, we similary studied

the case of the cotangent bundle T̃ ∗M = T ∗M\{0} with a 0-homogeneous

lift
∗
G, using ([5]).
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1. Introduction

Let (T ∗M,π∗,M) be a cotangent bundle, where M is a C∞-differentiable,
real n-dimensional manifold and the vertical distribution V on T ∗M (V is the
kernel of the submersion π∗ : T ∗M → M), which is the integrable distribution.
If M is a paracompact manifold there exists a C∞- distribution H on T ∗M
which is supplementary to the vertical distribution V , such as the Whitney sum
TT ∗M = HT ∗M ⊕ V T ∗M holds. Also, H is called a nonlinear connection N
on T ∗M .
If (U,ϕ) is a local chart on M and (xi) being the coordinates of the point p ∈ M,
p ∈ ϕ−1(x) ∈ U then a point u ∈ π∗−1(U), π∗(u) = p has the coordinates (xi, τi),
(i = 1, n). The natural basis of the module X (T ∗M) is given by (∂i = ∂

∂xi , ∂
r =

∂
∂τr

). Given a nonlinear connection N on T ∗M ([1]), there exist a single system
of functions Nia(x, τ) such that δk = ∂k + Nka(x, τ)∂a and (δk, ∂a) is a local
basis of X (T ∗M), which is called the adapted basis to N . We have the dual
basis (dxi, δτa = dτa − Nka(x, τ)dxk). For X ∈ X (T ∗M) is obtained a unique
decomposing X = hX + vX, hX ∈ H, vX ∈ V and for ω ∈ X ∗(T ∗M) we have
ω = hω + vω where (hω)(X) = ω(hX), (vω)(X) = ω(vX). In the adapted basis
(δk, ∂a) we have X = Xiδi + Xa∂a and ω = ωidxi + ωaδτa.
The 1-form τ = τidxi is a horizontal 1-form field (hτ = τ) on T ∗M , which is
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called the fundamental 1-form on T ∗M . The Liouville 1-form τv = τr∂
r is a

vertical 1-form (vτv = τv). The field of 2- form Ω given by

Ω(X,Y ) = −v[hX, vY ], ∀X, Y ∈ X (T ∗M)(1)

is called the curvature of the nonlinear connection N. If Ω(δj , δk) = Ωjk(a)∂
a

then we have

Ωjk(a)(x, τ) = −Rjk(a)(x, τ), Rjk(a) = δjNka − δkNja.(2)

Evidently, H is integrable if and only if Ω = 0. The almost symplectic structure
θ to N is given by θ = δτr ∧ dxr ([1]). If

τ =
1
2
τkrdxk ∧ dxr, τkr = Nkr(x, τ)−Nrk(x, τ)(3)

then we obtain the exterior differential

dτ = θ+τ ; dθ = −dτ = −1
6

∑

(jkr)

Rjk(r)dxj∧dxk∧dxr−∂sτijδτs∧dxi∧dxj .(4)

Let N be a fixed nonlinear connection on T ∗M and
∗
G a pseudo-Riemannian

structure on T ∗M, with the property
∗
G= h

∗
G +v

∗
G . In the adapted basis we

have
∗
G= gij(x, τ)dxi ⊗ dxj + grs(x, τ)δτr ⊗ δτs.(5)

We consider an almost complex structure
∗
F on T ∗M ,

∗
F : X (T ∗M) → X (T ∗M)

given by ([1])

∗
F (δk) = gkr∂

r,
∗
F (∂r) = −grsδs,

∗
F

2

= −I.(6)

If
∗
G (FX, FY ) =

∗
G (X,Y ), ∀X, Y ∈ X (T ∗M) then grs(x, τ) = grs(x, τ), where

gikgks = δs
i and

∗
G= gij(x, τ)dxi ⊗ dxj + grs(x, τ)δτr ⊗ δτs.(7)

The structure (T ∗M,
∗
G,

∗
F ) is called almost Hermitian structure. We have

θ(X, Y ) =
∗
G (X,

∗
F Y )(8)

and it results that θ is the almost symplectic structure associated with (
∗
G,

∗
F ).

The space (M, grs(x, τ)) =
∗
H n is called a generalized Hamilton space ([1]).
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Definition 1. ([5]) The tensor field
∗
Ω defined by

∗
Ω (X, Y ) = vN (hX, hY ), ∀X,Y ∈ X (T ∗M)(9)

is called self-curvature of the nonlinear connection N, where N is the Nijenhuis
tensor of the almost complex structure

∗
F

N (X,Y ) = [
∗
F X,

∗
F Y ]− ∗

F [
∗
F X, Y ]− ∗

F [X,
∗
F Y ]+

∗
F

2

[X, Y ], ∀X,Y ∈ X (T ∗M).

Definition 2. ([5]) The tensor field ω =
∗
Ω −Ω is called the non-holonomy dis-

torsion of the space (T ∗M,
∗
G,

∗
F ) relative to

∗
H n.

Definition 3. ([5]) The tensor field
∗
t defined by

∗
t (X, Y ) = hN (vX, vY ), ∀X, Y ∈ X (T ∗M)(10)

is called the self-torsion of nonlinear connection N.

Remark 1. ([5]) The almost complex structure
∗
F is a complex structure if and

only if
∗
Ω= 0,

∗
t= 0. Then (T ∗M,

∗
G,

∗
F ) is a Hermitian space.

2. The case of Riemannian structure.

Let (M, gij(x)) be a Riemannian space and (T ∗M,
∗
G,

∗
F ) its cotangent bundle

and grs(x) with gik(x)gks(x) = δs
i .

We consider
c

Nkr (x, τ)
def
= τsΓs

rk(x),(11)

where Γs
rk(x) are the Christoffel symbols of g. Evidently, { c

Nkr (x, τ)} are
the coefficients of nonlinear connection on T̃ ∗M = T ∗M \ {0} which is 1-

homogeneous on the fibres. Using
c

Nkr we consider δk = ∂k+
c

Nkr (x, τ)∂r;

δτk = dτk−
c

N ik (x, τ)dxi.
We get

h
∗
G= gij(x)dxi ⊗ dxj , v

∗
G= grs(x)δτr ⊗ δτs,(12)

∗
G= h

∗
G +v

∗
G,

∗
G= gij(x)dxi ⊗ dxj + grs(x)δτr ⊗ δτs.(13)

If
∗
ht: (x, τ) → (x, tτ), ∀t ∈ R (

∗
ht is a homothety) we have

( ∗
G ◦ ∗ht

)
(x, τ) = gij(x)dxi ⊗ dxj + t2grs(x)δτr ⊗ δτs 6=

∗
G (x, τ).(14)
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Proposition 1.
∗
G is a globally defined Riemannian metric on T̃ ∗M and is not

homogeneous on the fibres of T ∗M.

The space (M, grs(x, τ) = grs(x)) is a particular Hamilton space.

We consider
∗
F with grs(x, τ) = grs(x). We have:

Proposition 2.
∗
F depends only on g and is globally defined on T ∗M.

Proposition 3. The almost complex structure
∗
F is integrable (or complex struc-

ture) if and only if Ω = 0.

Proof. From ∂rgsk(x) = 0 we obtain ω = 0,
∗
Ω= Ω. From (10) we get

∗
t
(r)(s)i

= gsk∂k(gri)− grk∂k(gsi) + gsk∂r(
c

Nkj)gji − grk∂s(
c

Nkj)gij .

But
c

Nkj (x, τ) = τsΓs
jk(x) and gskgjigrm∂kgjm = −gsk∂kgri then

∗
t
(r)(s)i

= 0. 2

Since Ωjk(r) = −Rjk(r) and

Rjk(r) = τsr
s
rkj(15)

where rs
rkj is the curvature tensor of Levi-Civita connection, we get:

Proposition 4. The almost complex structure
∗
F is integrable if and only if the

space (M, g) is locally flat.

Remark 2. If n = 2, then the surface (M, g) is locally isometric with a plane.

Proposition 5. The space (T ∗M,
∗
G,

∗
F ) is an almost Kählerian space. The

space (T̃ ∗M,
∗
G,

∗
F ) is a Kählerian space if and only if (M, g) is locally flat.

Proof. Since τjr =
c

N jr (x, τ)− c

Nrj (x, τ) = τs(Γs
rj −Γs

jr) = 0 and
∑

(jkr)

Rjk(r) =

0 we get dθ = 0 . 2

The proposition is similar to Miron’s results given for the tangent bundle
(T̃M, G, F ).

3. The homogeneous lift
∗
G of a Riemannian metric

We consider
H(x, τ) = grs(x)τrτs.(16)

Evidently, H is 2-homogeneous on the fibres of the cotangent bundle T̃ ∗M.

If
∗
G is defined by

∗
G= gij(x)dxi ⊗ dxj +

r2

H
grs(x)δτr ⊗ δτs(17)

where r > 0 is a constant, then we get:
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Theorem 1. The following properties hold:
1◦ The pair (T̃ ∗M,

∗
G) is a Riemannian space depending only on the metric g.

2◦
∗
G is 0-homogeneous on the fibres of T̃ ∗M.

3◦ The distributions N and V are ortogonal with respect to
∗
G

∗
G (hX, vY ) = 0, ∀X,Y ∈ X (T ∗M).

Let
∗
F be the linear mapping

∗
F: X (T ∗M) → X (T ∗M) given by

∗
F (δk) =

√
H

r

∗
F (δk),

∗
F (∂r) =

r√
H

∗
F (∂r).(18)

Theorem 2
∗
F has the following properties:

1◦
∗
F is an almost complex structure on T̃ ∗M .

2◦
∗
F depends only on the metric g.

3◦
∗
F is homogeneous on the fibres of T̃ ∗M.

Proof. We have
∗

F2 (δj) =
∗
F (

√
H
r gjk∂k) = −

√
H
r gjk

r√
H

gkiδi = −δj and
∗

F2

(∂k) =
∗
F (− r√

H
gkiδi) = − r√

H
gki

√
H
r gis∂

s = −∂k. 2

Theorem 3. If we consider
∗
θ

def
=

r√
H

θ(19)

we get:
1◦

( ∗
G,

∗
F

)
is an almost Hermitian structure on T̃ ∗M.

2◦
∗
θ is the associated almost symplectic structure.

Proof. 1◦ Follows from the equations
∗
G (

∗
F X,

∗
F Y ) =

∗
G (X, Y ).

2◦
∗
θ (X, Y ) =

∗
G (X,

∗
F Y ). 2

Proposition 6.
∗
θ cannot be an integrable structure.

Proof. d
∗
θ= r(d 1√

H
) ∧ θ 6= 0. 2

Let N be the Nijenhuis tensor of the homogeneous structure
∗
F.

Proposition 7. In the adapted basis we have the unique decomposition




N(δj , δk) = Ni
jkδi + Njk(r)∂

r,

N(δj , ∂
r) = N(r)i

j δi + N(r)
j(k)∂

k,

N(∂s, ∂r) = N(s)(r)iδi + N(s)(r)
(k) ∂k,
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with {
Nkj(i) = H2

r2 N(r)s
j grkgis = −H

r2N(r)(s)
(i) gsjgrk,

Ni
αβ = N(k)

α(j)g
ijgkβ = −H

r2N(r)(s)igrαgsβ .
(20)

Proposition 8. We have the following relations




Nkj(s) = 1
r2 (τjδ

l
k − τkδl

j)gls −Rkj(s), Ni
kj = 0,

N(k)s
j = 1

H (gksgjrτ
r − gjrg

rsτk)− r2

H gkrgisRrj(i), N(k)
j(r) = 0,

N(k)(j)
(s) = r2

H gjigkrRri(s) + 1
H (δj

sτ
k − δk

s τ j), N (r)(s)i = 0.

(21)

where τ r = grsτs.

Proof. Follows from N (r)(s)i =
∗
t
(r)(s)i

= 0 and δk(H) = 0 .2

Theorem 4.
∗
F is a complex structure if and only if

Rkj(s) =
1
r2

(
τjδ

l
k − τkδl

j

)
gls(x).(22)

From (15) and (22) we obtain

rs
rkj =

1
r2

(
grkδs

j − grjδ
s
k

)
(23)

Theorem 5. The almost complex structure
∗
F is a complex structure on T̃ ∗M

if and only if the Riemannian space (M, g) is of constant curvature K = 1
r2 .

Remark 3. For n = 2, (M, g) is locally isometric with a sphere of radius r.

Corollary 1. The almost Hermitian structure
( ∗
G,

∗
F

)
is a Hermitian structure

on T̃ ∗M if and only if the space (M, g) is of constant curvature.

From (19) we get:

Corollary 2. The structure
( ∗
G,

∗
F

)
on T̃ ∗M cannot be an almost Kählerian

structure.

From (23) we have

rij =
n− 1

r2
gij = (n− 1)Kgij , (n > 1)(24)

where rrk is the Ricci tensor and

r =
n(n− 1)

r2
> 0; r = n(n− 1)K.(25)

(r is the scalar curvature and K = 1
r2 > 0 is the curvature of (M, g)).
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Corollary 3. If the structure
( ∗
G,

∗
F

)
is a Hermitian structure on T̃ ∗M then

(M, g) is an Einstein space with positive scalar curvature.

Since rij = rji then from (24) we get:

Corollary 4. If the almost complex structure
∗
F is a complex structure then

(M, rij(x)) is a Riemannian space.

References

[1] Miron, R., Hamilton geometry, Seminarul de mecanica, No. 3, Univ. Timisoara,
1987.

[2] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces. Theory and Appli-
cations, Kluwer Academic Publishers, no. 59 (1994).

[3] Miron R., The homogeneous lift of a Riemannian metric, An. Şt. Univ. “A. I.
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