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Introduction

Groupoids were introduced and named by H. Brandt ([2]) in 1926, in a paper
on the composition of quadratic forms in four variables. A groupoid is, roughly
speaking, a set with a not everywhere defined binary operation which would a
group if the operation were defined everywhere.

There are various equivalent definitions for groupoids (see [6], [10],[11], [14])
and various ways of thinking of them.

In 1950, in his paper ([4]) on connections, C. Ehresmann added further struc-
tures (topological and differentiable) to groupoids, thereby introducing them as
a tool in differentiable topology and geometry.

The differentiable groupoids endowed with supplementary structures (for
example: Lie groupoids, symplectic groupoids, contact groupoids, Riemannian
groupoids, measure groupoids) has used by C. Albert,P. Dazord, M. V. Karasev,
P. Libermann, K. Mackenzie, G. W. Mackey, J. Pradines, J. Renault, A. Wein-
stein, in a series of papers for applications to differential topology and geometry,
symplectic geometry, Poisson geometry, quantum mechanics, quantization the-
ory, ergodic theory.

1. The category of groupoids

The purpose of this section is to construct the category of groupoids and
give several properties characterizing them.

Definition 1.1. ([11]) A groupoid Γ over Γ0 or groupoid with the base
Γ0 is a 7-tuple (Γ, α, β, ε, i, µ; Γ0) formed by: the sets Γ and Γ0, the surjec-
tions α, β : Γ −→ Γ0, called respectively the source and the target map, an
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injection ε : Γ0 −→ Γ, u −→ ε(u) = ũ, called the inclusion map, a map
i : Γ −→ Γ, x −→ i(x) = x−1, called the inversion map and a (partial)
composition law µ : Γ(2) −→ Γ, (x, y) −→ µ(x, y) = x · y = xy, with the do-
main Γ(2) = {(x, y) ∈ Γ × Γ | β(x) = α(y)}, such that the following axioms
are satisfied:

(G1) (associative law) For arbitrary x, y, z ∈ Γ the triple product (xy)z is
defined iff x(yz) is defined. In case either is defined, we have (xy)z = x(yz)

(G2) (identities) For each x ∈ Γ we have (ε(α(x)), x) ∈ Γ(2); (x, ε(β(x))) ∈
Γ(2) and ε(α(x)) · x = x · ε(β(x)) = x

(G3) (inverses) For each x ∈ Γ we have (x, i(x)) ∈ Γ(2); (i(x), x) ∈ Γ(2)

and x · i(x) = ε(α(x)), i(x) · x = ε(β(x)) ..

We will denote sometimes a groupoid Γ over Γ0 by (Γ, α, β; Γ0) or (Γ; Γ0).
A groupoid Γ over Γ0 such that Γ0 is a subset of Γ is called Γ0-groupoid

or Brandt groupoid.
For each u ∈ Γ0, the set Γu = α−1(u) (resp. Γu = β−1(u)), called the α-fibre

(resp. β-fibre) of Γ over u ∈ Γ0 and if u, v ∈ Γ, we will write Γv
u = Γu ∩ Γv.

Definition 1.2 A groupoid Γ over Γ0 is said to be transitive if the map α×β :
Γ −→ Γ0 × Γ0, given by (α× β)(x) = (α(x), β(x)), (∀)x ∈ Γ is surjective..

We summarize some properties of groupoids obtained from the definitions.

Proposition 1.1 Let Γ be a groupoid over Γ0. The following assertions hold:
(i) For all x ∈ Γ we have β(x−1) = α(x) and α(x−1) = β(x)

(ii) If (x, y) ∈ Γ(2) then x−1(xy) = y and (xy)y−1 = x.
(iii) If (x, y) ∈ Γ(2) then α(xy) = α(x) and β(xy) = β(y).
(iv) (cancellation law) If xz1 = xz2 ( resp., z1x = z2x) then z1 = z2.
(v) If (x, y) ∈ Γ(2) then (y−1, x−1) ∈ Γ(2) and (x · y)−1 = y−1 · x−1.
(vi) (x−1)−1 = x, (∀) x ∈ Γ.
(vii) α(ε(u)) = u and β(ε(u)) = u, (∀) u ∈ Γ0.
(viii) ε(u) · ε(u) = ε(u) and (ε(u))−1 = ε(u) for each u ∈ Γ0.

Proof. (i) This assertion follows from the axiom (G.3). For example , for each
x ∈ Γ we have (x−1, x) ∈ Γ(2). Then β(x−1) = α(x).

(ii) Let (x, y) ∈ Γ(2) . By the axiom (G.2), for y ∈ Γ we have ε(α(y))y = y.
Hence ε(β(x))y = y , since β(x) = α(y). But, using (G.3), we have that
ε(β(x)) = x−1x and we obtain (x−1x)y = y, i.e. the triple product (x−1x)y
is defined. Applying now (G.1), imply that the triple x−1(xy) is defined and
we have (x−1x)y = x−1(xy). Therefore, x−1(xy) = y.

(iii) Let (x, y) ∈ Γ(2). Then x−1(xy) = y, by (ii). Hence, (x−1, xy) ∈ Γ(2)

and it follows that β(x−1) = α(xy). We have α(xy) = α(x), since β(x−1) =
α(x), by (i).
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(iv) It is a consequence of (ii). Indeed, if xz1 = xz2, then x−1(xz1) =
x−1(xz2) , i.e. z1 = z2.

(v) Let (x, y) ∈ Γ(2). By (ii), β(y−1) = α(y) and α(x−1) = β(x). Then,
β(y−1) = α(x−1), since β(x) = α(y). Hence , (y−1, x−1) ∈ Γ(2).

We have (xy)(xy)−1 = ε(α(xy)) = ε(α(x)), and (xy)(y−1x−1) =
x(yy−1)x−1 = xε(α(y))x−1 = xε(β(x))x−1 = xx−1 = ε(α(x)). Hence
(xy)(xy)−1 = (xy)(y−1x−1) and by (iv) we obtain (xy)−1 = y−1x−1.

(vi) Applying (G.3) for the elements x, x−1 ∈ Γ and (i), we have x−1x =
ε(β(x)) and x−1(x−1)−1 = ε(α(x−1)) = ε(β(x)). Hence x−1x = x−1(x−1)−1

and using (iv), we obtain (x−1)−1 = x.
(vii) Let u ∈ Γ0. We denote ε(u) = x. From (G.2) follows ε(α(x))x = x

and ε(α(ε(u))x = x. We have ε(α(ε(u)))x = ε(α(x))x, and by (iv), we obtain
ε(α(ε(u))) = ε(α(x)). Hence, α(ε(u)) = α(x), since ε is injective . Then,
α(ε(u)) = u, since α(x) = u.

(viii) Let u ∈ Γ0. We denote ε(u) = x. From (G.2) follows ε(α(x))x = x,
i.e. ε(α(ε(u)))ε(u) = ε(u), i.e. ε(u)ε(u) = ε(u), since α(ε(u)) = u , cf. (vii).

We have ε(u)(ε(u))−1 = ε(α(ε(u))) = ε(u) and ε(u)ε(u) = ε(u). Hence,
ε(u)(ε(u))−1 = ε(u)ε(u) and by (iv) we have (ε(u))−1 = ε(u)..

The element ε(α(x)) (resp. ε(β(x)) ) is the left unit (resp., right unit) of
x ∈ Γ, and the subset ε(Γ0) of Γ is called the unity set of Γ.

Applying (i), (vi) and (vii) from Prop. 1.1, respectively , we obtain:

Remark 1.1 Let (Γ, α, β, ε, i; Γ0) be a groupoid. Then the maps α, β, ε, i
satisfy the following relations :

(i) α ◦ i = β and β ◦ i = α.
(ii) i ◦ i = IdΓ.
(iii) α ◦ ε = β ◦ ε = IdΓ0 ..

Proposition 1.2 Let Γ be a groupoid over Γ0. The following assertions hold:
(i) For each u ∈ Γ0, the set Γ(u) = α−1(u) ∩ β−1(u) is a group under the

restriction of the partial multiplication, called the isotropy group at u of Γ.
(ii) If α(x) = u and β(x) = v, then the map ω : Γ(u) → Γ(v), z →

ω(z) = x−1zx is an isomorphism of groups.
(iii) If Γ is transitive, then the isotropy groups of Γ are isomorphes.

Proof. (i) For any x, y ∈ Γ(u) we have α(x) = β(x) = α(y) = β(y) = u.
Hence ,the product xy is defined. We have α(xy) = α(x) = u, β(xy) =
β(y) = u and imply that xy ∈ Γ(u). Therefore, the restriction of the partial
multiplication defined on Γ is a binary operation on Γ(u).

It is easy to verify that Γ(u) is a group. The unity of Γ(u) is the element
ε(u), since by (G.2) we have ε(α(x))x = xε(β(x)) = x, i.e. ε(u)x = xε(u) =
x, (∀)x ∈ Γ(u).

(ii) Let z ∈ Γ(u). Then α(z) = β(z) = u. Then the map ω is well-defined,
since α(x−1zx) = α(x−1) = β(x) = v β(x−1zx) = β(x) = v and hence
x−1zx ∈ Γ(v). It is easy to verify that ω(z1z2) = ω(z1)ω(z2), (∀) z1, z2 ∈ Γ(u).



26 Gh. Ivan

Applying the cancellation law we obtain that the map ω is injective. If
y ∈ Γ(v) then there exists z = xyx−1 ∈ Γ(u) such that ω(z) = y, i.e. the
map ω is surjective. Therefore, ω is a bijective morphism of groups. Hence,
the groups Γ(u) and Γ(v) are isomorphes.

(iii) Since Γ is transitive, then the map (α×β) : Γ → Γ0×Γ0 is surjective,
i.e. for any pair (u, v) ∈ Γ0 × Γ0 there exists x ∈ Γ such that α(x) = u
and β(x) = v. Applying now (ii) we obtain that the isotropy groups Γ(u)
and Γ(v) are isomorphes, for all u, v ∈ Γ0..

Definition 1.3 By group bundle we mean a groupoid Γ over Γ0 such that
α(x) = β(x) for each x ∈ Γ. Moreover, a group bundle is the union of its
isotropy groups Γ(u) = α−1(u), u ∈ Γ0 (here two elements may be composed iff
they lie in the same fiber.).

If (Γ, α, β; Γ0) is a groupoid, then Is(Γ) = {x ∈ Γ | α(x) = β(x)} is a group
bundle called the isotropy group bundle associated to Γ.

Example 1.1. (a) Every group G is a groupoid with the base G0 = {e},
where e is the unity of G.

(b) Nul groupoid. Any set B is a groupoid on itself with Γ = Γ0 = B,
α = β = ε = idB and every element is a unity. The multiplication is given by
x · x = x for all x ∈ B.

(c) Coarse groupoid associated to a set B. If B is any non-empty set,
then B×B is a groupoid over B with the rules: α(x, y) = x; β(x, y) = y; ε(x) =
(x, x), i(x, y) = (y, x) and µ((x, y), (y′, z)) = (x, z) ⇐⇒ y = y′.

For this groupoid, ε(Γ0) is the diagonal ∆B of the Cartesian product B×B.If
u ∈ B, and the isotropy group Γ(u) at u is the nul group {(u, u)}.

(d) Trivial groupoid on a set B with group G. Let B be any nonempty
set and G be a multiplicative group with e as unity. Γ = B × B × G has a
structure of transitive groupoid over B, wdere Γ0 = B; α, β, ε, i, µ are defined
by: α(a, b, x) = a; β(a, b, x) = b; ε(b) = (b, b, e); i(a, b, x) = (b, a, x−1) and
µ((a, b, x), (b′, c, y)) = (a, c, xy) ⇐⇒ b = b′.
The unit set of this groupoid is {(b, b, e) | b ∈ B} and the isotropy group is
Γ(b) = {(b, b, x) | x ∈ G} which are identified with B resp. G.

(e) Action groupoid. Let G × B −→ B be an action of the group G on
the set B. Give on G×B a groupoid structure over B in the following way: α
is the projection of the second factor of G×B and β is the action G×B −→ B
itself, i.e. α(g, x) = x, β(g, x) = g · x, (∀)g ∈ G, x ∈ B; ε(x) = (1, x),
where 1 is the unity of G ; i(g, x) = (g−1, g · x) and µ((g2, x2), (g1, x1)) =
(g2g1, x1) ⇐⇒ g2 · x2 = x1.

(f) If {Gi | i ∈ I} is a disjoint family of groupoids, then the disjoint
union G = ∪i∈IGi is a groupoid with the base G0 = ∪i∈IGi,0. Here, G(2) =
∪i∈IGi(2), i.e. two elements x, y ∈ G may be composed iff they lie in the same
groupoid Gi and are composable in Gi.

In particular, any disjoint union of groups is a group bundle..
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Definition 1.4 Let (Γ, α, β, ε, i, µ; Γ0) and (Γ′, α′, β′, ε′, i′, µ′; Γ′0) be two group-
oids. A morphism of groupoids or groupoid morphism is a pair (f, f0)
of maps f : Γ −→ Γ′ and f0 : Γ0 −→ Γ′0 such that the following two conditions
are satisfied:
(1) f(µ(x, y)) = µ′(f(x), f(y)) for every (x, y) ∈ Γ(2)

(2) α′ ◦ f = f0 ◦ α and β′ ◦ f = f0 ◦ β.
If Γ0 = Γ′0 and f0 = IdΓ0 , we say that f is a Γ0- morphism..

Note that the condition (1) ensure that (f(x), f(y)) ∈ Γ′(2), i.e. µ′(f(x), f(y))
is defined whenever µ(x, y) is defined.

Proposition 1.3 The groupoids morphisms preserve unities and inverses, i.e.
(i) f(ũ) = ˜f0(u), (∀)u ∈ Γ0,
(ii) f(x−1) = (f(x))−1, (∀)x ∈ Γ

Proof. (i) Let u ∈ Γ0 and we denote x = ε(u). By (G.2), we have
(ε(α(x)), x) ∈ Γ(2). Then, (f(ε(α(x))), f(x)) ∈ Γ′(2) and f(ε(α(x))x) =
f(ε(α(x)))f(x), since f is a groupoid morphism. Hence, f(ε(α(x)))f(x) =
f(x). Since f(x) ∈ Γ′, we have ε′(α′(f(x)))f(x) = f(x), by the axiom (G.2).
Then f(ε(α(x)))f(x) = ε′(α′(f(x))))f(x) and applying the cancellation law
we obtain f(ε(α(x))) = ε′(α′(f(x))) i.e. (f ◦ ε)(α(x)) = ε′((α′ ◦ f)(x)). But
α′ ◦f = f0 ◦α. Then (f ◦ε)(α(x)) = ε′((f0 ◦α)(x)), i.e. (f ◦ε)(u) = ε′(f0(u)).
Therefore, f(ũ) = ˜f0(u).

(ii) Let x ∈ Γ. By (G.2), we have (x, x−1) ∈ Γ(2) and xx−1 =
ε(α(x)). Then (f(x), f(x−1) ∈ Γ′(2) and f(xx−1) = f(x)f(x−1), since
f is a groupoid morphism. Hence, f(ε(α(x))) = f(x)f(x−1). But, cf.(i),
f(ε(α(x))) = ε′(f0(α(x))), and we obtain f(x)f(x−1) = ε′(f0(α(x))). On
the other hand, since f(x) ∈ Γ′ we have f(x)(f(x))−1 = ε′(α′(f(x))),
and it follows that f(x)(f(x))−1 = ε′(f0(α(x))), since α′ ◦ f = f0 ◦ α.
Therefore, f(x)f(x−1) = f(x)(f(x))−1, and by the cancellation law we obtain
f(x−1) = (f(x))−1.

Using the assertions (i) and (ii) from Prop.1.3, respectively, we obtain:

Remark 1.2 Let (Γ, α, β, ε, i; Γ0), (Γ′, α′, β′, ε′, i′; Γ′0) be two groupoids and a
morphism of groupoids (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0). Then:

(i) f ◦ ε = ε′ ◦ f0.
(ii) f ◦ i = i′ ◦ f.

Proposition 1.4 A pair (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) is a groupoid morphism
iff the following condition holds:
(3) (∀)(x, y) ∈ Γ(2) =⇒ (f(x), f(y)) ∈ Γ′(2) and f(µ(x, y)) = µ′(f(x), f(y))

Proof. The condition (3) is a consequence of Definition 1.4. and Prop.1.3.
Conversely, let f : Γ −→ Γ′ which satisfy (3).
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We define the map f0 : Γ0 −→ Γ′0 by f0(u) = α′(f(ε(u))), (∀)u ∈ Γ0.
We prove that α′ ◦ f = f0 ◦ α and β′ ◦ f = f0 ◦ β.
Indeed, since (x, ε(β(x))) ∈ Γ(2) it follows that (f(x), f(ε(β(x)))) ∈ Γ′(2)

and f(x) · f(ε(β(x)))) = f(x · ε(β(x))) = f(x); but f(x) · ε′(β′(f(x))) = f(x);
=⇒ ε′(β′(f(x))) = f(ε(β(x))) =⇒ α′(ε′(β′(f(x)))) = α′(f(ε(β(x)))) and
applying Prop. 1.1. we obtain successively β′(f(x)) = (f0 ◦α)(ε(β(x))) =⇒
β′(f(x)) = f0(β(x)) i.e. β′ ◦ f = f0 ◦ β. We also have β′(f(ε(u))) =
(β′ ◦ f)(ε(u)) = (f0 ◦ β)(ε(u)) = f0((β ◦ ε)(u)) = f0(u), since β ◦ ε = IdΓ0 .
Similarly we prove now that α′ ◦ f = fo ◦ α..

Let (f, f0) : (Γ; Γ0) → (Γ′; Γ′0) be a morphism of groupoids. The set
Kerf = {x ∈ Γ | f(x) ∈ ε(Γ0) } is called the kernel of f.

Definition 1.5 A groupoid morphism (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) is said to
be an isomorphism of groupoids if there exists a groupoid morphism (g, g0) :
(Γ′; Γ′0) → (Γ,Γ0) with (g, g0)o(f, f0) = (idΓ, idΓ0) and (f, f0)o(g, g0) =
(idΓ′ , idΓ′0). Two groupoids (Γ; Γ0) and (Γ′; Γ′0) are said to be isomorphic if
there exists an isomorphism (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0)..

Using Proposition 1.3, we obtain:

Proposition 1.5 A groupoid morphism (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) is an iso-
morphism iff the map f : Γ −→ Γ′ is bijective..

Example 1.2. (a) If (Γ, α, β, ε; Γ0) is a groupoid then the pair of identity maps
(IdΓ, IdΓ0) is a groupoid morphism.

(b) If (f, f0) : (Γ,Γ0) → (Γ′; Γ′0) and (g, g0) : (Γ′, Γ′0) → (Γ′′, Γ′′0) are
groupoid morphisms, then the composition (g, g0)o(f, f0) : (Γ, Γ0) → (Γ′′, Γ′′0),
defined by (g, g0)o(f, f0) = (gof, g0of0), is a groupoid morphism.

(c) Let (Γ, α, β, ε; Γ0) be a groupoid and (Γ0 × Γ0, α
′, β′, ε′; Γ0) the coarse

groupoid associated to Γ0. Then α × β : Γ −→ Γ0 × Γ0, (α × β)(x) =
(α(x), β(x)) is a Γ0-morphism of the groupoid Γ into the coarse groupoid Γ0×Γ0.

(d) Let (Γ, α, β, ε, i, µ; Γ0) be a groupoid over Γ0 and X a set with the
same cardinal as Γ0, i.e. there exists a bijection map ϕ from Γ0 to X. Then
Γ has a canonical structure of a groupoid over X, that is (Γ, α′, β′, ε′, i′, µ′; X)
is a groupoid over X where α′ = ϕoα;β′ = ϕoβ; ε′ = εoϕ−1; i′ = ϕoi; µ′ = µ.
Moreover, (idΓ, ϕ) : (Γ; Γ0) → (Γ;X) is an isomorphism of groupoids..

The category of groupoids denoted by G has as its objects all groupoids
(Γ; Γ0) and as morphisms from (Γ; Γ0) to (Γ′; Γ′0) the set of all morphisms of
groupoids.

The familly of maps : Γ −→ Is(Γ) and (u : Γ −→ Γ′) −→ (û : Is(Γ) −→
Is(Γ′)), where û is the restriction of u on Is(Γ), defines a functor Is : G −→ GB,
called the isotropy functor, where GB is the category of group bundles.
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For each set X, the subcategory of groupoids over X, denoted G(X), has as
objects groupoids for which the base has the same cardinal as X and X -
morphims of groupoids as its morphisms.

If (Γ, α, β, ε; Γ0) and (Γ′, α′, β′, ε′; Γ′0) are groupoids, then (Γ×Γ′, α×α′, β×
β′, ε × ε′; Γ0 × Γ′0) is a groupoid, called the direct product of (Γ; Γ0) and
(Γ′; Γ′0).

Let be given two groupoids (Γ, α, β, ε; Γ0), (Γ′, α′, β′, ε′; Γ0) over the same
base Γ0, and the set:

Γ⊕ Γ′ = {(x, x′) ∈ Γ× Γ′| α(x) = α′(x′); β(x) = β′(x′)}
has a natural structure of the groupoid with the following rules:

(x, x′) · (y, y′) = (x · y, x′ · y′) ⇐⇒ (x, y) ∈ Γ(2) and (x′, y′) ∈ Γ′(2)

;α⊕(x, x′) = α(x); β⊕(x, x′) = β(x); ε⊕ : Γ0 → Γ ⊕ Γ′, ε⊕(u) = (ε(u), ε′(u′)),
i⊕ : Γ ⊕ Γ′ −→ Γ ⊕ Γ′, i⊕(x, x′) = (i(x), i′(x′)). Then (Γ ⊕ Γ′; Γ0) is a
groupoid over Γ0. It is the direct product of Γ and Γ′ in the category G(Γ0),
called Whitney’s sum of two groupoids Γ and Γ′.

If (Γ ⊕ Γ′; Γ0) is the Whitney sum of the groupoids Γ and Γ′ over Γ0 then
the projections maps p : Γ⊕Γ′ → Γ and p′ : Γ⊕Γ′ → Γ′, defined by p(x, x′) = x
and p′(x, x′) = x′, are Γ0-morphisms of groupoids.

Theorem 1.1 The triple (Γ⊕ Γ′, p, p′) is the direct product of Γ and Γ′ in the
category G(Γ0), i.e. the triple (Γ⊕ Γ′, p, p′) verifies the universal property:
for all triple (Γ1, u, u′) composed by the groupoid (Γ1, α̃, β̃, ε̃; Γ0) and two Γ0-

morphisms of groupoids Γ′ u′←− Γ1
u−→ Γ, there exists a unique Γ0-morphism of

groupoids f : Γ1 → Γ⊕ Γ′ such that the following diagram:

Γ′
p′←− Γ⊕ Γ′

p−→ Γ
u′ ↖ ↑f ↗u

Γ1

is commutative.

Proof. We define the map f : Γ1 → Γ⊕Γ′ by taking f(x) = (u(x), u′(x)) for all
x ∈ Γ1.

We can easily verify that f is a unique Γ0-morphism of groupoids such that
pof = u and p′of = u′ ..

We have that ⊕ : G(X) × G(X) → G(X) is a functor, where G(X) is the
category of groupoids over the same base X.

For this, we consider the groupoids (Γi, αi, βi, εi; X) and (Γ′i, α
′
i, β

′
i, ε

′
i; X) for

i = 1, 2. If ui : (Γi; X) → (Γ′i; X) for i = 1, 2 are X-morphisms of groupoids,
then u1 ⊕ u2 : (Γ1 ⊕ Γ2; X) → (Γ′1 ⊕ Γ′2; X) given by the relation: (u1 ⊕
u2)(x1, x2) = (u1(x1), u2(x2)), ∀ (x1, x2) ∈ Γ1 ⊕ Γ2 is an X-morphism.

Clearly, the relation: 1Γ1 ⊕ 1Γ2 = 1Γ1⊕Γ2 holds.
If vi : (Γ′i, X) → (Γ′′i ;X) for i = 1, 2, then we have:

(v1 ⊕ v2)o(v1 ⊕ u2) = (v1ou1)⊕ (v2ou2). Consequently, ⊕ is a functor.
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Proposition 1.6 The direct product (resp., the Whitney sum) of two transitive
groupoids is also a transitive groupoid.

Proof. Straightforward..

2. The induced groupoid

Let (Γ; Γ0) be a groupoid and let h : X −→ Γ0 be a given map. Then
the set: h∗(Γ) = {(x, y, a) ∈ X × X × Γ | h(x) = α(a), h(y) = β(a)} has
a canonical structure of groupoid over X with respect to the following rules:
α∗(x, y, a) = x;β∗(x, y, a) = y; ε∗(x) = (x, x, ε(h(x))); i∗(x, y, a) = (y, x, i(a)),
and
µ∗((x, y, a), (y′, z, b)) = (x, z, µ(a, b)) iff y = y′ and (a, b) ∈ Γ(2).

The groupoid (h∗(Γ), α∗, β∗, ε∗, µ∗;X) is called the induced groupoid of
Γ under h; it is denoted sometimes by h∗(Γ).

If h∗(Γ) is the induced groupoid of Γ under h : X −→ Γ0 then h∗Γ :
f∗(Γ) −→ Γ defined by h∗Γ(x, y, a) = a together with h define a groupoid mor-
phism (h∗Γ, h) : (h∗(Γ);X) −→ (Γ; Γ0), called the canonical morphism of an
induced groupoid.

Theorem 2.1 The pair (h∗Γ, h) : (h∗(Γ); X) −→ (Γ; Γ0) verify the universal
property:

for every groupoid morphism (u, h) : (Γ′;X) −→ (Γ; Γ0) there exists a unique
X-morphism of groupoids v : Γ′ −→ h∗(Γ) such that the diagram:

Γ′ u−→ Γ

(∃)v↘ ↗h∗Γ
h∗(Γ)

is commutative, i.e. h∗Γ ◦ v = u.

Proof. Let (Γ′, α′, β′, ε′; X) be a groupoid over X and (u, h) : (Γ′; X) −→
(Γ; Γ0) be a groupoid morphism. We define v : Γ′ −→ f∗(Γ) by v(a′) =
(α′(a′), β′(a′), u(a′)) for all a′ ∈ Γ′.

We have that α∗ ◦ v = α′ and β∗ ◦ v = β′. It is easy to check that v is
a X-morphism of groupoids. Clearly, we have h∗Γ ◦ v = u, and we prove by a
standard manner that v is unique..

If u : (Γ; X) −→ (Γ′;X) is an X-morphism of groupoids over X and if
f : Y −→ X is a map, then there exists a Y -morphism of groupoids over Y,
f∗(u) : f∗(Γ) −→ f∗(Γ′) defined by the relation:
f∗(u)(y1, y2, a) = (y1, y2, u(a)) ∈ f∗(Γ′), (∀) (y1, y2, a) ∈ f∗(Γ)

It is enough to establish that f∗(u) is well-defined and f∗(u) is a Y -morphism
of groupoids.
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Clearly, we have f∗(idΓ) = idf∗(Γ) and if v : (Γ′; X) −→ (Γ′′;X) is a second
X-morphism of groupoids, then f∗(vou) : f∗(Γ) −→ f∗(Γ′′) defined by:
f∗(vou)(y1, y2, a) = (y1, y2, (vou)(a)), (∀)(y1, y2, a) ∈ f∗(Γ)
is a Y -morphism of groupoids such that f∗(v ◦ u) = f∗(v) ◦ f∗(u).

Therefore, we have the next proposition:

Proposition 2.1 For each map f : Y −→ X, the family of maps

(Γ
α−→−→
β

X) −→ (f∗(Γ)
α∗−→−→
β∗

Y )

and (u : Γ −→ Γ′) 7−→ (f∗(u) : f∗(Γ) −→ f∗(Γ′))

defines a functor f∗ : G(X) −→ G(Y ) of the category G(X) in the category G(Y )..

Finally, we have the following transitivity relation.

Proposition 2.2 Let v : Z −→ Y and u : Y −→ X be two maps and let
(Γ, α, β, ε; X) be a groupoid over X.Then the groupoids v∗(u∗(Γ)) and (uov)∗(Γ)
are Z-isomorphic.

Proof. We have:
u∗(Γ) = {(y1, y2, a) ∈ Y × Y × Γ | u(y1) = α(a), u(y2) = β(a)};
v∗(u∗(Γ)) = {(z1, z2, (y1, y2, a)) ∈ Z × Z × u∗(Γ) | v(z1) = y1; v(z2) = y2};
(uov)∗(Γ) = {(z1, z2, a) ∈ Z ×Z × Γ | (u ◦ v)(z1) = α(a), (u ◦ v)(z2) = β(a)}

We take the maps ϕ : (u ◦ v)∗(Γ) −→ v∗(u∗(Γ)) and ψ : v∗(u∗(Γ)) −→ (u ◦
v)∗(Γ) given by: ϕ(z1, z2, a) = (z1, z2, (v(z1), v(z2), a)) and ψ(z1, z2, (y1, y2, a)) =
(z1, z2, a).

It is easy to verify that ϕ and ψ are Z-morphisms of groupoids such that
ψ ◦ ϕ = Id(u◦v)∗(Γ) and ϕ ◦ ψ = Idv∗(u∗(Γ)). We obtain that ϕ is a Z-
isomorphism of groupoids..

Proposition 2.3 Let (Γ;X) be a groupoid over X. Then the groupoid Id∗X(Γ)
and Γ are X-isomorphic.

Proof. We have Id∗X(Γ) = {(x1, x2, a) ∈ X ×X × Γ | α(a) = x1, β(a) = x2}
and we prove that u : Γ −→ Id∗X(Γ), u(a) = (α(a), β(a), a) is an X- isomor-
phism..

Let (Γ, α, β, ε; X) be a groupoid over X and let Y be a subset of X with
inclusion map j : Y ↪→ X. We consider the set Γ1 = α−1(Y ) ∩ β−1(Y ).

We can easily prove that (Γ1, α1, β1, ε1; Y ) where α1 = α|Γ1 , β1 = β|Γ1 , ε1 =
ε|Y , is a groupoid over Y, denoted (Γ|Y ;Y ) and it is be called the restriction
of Γ to Y.

Proposition 2.4 (i) The induced groupoid c∗(Γ) of a groupoid (Γ;X) over the
constant map c : Y −→ X, c(y) = x0, (∀)y ∈ Y is Y -isomorphic with the trivial
groupoid Y × Y × Γ(x0) where Γ(x0) is the isotropy group of Γ at x0.
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(ii) The induced groupoid j∗(Γ) of a groupoid (Γ; X) over the inclusion map
j : Y ↪→ X, where Y is a subset of X is Y -isomorphic with the restriction Γ|Y
of Γ to Y.

(iii) Let (Γ, α = β; X) be a group bundle over X and let f : Y −→ X be an
injective map. Then the induced groupoid f∗(Γ) is a group bundle.

Proof. (i) We have: c∗(Γ) = {(y1, y2, a) ∈ Y × Y × Γ | β(a) = α(a) = x0}
and we observe that for each (y1, y2, a) ∈ c∗(Γ) imply that a ∈ Γ(x0). Clearly,
c∗(Γ) and Y × Y × Γ(x0) are Y -isomorphic.

(ii) We have j∗(Γ) = {(y1, y2, a) ∈ Y ×Y ×Γ | y1 = α(a), y2 = β(a)} and
it is enough to establish that the groupoids j∗(Γ) and Γ|Y are Y -isomorphic.

(iii) Since (Γ, α = β;X) is a group bundle, it follows that
f∗(Γ) = {(y1, y2, a) ∈ Y × Y × Γ | α(a) = f(y1) = f(y2)}. The maps
α∗, β∗ : f∗(Γ) −→ Y are defined by α∗(y1, y2, a) = y1 and β∗(y1, y2, a) = y2.
Since f is injective we can prove that α∗ = β∗ and therefore f∗(Γ) is a group
bundle..

Proposition 2.5 The induced groupoid f∗(Γ) of a transitive groupoid Γ under
a map f : Y −→ X is a transitive groupoid over Y.

Proof. Since the map α×β : Γ −→ X×X, (α×β)(a) = (α(a), β(a)) is surjective,
it follows that there exists an element a ∈ Γ such that (α×β)(a) = (f(y1), f(y2))
whenever (y1, y2) ∈ Y × Y , i.e. α(a) = f(y1) and β(a) = f(y2). Consequently,
(y1, y2, a) ∈ f∗(Γ) and (α∗ × β∗)(y1, y2, a) = (α∗(y1, y2, a), β∗(y1, y2, a)) =
(y1, y2), i.e. α∗×β∗ : f∗(Γ) −→ Y ×Y is surjective. Hence f∗(Γ) is a transitive
groupoid..

3. Special morphisms of groupoids

Definition 3.1 A groupoid morphism (ϕ,ϕ0) : (Γ; Γ0) −→ (Γ′, Γ′0) is called a
pullback if (ϕ,ϕ0) verify the universal property (PU), where:
(PU) for every groupoid (Γ1; Γ0) and every groupoid morphism (ψ, ψ0 = ϕ0) :
(Γ1; Γ0) −→ (Γ′; Γ′0) there exists a unique Γ0-morphism ψ : Γ1 −→ Γ such that
ϕ ◦ψ = ψ; in other words, every groupoid morphism (ψ, ψ0 = ϕ0) : (Γ1; Γ0) −→
(Γ′; Γ′0) can be factored uniquely into Γ1

ψ−→ Γ
ϕ−→ Γ′ so that the following

diagram:

Γ1
ψ−→ Γ′

(∃)!ψ ↘ ↗ϕ

Γ

is commutative..
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Using Theorem 2.1, we get immediately:

Proposition 3.1 The canonical morphism (h∗Γ, h) of induced groupoid h∗(Γ) of
Γ by h : X −→ Γ0 is a pullback..

If (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) is a groupoid morphism, then for every u, v ∈
Γ0 we have: f(Γu) ⊆ Γ′f0(u); f(Γv) ⊆ (Γ′)f0(v) and f(Γv

u) ⊆ (Γ′)f0(v)
f0(u).

Then the restriction of f to Γu,Γv, Γv
u respectively, defines the maps Γu −→

Γ′f0(u); Γv −→ (Γ′)f0(v) and Γv
u −→ (Γ′)f0(v)

f0(u), denoted by fu, fv and
fv

u .
We say that (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) has discrete kernel, if Kerf =

ε(Γ0).

Definition 3.2 A groupoid morphism (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) is to be
called:

(i) base injective (resp., base surjective, base bijective) if f0 is injec-
tive (resp., surjective, bijective).

(ii) fibrewise injective (resp., surjective, bijective) if fu : Γu −→ Γf0(u)

is injective (resp., surjective, bijective), for all u ∈ Γ0.
(iii) piecewise injective (resp., surjective, bijective) if fv

u : Γv
u −→

(Γ′)f0(v)
f0(u) is injective (resp., surjective, bijective), for all u, v ∈ Γ0..

Proposition 3.2 (i) The canonical morphism (f∗Γ, f) of the induced groupoid
f∗(Γ) of Γ by f : X −→ Γ0 is piecewise bijective.

(ii) If (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) is base surjective and piecewise surjective,
then f is surjective.

(iii) A groupoid morphism (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) has discrete kernel,
iff Kerfu

u = {ε(u)}, for all u ∈ Γ0, i.e. the group morphism fu
u : Γ(u) −→

Γ′(f0(u)) has a trivial kernel, for all u ∈ Γ0.

Proof. (i) We prove that (f∗Γ)y
x : (α∗)−1(x) ∩ (β∗)−1(y) −→ α−1(f(x)) ∩

β−1(f(y)) is bijective. Indeed, let (x1, y1, a1); (x2, y2, a2) ∈ (α∗)−1(x)∩(β∗)−1(y)
so that (f∗Γ)y

x(x1, y1, a1) = (f∗Γ)y
x(x2, y2, a2) =⇒ α∗(x1, y1, a1) = α∗(x2, y2, a2) =

x, β∗(x1, y1, a1) = β∗(x2, y2, a2) = y and a1 = a2; =⇒ (x1, y1, a1) =
(x2, y2, a2). Hence (f∗Γ)y

x is injective.
Let b ∈ α−1(f(x))∩β−1(f(y)) =⇒ α(b) = f(x) and β(b) = f(y) =⇒

(x, y, b) ∈ f∗(Γ) and (x, y, b) ∈ (α∗)−1(x)∩(β∗)−1(y). We have f∗(Γ)(x, y, b) =
b =⇒ (f∗Γ)y

x is surjective.
(ii) Let y′ ∈ Γ′. We take α′(y′) = u′, β′(y′) = v′. Then there exist

u, v ∈ Γ0 such that u′ = f0(u), v′ = f0(v), since f0 is surjective. But y′ ∈ (Γ′)v′
u′

and applying the fact that fv
u : Γv

u −→ (Γ′)v′
u′ it follows that there exists x ∈ Γv

u

such that fv
u(x) = y′, and we deduce that f is surjective, since f(x) = y′.

(iii) The proof of this is straightforward..
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Theorem 3.1 Let (f, f0) : (Γ; Γ0) −→ (Γ′; Γ′0) be a groupoid morphism. Then:
(i) (f, f0) is a pullback iff it is piecewise bijective.
(ii) f is injective iff it is base injective and piecewise injective.
(iii) (f, f0) is fibrewise injective iff it has a discrete kernel.

Proof. (i) We suppose that (f, f0) is a pullback, and we consider the induced
groupoid f∗0 (Γ′) of Γ′ by f0 : Γ0 −→ Γ′0.

Since (f0)∗Γ′ is a pullback (cf. Proposition 3.2), then considering the given
groupoid morphism f : Γ −→ Γ′, this can be factored uniquely into: f =
(f0)∗Γ′ ◦ ϕ, where ϕ : Γ −→ f∗0 (Γ′) is a groupoid morphism over Γ0.

Also, for groupoid morphism f : Γ −→ Γ′ which is a pullback, the groupoid
morphism (f0)∗Γ′ : f∗0 (Γ′) −→ Γ′ can be factored uniquely into: (f0)∗Γ′ = f ◦ ϕ,
where ϕ : f∗0 (Γ′) −→ Γ is a groupoid morphism over Γ0.

From f = (f0)∗Γ′ ◦ϕ, and (f0)∗Γ′ = f ◦ϕ, it follows that f = f ◦(ϕ◦ϕ) = f ◦Id,
and (f0)∗Γ′ = (f0)∗Γ′ ◦ (ϕ ◦ ϕ) = (f0)∗Γ′ ◦ Id.

Therefore, ϕ ◦ ϕ = Id, and ϕ ◦ ϕ = Id, since f and (f0)∗Γ′ are pullbacks.
Hence,ϕ : Γ −→ f∗0 (Γ′) is an isomorphism of groupoids such that f =

(f0)∗Γ′ ◦ϕ. Since (f0)∗Γ′ is piecewise bijective and ϕ is bijective, it follows that f
is piecewise bijective.

Conversely, suppose that (f, f0) is piecewise bijective. Let (Γ1, α1, β1; Γ0) be
a groupoid and (ψ, ψ0) = f0 : (Γ1; Γ0) −→ (Γ′; Γ′0) be a groupoid morphism.

For each u, v ∈ Γ0, define ψ
v

u : (Γ1)v
u −→ Γv

u by ψ
v

u = (fv
u)−1 ◦ ψv

u.
We have that fv

u ◦ ψ
v

u = ψv
u, (∀)u, v ∈ Γ0.

We consider ψ : Γ1 −→ Γ defined by ψ(x1) = (fβ1(x1)
α1(x1)

)−1◦ψβ1(x1)
α1(x1)

, (∀)x1 ∈
Γ1.

It is easy to check that ψ is a groupoid morphism uniquelly determined such
that ψ = f ◦ ψ. Hence, f is a pullback.

(ii) We suppose that f is injective. From f ◦ ε = ε′ ◦ f0, it follows that f ◦ ε
is injective. Hence, ε′ ◦ f0 is injective and therefore f0 is injective.

Conversely, suppose that f0 and fv
u are injective, for all u, v ∈ Γ0. We prove

that f is injective.
Let x, y ∈ Γ such that f(x) = f(y). From f(x) = f(y) =⇒ (α′ ◦ f)(x) =

(α′ ◦ f)(y), (β′ ◦ f)(x) = (β′ ◦ f)(y), =⇒ (f0 ◦ α)(x) = (f0 ◦ α)(y), (f0 ◦
β)(x) = (f0 ◦ β)(y) =⇒ α(x) = α(y), β(x) = β(y). If we denote α(x) =
u, β(y) = v, then x, y ∈ Γv

u and fv
u(x) = fv

u(y). It follows x = y, since fv
u is

injective.
(iii) We suppose that (f, f0) is fibrewise injective. Then fu : Γu −→ Γ′f0(u)

is injective. We prove that Kerf ⊆ ε(Γ0). Indeed, let x ∈ Kerf and we
denote u = α(x) and u′ = f0(u). Then f(x) ∈ ε′(Γ′0) =⇒ f(x) = ε′(u′)
with u′ ∈ Γ′0. Also, we have f(ε(u)) = ε′(f0(u)) = ε′(u′) =⇒ f(x) =
f(ε(u)) =⇒ fu(x) = fu(ε(x)) =⇒ x = ε(u), since fu is injective. There-
fore, x ∈ ε(Γ0). Hence, Kerf = ε(Γ0) and we deduce that Kerf is discrete.

Conversely, we suppose that f has discrete kernel. Let x, y ∈ Γu such that
fu(x) = fu(y), then α(x) = α(y) = u and f(x) = f(y). It follows f(x) ·
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(f(y))−1 = ε′(u′), with u′ ∈ Γ′0 =⇒ f(x · y−1) = ε′(u′) =⇒ x · y−1 ∈
Kerf = ε(Γ0) =⇒ x·y−1 = ε(u) with u ∈ Γ0 =⇒ x = ε(u)·y =⇒ ε(u)·
x = ε(u) · ε(u) · y =⇒ ε(u) · x = ε(u) · y =⇒ x = y..

Proposition 3.3 A fibrewise surjective morphism f : Γ −→ Γ′ is a fibrewise
bijective morphism iff Kerf is discrete.

Proof. This follows from Th. 3.1.(iii)..

Let us give some rules for deriving new fibrewise surjective or fibrewise bi-
jective morphisms from the old ones.

Theorem 3.2 Let (G,α, β; G0), (H, α′, β′;H0) and (K, α′′, β′′;K0) be three
groupoids. Let (f, f0) : (G; G0) −→ (H; H0) and (g, g0) : (H; H0) −→ (K; K0)
be groupoid morphisms. Then:

(i) if f, g are fibrewise surjective (resp., bijective) morphisms, then so is g◦f ;
(ii) if g ◦ f and f are fibrewise surjective morphism and f0 : G0 −→ H0 is

surjective, then g is a fibrewise surjective morphism;
(iii) if g ◦ f and g are fibrewise bijective morphisms, then so is f .

Proof. (i) Straightforward.
(ii) We prove that gu′ : (α′)−1(u′) −→ (α′′)−1(g0(u′)) is surjective. For

this, let y′′ ∈ (α′′)−1(g0(u′)), then (α′′)(y′′) = g0(u′) with u′ ∈ H0. Since f0

is surjective, it follows that there exists u ∈ G0 such that f0(u) = u′. Then
(g ◦ f)u : α−1(u) −→ (α′′)−1((g ◦ f)0(u)) is surjective. We have (α′′)(y′′) =
(g0◦f0)(u)) and therefore (∃)x ∈ α−1(u) such that α(x) = u and (g◦f)(u) = y′′.
If we consider x′ = f(x), we have x′ ∈ (α′)−1(u′), since α′(x′) = α′(f(x)) =
f0(α(x)) = f0(u) = u′. From (g ◦ f)(x) = y′′, we obtain that gu′(x′) = y′′.
Hence, gu′ is surjective.

(iii) Let x, y ∈ α′(u) such that fu(x) = fu(y). Then f(x) = f(y) =⇒ (g ◦
f)(x) = (g ◦ f)(y) =⇒ (g ◦ f)u(x) = (g ◦ f)u(y) =⇒ x = y, since (g ◦ f)u

is injective. Hence, f is fibrewise injective.
Clearly, (g ◦ f)u = gf0(u) ◦ fu and (g ◦ f)0 = g0 ◦ f0.
Let y′ ∈ (α′)−1(v), where v = f0(u), =⇒ gv(y′) ∈ (α′′)−1(g0(v)) =⇒

gf0(u)(y′) ∈ (α′′)−1(g0 ◦ f0)(u)). For gf0(u)(y′) ∈ (α′′)−1(g0 ◦ f0)(u)) there exists
x ∈ α−1(u) such that (g ◦ f)(x) = gf0(u)(y′), since (g ◦ f)u is surjective.
It follows that gf0(u)(fu(x)) = gf0(u)(y′) and we obtain fu(x) = y′, since
gf0(u) is injective. Therefore, fu is surjective. Hence f is fibrewise surjective..

Corollary 3.1 Let be given the following commutative diagram of groupoid
morphisms such that g is a pullback:

X
f−→ G

p↓ ↓p
Y

g−→ H.

If p is a fibrewise surjective morphism, then also is p.

Proof. The proof of this is a simple consequence of Th. 3.2..
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