MINIMAL AND MAXIMAL DESCRIPTION FOR THE REAL INTERPOLATION METHODS IN THE CASE OF QUASI-BANACH TRIPLES

Ilie Stan ${ }^{1}$

Abstract

In this note we give a minimal and a maximal description in the sense of Aronszajn-Gagliardo for the real methods in the case of quasi-Banach triples.

AMS Mathematics Subject Classification (2000): 46M35
Key words and phrases: real interpolation methods, triples of quasi-Banach spaces

0. Introduction

Our main reference to the theory of interpolation spaces is [7]. Let $\bar{A}=$ $\left(A_{0}, A_{1}, A_{2}\right)$ be a (quasi)-Banach triple and $\bar{t}=\left(t_{1}, t_{2}\right) \in \mathbf{R}_{+}^{2}$. The Peetre's K-functional is defined for $a \in A_{0}+A_{1}+A_{2}:=\sum(\bar{A})$ by

$$
K\left(t_{1}, t_{2}, a ; \bar{A}\right)=\inf _{a=a_{0}+a_{1}+a_{2}}\left(\left\|a_{0}\right\|_{A_{0}}+t_{1}\left\|a_{1}\right\|_{A_{1}}+t_{2}\left\|a_{2}\right\|_{A_{2}}\right)
$$

and similarly the J-functional for $a \in A_{0} \cap A_{1} \cap A_{2}:=\Delta(\bar{A})$ by

$$
J\left(t_{1}, t_{2}, a ; \bar{A}\right)=\max \left(\|a\|_{A_{0}}, t_{1}\|a\|_{A_{1}}, t_{2}\|a\|_{A_{2}}\right)
$$

Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a triple of quasi-Banach spaces and $\bar{n}=\left(n_{1}, n_{2}\right) \in \mathbf{Z}^{2}$. For $0<\theta_{1}, \theta_{2}<1, \theta_{1}+\theta_{2}<1$ and $0<q \leq \infty$ we define the real interpolation space $\bar{A}_{\left(\theta_{1}, \theta_{2}\right), q, K}$ as the set of all $a \in \Sigma(\bar{A})$ which have a finite quasi-norm
$\|a\|_{\left(\theta_{1}, \theta_{2}\right), q, K}= \begin{cases}\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left(2^{-n_{1} \theta_{1}} 2^{-n_{2} \theta_{2}} K\left(2^{n_{1}}, 2^{n_{2}}, a ; \bar{A}\right)\right)^{q}\right)^{1 / q} & \text { if } 0<q<\infty \\ \sup _{\bar{n} \in \mathbf{Z}^{2}}\left\{2^{-n_{1} \theta_{1}} 2^{-n_{2} \theta_{2}} K\left(2^{n_{1}}, 2^{n_{2}}, a ; \bar{A}\right)\right\} & \text { if } q=\infty \\ , & \end{cases}$
Also we define the real interpolation space $\bar{A}_{\left(\theta_{1}, \theta_{2}\right), q, J}$ as the set of all $a \in \sum(\bar{A})$ that may be written as $a=\sum_{\bar{n} \in \mathbf{z}^{2}} u_{\bar{n}}, u_{\bar{n}} \in \Delta(\bar{A})$ (convergence in $\sum(\bar{A})$) and which have a finite quasi-norm

[^0]$$
\|a\|_{\left(\theta_{1}, \theta_{2}\right), q, J}=\inf _{a=\sum u_{\bar{n}}}\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left(2^{-n_{1} \theta_{1}} 2^{-n_{2} \theta_{2}} J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}}, \bar{A}\right)\right)^{q}\right)^{1 / q}
$$
with the usual interpretation when $q=\infty$.
If $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $\bar{B}=\left(B_{0}, B_{1}, B_{2}\right)$ are Banach triples, we write $T \in \mathcal{L}(\bar{A}, \bar{B})$ to mean that T is a linear operator from $\sum(\bar{A})$ into $\sum(\bar{B})$ whose restriction to each A_{j} defines a bounded operator from A_{j} into $B_{j}(j=0,1,2)$. We put
$$
\|T\|_{\bar{A}, \bar{B}}=\max _{j=0,1,2}\left\{\|T\|_{A_{j}, B_{j}}\right\}
$$

Scalar sequence spaces are defined over \mathbf{Z}^{2} and given any sequence of positive numbers $\left(w_{\bar{n}}\right)_{\bar{n} \in \mathbf{Z}^{2}}$ we put

$$
l_{p}\left(w_{\bar{n}}\right)=\left\{\left(a_{\bar{n}}\right):\left\|a_{\bar{n}}\right\|_{l_{p\left(w_{\bar{n}}\right)}}:=\left\|\left(w_{\bar{n}} a_{\bar{n}}\right)\right\|_{l_{p}}<\infty\right\}
$$

Of special interest for us are the triples $\bar{l}_{p}=\left(l_{p}, l_{p}\left(2^{-n_{1}}\right), l_{p}\left(2^{-n_{2}}\right)\right),(0<p \leq 1)$ and $\bar{l}_{\infty}=\left(l_{\infty}, l_{\infty}\left(2^{-n_{1}}\right), l_{\infty}\left(2^{-n_{2}}\right)\right)$.

A maximal description in sense of Aronszajn-Gagliardo [1] for the real method in the case of quasi-Banach couples is given in [2].

In this note we will establish a minimal and a maximal description for the real methods in the case of quasi-Banach triples.

1. Minimal description

Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a triple of quasi-Banach spaces. Recall that a quasi-norm $\|\cdot\|$ is said to be a p-norm $(0<p \leq 1)$ if

$$
\|a+b\|^{p} \leq\|a\|^{p}+\|b\|^{p}
$$

Given any quasi-normed space $(A,\|\cdot\|)$ the functional

$$
\||a|\|=\inf \left\{\left(\sum_{k=1}^{n}\left\|a_{k}\right\|^{p}\right)^{1 / p}: a=\sum_{k=1}^{n} a_{k}, k \geq 1\right\}
$$

defines a p-norm equivalent to $\|\cdot\|$. Here p is defined by the equation $(2 c)^{p}=2$, where c is the constant in the triangle inequality $\|\cdot\|$ (see, for example [4]). Note also that if $\|\cdot\|$ is a p-norm then it is also an r-norm for any $0<r \leq p$. Consequently, without loss of generality we may and do work with p-Banach spaces.

Definition 1.1. Let $0<\theta_{1}, \theta_{2}<1, \theta_{1}+\theta_{2}<1$ and $0<q \leq \infty$. Assume that $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ is a triple of p-Banach spaces $(0<p \leq 1)$. Put $r=\min (p, q)$ and define $G_{\left(\theta_{1}, \theta_{2}\right), q, r}(\bar{A})$ as the collection of all those $a \in \sum(\bar{A})$ which can be represented as a convergent series $a=\sum_{j=1}^{\infty} T_{j} a_{j}$ in $\sum(\bar{A})$ with $a_{j} \in l_{q}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}}\right), \quad T_{j} \in \mathcal{L}\left(\left(l_{p}, l_{p}\left(2^{-n_{1}}\right), l_{p}\left(2^{-n_{2}}\right)\right),\left(A_{0}, A_{1}, A_{2}\right)\right)$ and

$$
\left(\sum_{j=1}^{\infty}\left\|T_{j}\right\|_{l_{p}, \bar{A}}^{r}\left\|a_{j}\right\|_{l_{q}}^{r}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}}\right)\right)^{1 / r}<\infty
$$

This spaces become an r-Banach spaces endowed with the functional

$$
\|a\|_{G\left(\theta_{1}, \theta_{2}\right), q, r}(\bar{A})=\inf \left\{\left(\sum_{j=1}^{\infty}\left\|T_{j}\right\|_{\bar{l}_{p}, \bar{A}}^{r}\left\|a_{j}\right\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.}^{r}\right): a=\sum_{j=1}^{\infty} T_{j} a_{j}\right\}
$$

Theorem 1.2. Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a triple of p-Banach spaces, let $0<\theta_{1}, \theta_{2}<1, \theta_{1}+\theta_{2}<1$ and $0<q \leq \infty$. Put $r=\min (p, q)$. Then

$$
\left(A_{0}, A_{1}, A_{2}\right)_{\left(\theta_{1}, \theta_{2}\right), q, J}=G_{\left(\theta_{1}, \theta_{2}\right), q, r}\left(A_{0}, A_{1}, A_{2}\right)
$$

Proof. Let $a \in\left(A_{0}, A_{1}, A_{2}\right)_{\left(\theta_{1}, \theta_{2}\right), q, J}$. Then $a=\sum_{\bar{n} \in \mathbf{Z}^{2}} u_{\bar{n}}\left(\right.$ converge in $\sum(\bar{A})$) and $\sum_{\bar{n} \in \mathbf{Z}^{2}}\left[2^{-n_{1} \theta_{1}-n_{2} \theta_{2}} J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}} ; \bar{A}\right)\right]^{q}<\infty$. Let T be the operator defined by

$$
T\left(\left(b_{\bar{n}}\right)_{\bar{n}}^{2}\right)=\sum_{\bar{n} \in \mathbf{Z}^{2}} u_{\bar{n}} \frac{b_{\bar{n}}}{J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}}, \bar{A}\right)} .
$$

Since A_{0} is a p-Banach space, we have

$$
\left\|T\left(\left(b_{\bar{n}}\right) \bar{n}\right)\right\|_{A_{0}} \leq\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left\|u_{\bar{n}} \frac{b_{\bar{n}}}{J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}}, \bar{A}\right)}\right\|_{A_{0}}^{p}\right)^{1 / p} \leq\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left|b_{\bar{n}}\right|^{p}\right)^{1 / p}=\|b\|_{l_{p}}
$$

Similarly

$$
\left\|T\left(\left(b_{\bar{n}}\right) \bar{n}\right)\right\|_{A_{1}} \leq\left\|\left(b_{\bar{n}}\right)\right\|_{l_{p\left(2^{-n_{1}}\right)}},\left\|T\left(\left(b_{\bar{n}}\right)_{\bar{n}}\right)\right\|_{A_{2}} \leq\left\|\left(b_{\bar{n}}\right)_{\bar{n}}\right\|_{l_{p}\left(2^{-n_{2}}\right)}
$$

Thus

$$
T \in \mathcal{L}\left(\bar{l}_{p}, \bar{A}\right) \quad \text { and } \quad\|T\|_{\bar{l}_{p}, \bar{A}} \leq 1
$$

It follows from

$$
\begin{gathered}
T\left(\left(J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}} ; \bar{A}\right)\right)_{\bar{n}}\right)=a \quad \text { and } \\
\|T\|_{\bar{l}_{p}, \bar{A}}\left\|\left(J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}} ; \bar{A}\right)\right)\right\|_{l_{q}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}}\right)} \leq
\end{gathered}
$$

$$
\leq\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}} J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}} ; \bar{A}\right)\right)^{q}\right)^{1 / q}
$$

that

$$
a \in G_{\left(\theta_{1}, \theta_{2}\right), q, r}(\bar{A}) \quad \text { with } \quad\|a\|_{G_{\left(\theta_{1}, \theta_{2}\right), q, r}}(\bar{A}) \leq\|a\|_{\left(\theta_{1}, \theta_{2}\right), q, J}
$$

Conversely, let a be in $G_{\left(\theta_{1}, \theta_{2}\right), q, r}(\bar{A})$ and have the form $a=T(\xi)$, where $T \in \mathcal{L}\left(\bar{l}_{p}, \bar{A}\right)$ and $\xi=\left(\xi_{\bar{n})_{\bar{n}} \in \mathbf{Z}^{2}} \in l_{q}\left(2^{-\theta_{1} n_{1}-\theta_{2} n_{2}}\right)\right.$.
Denote $T\left(e_{\bar{n}}\right)$ by $v_{\bar{n}}$, where $e_{\bar{n}}$ are standard basis vectors of l_{p}. Then $\left\|v_{\bar{n}}\right\|_{A_{0}} \leq$ $\leq\|T\|_{\bar{l}_{p}, \bar{A}}, 2^{n_{1}}\left\|v_{\bar{n}}\right\|_{A_{1}} \leq\|T\|_{\bar{l}_{p}, \bar{A}}, 2^{n_{2}}\left\|v_{\bar{n}}\right\|_{A_{2}} \leq\|T\|_{\bar{l}_{p}, \bar{A}}$ and $\sum_{\bar{n} \in \mathbf{Z}^{2}} \xi_{\bar{n}} v_{\bar{n}}=a$ (convergence in $\sum(\bar{A})$).
If we put now $\xi_{\bar{n}} v_{\bar{n}}=u_{\bar{n}} \in \Delta(\bar{A})$, then $\sum_{\bar{n} \in \mathbf{Z}^{2}} u_{\bar{n}}=a$ and

$$
J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}} ; \bar{A}\right) \leq\left|\xi_{\bar{n}}\right|\|T\|_{\bar{l}_{p}, \bar{A}}
$$

Hence $a=\sum_{\bar{n} \in \mathbf{Z}^{2}} u_{\bar{n}}$ is a J-representation of a with

$$
\begin{gathered}
\|a\|_{\theta_{1}, \theta_{2}, q, J} \leq\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}} J\left(2^{n_{1}}, 2^{n_{2}}, u_{\bar{n}} ; \bar{A}\right)\right)^{q}\right)^{1 / q} \leq \\
\leq\|T\|_{\bar{l}_{p}, \bar{A}}\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}}\left|\xi_{\bar{n}}\right|\right)^{q}\right)^{1 / q}=\|T\|_{\bar{l}_{p}, \bar{A}}\|\xi\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.} .
\end{gathered}
$$

If a is now any element of $G_{\left(\theta_{1}, \theta_{2}\right), q, r}(\bar{A})$ and $a=\sum_{j=1}^{\infty} T_{j} \xi_{j}$ is an arbitrary representation of a with

$$
\left(\sum_{j=1}^{\infty}\left\|T_{j}\right\|_{\bar{l}_{p}, \bar{A}}^{r}\left\|\xi_{j}\right\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.}^{r}\right)^{1 / r}<\infty
$$

then, using that $\left(A_{0}, A_{1}, A_{2}\right)_{\theta, q, J}$ is r-normed we obtain that

$$
\begin{aligned}
& \|a\|_{\left(\theta_{1}, \theta_{2}\right), q, J} \leq\left(\sum_{j=1}^{\infty}\left\|T_{j} \xi_{j}\right\|_{\left(\theta_{1}, \theta_{2}\right), q, J}^{r}\right)^{1 / r} \leq \\
& \leq\left(\sum_{j=1}^{\infty}\left\|T_{j}\right\|_{\bar{l}_{p}, \bar{A}}^{r}\left\|\xi_{j}\right\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.}^{r}\right)^{1 / r}
\end{aligned}
$$

Consequently, $a \in\left(A_{0}, A_{1}, A_{2}\right)_{\left(\theta_{1}, \theta_{2}\right), q, J}$ and $\|a\|_{\left(\theta_{1}, \theta_{2}\right), q, J} \leq\|a\|_{\left(\theta_{1}, \theta_{2}\right), q, r}$. This completes the proof.

2. Maximal description

In this case quasi-linear operators are needed.
Let T be a mapping from a quasi-Banach space A into a scalar sequence space \mathcal{M}. We say that T is quasi-linear with constant $C \geq 1$ if

$$
\begin{aligned}
& |T(a+b)| \leq C(|T a|+|T b|), a, b \in A \\
& |T(\lambda a)|=|\lambda||T a| a \in A, \lambda \in \underline{K} \quad \underline{K} \text {-scalar field). }
\end{aligned}
$$

Given any quasi-Banach triple $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ and $C \geq 1$ we denote by $\mathcal{L}_{C}\left(\bar{A}, \bar{l}_{\infty}\right)$ the collection of all those quasi-linear operators $T: \sum(\bar{A}) \longrightarrow$ $\sum\left(\bar{l}_{\infty}\right)$ with the constant C whose restriction to $A_{i}(i=0,1,2)$ defines a bounded operator from A_{0}, A_{1}, A_{2} into $l_{\infty}, l_{\infty}\left(2^{-n_{1}}\right), l_{\infty}\left(2^{-n_{2}}\right)$ respectively.

Definition 2.1 Let $0<\theta_{1}, \theta_{2}<1, \theta_{1}+\theta_{2}<1$ and $0<q \leqq \infty$. Given any quasiBanach triple $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ we define $H_{\left(\theta_{1}, \theta_{2}\right), q, C}(\bar{A})$ as the collection of all those $a \in \sum(\bar{A})$ such that $T a \in l_{q}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}}\right)$ for any $T \in \mathcal{L}_{C}\left(\bar{A}, \bar{l}_{\infty}\right)$ and quasi-norm

$$
\|a\|_{H_{\left(\theta_{1}, \theta_{2}\right), q, C}(\bar{A})}=\sup \left\{\|T a\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.}:\|T\|_{\bar{A}, \bar{l}_{\infty}} \leq 1\right\}
$$

is finite.
Theorem 2.2. Let $\bar{A}=\left(A_{0}, A_{1}, A_{2}\right)$ be a quasi-Banach triple, let $0<\theta_{1}, \theta_{2}<$ 1 , $\theta_{1}+\theta_{2}<1$ and $0<q \leq \infty$. Assume that the constant in the triangle inequality of A_{i} is $C_{i}(i=0,1,2)$ and put $C=\max \left(C_{0}, C_{1}, C_{2}\right)$. Then

$$
\left(A_{0}, A_{1}, A_{2}\right)_{\left(\theta_{1}, \theta_{2}\right), q, K}=H_{\left(\theta_{1}, \theta_{2}\right), q, C}\left(A_{0}, A_{1}, A_{2}\right)
$$

Proof. Let $\bar{n}=\left(n_{1}, n_{2}\right) \in \mathbf{Z}^{2}$ and $a, b \in \sum(\bar{A})$. Given any decompositions $a=a_{0}+a_{1}+a_{2}, b=b_{0}+b_{1}+b_{2}$, with $a_{i}, b_{i} \in A_{i}(i=0,1,2)$, it follows from

$$
\begin{aligned}
K\left(2^{n_{1}}, 2^{n_{2}}, a+b, \bar{A}\right) \leq & \left\|a_{0}+b_{0}\right\|_{A_{0}}+2^{n_{1}}\left\|a_{1}+b_{1}\right\|_{A_{1}}+2^{n_{2}}\left\|a_{2}+b_{2}\right\|_{A_{2}} \\
\leq & C\left[\left(\left\|a_{0}\right\|_{A_{0}}+2^{n_{1}}\left\|a_{1}\right\|_{A_{1}}+2^{n_{2}}\left\|a_{2}\right\|_{A_{2}}\right)+\left(\left\|b_{0}\right\|_{A_{0}}\right.\right. \\
& \left.+\left(2^{n_{1}}\left\|b_{1}\right\|_{A_{1}}+2^{n_{2}}\left\|b_{2}\right\|_{A_{2}}\right)\right]
\end{aligned}
$$

that

$$
K\left(2^{n_{1}}, 2^{n_{2}}, a+b, \bar{A}\right) \leq C\left[K\left(2^{n_{1}}, 2^{n_{2}}, a, \bar{A}\right)+K\left(2^{n_{1}}, 2^{n_{2}}, b, \bar{A}\right)\right]
$$

Let T be the operator defined by

$$
T a=\left(K\left(2^{n_{1}}, 2^{n_{2}}, a, \bar{A}\right)\right)_{\bar{n} \in \mathbf{Z}^{2}}
$$

Then $T=\mathcal{L}_{C}\left(\bar{A}, \bar{l}_{\infty}\right)$. Moreover, $\|T a\|_{l_{\infty}} \leq\|a\|_{A_{0}}, a \in A_{0},\|T a\|_{l_{\infty}\left(2^{\left.-n_{1}\right)}\right.} \leq$ $\leq\|a\|_{A_{1}}, a \in A_{1}$, and $\|T a\|_{l_{\infty}\left(2^{-n_{2}}\right)} \leq\|a\|_{A_{2}}, a \in A_{2}$. So $\|T\|_{\bar{A}, l_{\infty}} \leq 1$. Now,
for any $a \in H_{\left(\left(\theta_{1}, \theta_{2}\right), q, C\right.}(\bar{A})$ we have

$$
\begin{aligned}
& \|a\|_{\left(\theta_{1}, \theta_{2}\right), q, K}=\left\|\left(K\left(2^{n_{1}}, 2^{n_{2}}, a, \bar{A}\right)\right)_{\bar{n}}\right\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.}= \\
& =\|T a\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.} \leq\|a\|_{H_{\left(\theta_{1}, \theta_{2}\right), q, C}(\bar{A})} .
\end{aligned}
$$

This shows the embedding $H_{\left(\theta_{1}, \theta_{2}\right), q, C}(\bar{A}) \hookrightarrow \bar{A}_{\left(\theta_{1}, \theta_{2}\right), q, K}$.
Conversely, given any $T \in \mathcal{L}_{C}\left(\bar{A}, \bar{l}_{\infty}\right)$ with $\|\left. T\right|_{\bar{A}, \bar{l}_{\infty}} \leq 1$, we can represent $T a$ as
$\left(T_{\bar{n}} a\right)_{\bar{n} \in \mathbf{Z}^{2}}$, where $T_{\bar{n}} \in \mathcal{L}_{C}\left(\left(A_{0}, A_{1}, A_{2}\right),(\underline{K}, \underline{K}, \underline{K})\right)$ with $\left\|T_{\bar{n}}\right\|_{A_{0}, \underline{K}} \leq$ $\|T\|_{A_{0}, l_{\infty}} \leq 1$,
$\left\|T_{\bar{n}}\right\|_{A_{1}, 2^{-n_{1}} \underline{K}} \leq\|T\|_{A_{1}, l_{\infty}\left(2^{-n_{1}}\right)} \leq 1$ and $\left\|T_{\bar{n}}\right\|_{A_{2}, 2^{-n_{2}} \underline{K}} \leq$ $\|T\|_{A_{2}, l_{\infty}\left(2^{-n_{2}}\right)} \leq 1$.

If $a \in \sum(\bar{A})$ and $a=a_{0}+a_{1}+a_{2}$ with $a_{i} \in A_{i}$, then we get

$$
\begin{aligned}
\left|T_{\bar{n}} a\right| & \leq C^{2}\left(\left|T_{\bar{n}} a_{0}\right|+\left|T_{\bar{n}} a_{1}\right|+\left|T_{\bar{n}} a_{2}\right|\right) \\
& \leq C^{2}\left(\left\|a_{0}\right\|_{A_{0}}+2^{n_{1}}| | a_{1}\left\|_{A_{1}}+2^{n_{2}}\right\| a_{2} \|_{A_{2}}\right)
\end{aligned}
$$

Whence

$$
\left|T_{\bar{n}} a\right| \leq C^{2} K\left(2^{n_{1}}, 2^{n_{2}}, a ; \bar{A}\right)
$$

Now, for any $a \in \bar{A}_{\left(\theta_{1}, \theta_{2}\right), q, K}$ we obtain

$$
\begin{aligned}
& \|T a\|_{l_{q}\left(2^{\left.-n_{1} \theta_{1}-n_{2} \theta_{2}\right)}\right.}=\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}}\left|T_{\bar{n}} a\right|\right)^{q}\right)^{1 / q} \leq \\
& \leq C^{2}\left(\sum_{\bar{n} \in \mathbf{Z}^{2}}\left(2^{-n_{1} \theta_{1}-n_{2} \theta_{2}} K\left(2^{n_{1}}, 2^{n_{2}}, a, \bar{A}\right)\right)^{q}\right)^{1 / q}=C^{2}\|a\|_{\left(\theta_{1}, \theta_{2}\right), q, K}
\end{aligned}
$$

This shows the embedding $\bar{A}_{\left(\theta_{1}, \theta_{2}\right), q, K} \hookrightarrow H_{\left(\theta_{1}, \theta_{2}\right), q, C}(\bar{A})$ and completes the proof.

References

[1] Aronszajn, N., Gagliardo, E., Interpolation spaces and nterpolation methods, Ann. Mat. Pura Appl. 68 (1965), 51-118.
[2] Berg, J., Cobos, F., A maximal description for the real interpolation method in the quasi-Banach case, Math. Scand. 87(2000), 22-26.
[3] Cobos, F., Peetre, J., Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. (3) 63(1991), 371-400.
[4] Cobos, F., Person, L.E., Real interpolation of compact operator between quasiBanach spaces, Math. Scand. 82(1998), 138-160.
[5] Cofan, N., Stan, I., K - and J-real interpolation methods for Banach triples, Analele Universitatii din Timisoara, Seria Matematica-Informatica, Vol.XXXV, fasc 2, 1997, 183-192.
[6] Janson, S., Minimal and maximal method of interpolation, J. Funct. Anal. 44(1981), 50-73.
[7] Sparr, G., Interpolation of several Banach spaces, Ann. Mat. Pura Appl. 99(1974), 247-316.
[8] Stan, I., Real and complex interpolation methods for finite families of Banach spaces and applications, Monografii Matematice, No. 40, (1990), 1-78, Univ. of Timisoara.

Received by the editors August 21, 2001

[^0]: ${ }^{1}$ Departament of Mathematics, West University of Timisoara, Bd. V.Parvan, no.4, Timisoara, 1900, Romania, E-mail: stan@tim1.math.uvt.ro

