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W–CURVES IN MINKOWSKI SPACE–TIME

Miroslava Petrović–Torgašev1, Emilija Šućurović1

Abstract. In this paper we complete a classification of W–curves in
Minkowski space–time. Namely, we classify all spacelike curves with con-
stant curvatures in E4

1.
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1. Introduction

It is well–known that to each unit speed curve α : I → En in the Euclidean
space En whose successive derivatives α′(s), α′′(s), . . . , α(n)(s) are linearly inde-
pendent vectors, one can associate the orthonormal frame {V1, V2, V3, . . . , Vn}
and n−1 functions k1, . . . , kn−1 : I → R called the Frenet curvatures, such that
the following Frenet formulas hold ([6]):
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In particular, the first curvature k1 is also called the curvature k, and the second
curvature k2 is also called the torsion τ . Recall that a curve α is called a W–curve
(or a helix), if it has constant Frenet curvatures. W–curves in the Euclidean
space En have been studied intensively. The simplest examples are circles as
planar W–curves and helices as non–planar W–curves in E3. A parameterization
of a unit speed W–curve in E2k+1 is given by

(1.1) γ(s) = γ0 + ase0 +
k∑

i=1

ri

(
cos(ais)e2i−1 + sin(ais)e2i

)
,

where {e0, e1, . . . , e2k} is an orthonormal basis of E2k+1, a ∈ R, a1 < a2 < . . . <

ak are positive real numbers satisfying the equation a2 +
∑k

i=1(riai)2 = 1. If
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a 6= 0 the curve γ lies fully in E2k+1. Otherwise, γ lies fully in E2k and on a
hypersphere in that space. We remark that a W–curve is closed if and only if
a = 0 and ai = pi

r , pi ∈ N, r ∈ R+
0 . Further, we mention that W–curves in En

are the examples of the finite type curves ([3]). In particular, closed W–curves
in E4 are spherical 2–type curves ([4]).

All W–curves in the Minkowski 3–space E3
1 are completely classified in [10].

For example, the only planar spacelike W–curves are circles and hyperbolas.
In this paper, we classify all spacelike W–curves in the Minkowski space–time
E4

1. Since all three curvatures k1, k2 and k3 are constant, the classification is
reduced mainly to differential equations with constant coefficients and a method
well developed by B. Y. Chen.

The examples of null W–curves in the Minkowski space–time E4
1 are given

in [1]. Timelike W–curves in the same space have been studied in [8].

2. Preliminaries

Let E4
1 denote the 4–dimensional Minkowski space–time, i.e. the Euclidean

space E4 with the standard flat metric given by

(2.1) g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where (x1, . . . x4) is a rectangular coordinate system of E4
1 . Since g is indefinite

metric, recall that a vector v in E4
1 can have one of three causal characters:

it can be spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0, and null if
g(v, v) = 0 and v 6= 0. The norm of a vector v is given by ||v|| =

√
|g(v, v)|.

Therefore, v is a unit vector if g(v, v) = ±1. Next, vectors v and w are said to
be orthogonal if g(v, w) = 0.

An arbitrary curve α : I → E4
1 in the space E4

1 can locally be spacelike,
timelike or null, if respectively all of its velocity vectors α′(s) are spacelike,
timelike or null. Next, α is a unit speed curve if g(α′(s), α′(s)) = ±1.

Recall that a curve α in En
1 is said to be of k–type for some natural number

k, if its position vector α(s) can be written as a finite sum of eigenfunctions
s, cos(ps), sin(ps), cosh(qs), sinh(qs) of its Laplace operator ∆ = ± d2

ds2 which
has exactly k mutually different eigenvalues {λ1, . . . , λk}. In particular, if one
of the eigenvalues is equal to zero, α is said to be of null k–type. Therefore, α
is a 2–type curve in E4

1 if and only if it has one of the following forms:

(i) α(s) = a0 +
2∑

i=1

(ai cos(pis) + bi sin(pis));

(ii) α(s) = a0 +
2∑

i=1

(ai cosh(pis) + bi sinh(pis));

(iii) α(s) = a0 + a1 cos(p1s) + b1 sin(p1s) + a2 cosh(p2s) + b2 sinh(p2s);

where a0, a1, a2, b1, b2 ∈ E4
1 are constant vectors and 0 < p1 < p2, p1, p2 ∈ N .
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In particular, α is a null 2–type curve in E4
1 if and only if it has one of the

following forms:

(iv) α(s) = a0 + b0s + a1 cos(ps) + b1 sin(ps);

(v) α(s) = a0 + b0s + a1 cosh(ps) + b1 sinh(ps);

where a0, a1, b0, b1 ∈ E4
1 are constant vectors and p ∈ N .

Denote by {T (s), N(s), B1(s), B2(s)} the moving Frenet frame along the
spacelike curve α, where s is a pseudo arclength parameter. Then T (s) is a
spacelike tangent vector, so depending on the causal character of the principal
normal vector N(s) and the binormal vector B1(s), we have the following Frenet
formulas ([10]):

Case (1). N and B1 are spacelike;



Ṫ

Ṅ

Ḃ1

Ḃ2


 =




0 k1 0 0
−k1 0 k2 0
0 −k2 0 k3

0 0 k3 0







T
N
B1

B2


 ,

where T , N , B1, B2 are mutually orthogonal vectors satisfying the equations

g(T, T ) = g(N, N) = g(B1, B1) = 1, g(B2, B2) = −1.

Case (2). N is spacelike, B1 is timelike;



Ṫ

Ṅ

Ḃ1

Ḃ2


 =




0 k1 0 0
−k1 0 k2 0
0 k2 0 k3

0 0 k3 0







T
N
B1

B2


 ,

where T , N , B1, B2 are mutually orthogonal vectors satisfying the equations

g(T, T ) = g(N, N) = g(B2, B2) = 1, g(B1, B1) = −1.

Case (3). N is spacelike, B1 is null;



Ṫ

Ṅ

Ḃ1

Ḃ2


 =




0 k1 0 0
−k1 0 k2 0
0 0 k3 0
0 −k2 0 −k3







T
N
B1

B2


 ,

where T , N , B1, B2 satisfy the equations

g(T, T ) = g(N, N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T, N) = g(T, B1) = g(T, B2) = g(N,B1) = g(N,B2) = 0, g(B1, B2) = 1.
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Case (4). N is timelike, B1 is spacelike;




Ṫ

Ṅ

Ḃ1

Ḃ2


 =




0 k1 0 0
k1 0 k2 0
0 k2 0 k3

0 0 −k3 0







T
N
B1

B2


 ,

where T , N , B1, B2 are mutually orthogonal vectors satisfying the equations

g(T, T ) = g(B1, B1) = g(B2, B2) = 1, g(N,N) = −1.

Case (5). N is null, B1 is spacelike;




Ṫ

Ṅ

Ḃ1

Ḃ2


 =




0 k1 0 0
0 0 k2 0
0 k3 0 −k2

−k1 0 −k3 0







T
N
B1

B2


 ,

where the curvature k1 can only take two values: 0 if α is a straight line, or 1
in all other cases. In this case, the vectors T , N , B1, B2 satisfy the equations

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T, B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1.

The notion of causal character of vectors has a natural generalization to
vector subspaces. A subspace V of E4

1 can be spacelike, timelike or lightlike
if respectively g|V is positive definite, g|V is nondegenerate of index 1 or g|V
is degenerate. For a subspace V of the Minkowski space–time E4

1 , recall that
V ⊥ is a subspace defined by V ⊥ = {v ∈ E4

1 : v ⊥ V }. Then the following
simple property holds: a subspace V is timelike (spacelike) if and only if V ⊥ is
spacelike (timelike) ([7]). Moreover, if V is a timelike (spacelike) subspace, then
E4

1 = V ⊕ V ⊥, where ⊕ denotes the direct sum of subspaces. Next, a subspace
V is lightlike if and only if V ⊥ is lightlike, but then V ⊕ V ⊥ is not all of E4

1 .
Recall some of the most important hyperquadrics in E4

1. The pseudo–Riema-
nnian sphere and the pseudo–hyperbolic space in E4

1 are defined respectively by

(2.2) S3
1(c, r) = {x ∈ E4

1 : g(x− c, x− c) = r2},

(2.3) H3(c,−r) = {x ∈ E4
1 : g(x− c, x− c) = −r2},

where r > 0 is a radius and c ∈ E4
1 is a center of the mentioned hyperquadrics.

Finally, the light cone C(c) with the vertex at a point c in E4
1 is defined by

(2.4) C(c) = {x ∈ E4
1 : g(x− c, x− c) = 0}.
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3. A classification of spacelike W–curves

First we give some introductory results which characterize spacelike curves
in the Minkowski space–time E4

1 . In [10] it is proved that a spacelike curve α
in E3

1 with g(α̈, α̈) 6= 0 has the second curvature k2 ≡ 0 if and only if α is a
planar curve. Therefore, it is easy to prove that in E4

1 the following analogous
theorem holds.

Theorem 3.1. Let α be a spacelike unit speed curve in E4
1 with curvature

k1 > 0. Then α has k2 ≡ 0 if and only if α lies fully in a 2–dimensional
subspace of E4

1 .

The following theorems characterize spacelike curves with respect to their
third curvature k3.

Theorem 3.2. Let α be a spacelike unit speed curve in E4
1 with a spacelike

principal normal N, a spacelike binormal B1 and with curvatures k1 > 0, k2 6= 0.
Then α has k3 ≡ 0 if and only if α lies fully in a spacelike hyperplane of E4

1 .

Proof. If α has k3 ≡ 0, then by using the Frenet equations we obtain
α̇ = T, α̈ = k1N,

...
α= −k2

1T + k̇1N + k1k2B1,
....
α= −3k1k̇1T + (k̈1 − k3

1 −
k1k

2
2)N + (2k̇1k2 + k1k̇2)B1. Next, all higher-order derivatives of α are linear

combinations of vectors α̇, α̈,
...
α, so by using the MacLaurin expansion for α

given by

(3.1) α(s) = α(0) + α̇(0) s + α̈(0)
s2

2!
+

...
α (0)

s3

3!
+ . . . ,

we conclude that α lies fully in a spacelike hyperplane of the space E4
1, spanned

by
{α̇(0), α̈(0),

...
α (0)}.

Conversely, assume that α satisfies the asumptions of the theorem and lies
fully in a spacelike hyperplane π of E4

1. Then there exist points p, q ∈ E4
1 , such

that α satisfies the equation of π given by g(x(s) − p, q) = 0, where q ∈ π⊥ is
a timelike vector. Differentiation of the last equation yields g(α̇, q) = g(α̈, q) =
g(

...
α, q) = 0. Therefore, α̇, α̈,

...
α∈ π. Since T = α̇, N = α̈

||α̈|| , it follows that
g(T, q) = g(N, q) = 0. Next, differentiation of the equation g(N, q) = 0 gives
g(Ṅ , q) = 0. From the Frenet equations we obtain B1 = 1

k2
(Ṅ + k1T ), so

g(B1, q) = 0. Since B2(s) is the unique timelike unit vector perpendicular to
{T, N, B1}, it follows that B2(s) = q

||q|| . Thus Ḃ2(s) = k3B1 = 0 for each s and
therefore k3 ≡ 0. 2

Theorem 3.3. Let α be a spacelike unit speed curve in E4
1 with a spacelike

(timelike) principal normal N, a timelike (spacelike) binormal B1 and with cur-
vatures k1 > 0, k2 6= 0. Then α has k3 ≡ 0 if and only if α lies fully in a timelike
hyperplane of E4

1 .
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We omit the proof, as it is analogous to the proof of Theorem 3.2.
Next, recall that a spacelike curve with a spacelike principal normal N and

a null binormal B1 is called a partially null spacelike curve.

Theorem 3.4. A partially null spacelike unit speed curve α in E4
1 with curva-

tures k1 > 0, k2 6= 0 lies fully in a lightlike hyperplane of E4
1 and has k3 ≡ 0.

Proof. By using the Frenet formulas for this case, we obtain α̇ = T, α̈ = k1N,
...
α=

−k1T + k̇1N +k1k2B1,
....
α= −3k1k̇1T +(k̈1−k3

1)N +(2k̇1k1 +k1k̇2 +k1k2k3)B1.
Thus α̇, α̈,

...
α are linearly independent vectors, while α̇, α̈,

...
α,

....
α are not linearly

independent. Moreover, all higher-order derivatives of α are linear combinations
of α̇, α̈,

...
α, so by using the MacLaurin expansion (3.1) it follows that α lies fully

in a lightlike hyperplane π of E4
1 , spanned by {α̇(0), α̈(0),

...
α (0)}. Therefore,

we may assume that there exist points p, q ∈ E4
1 , such that α satisfies the

equation of π given by g(x(s) − p, q) = 0, where q ∈ π⊥ is a null vector. Since
q is a null vector perpendicular to B1, it follows that q = λB1, λ ∈ R0. Then
q̇ = λk3B1 = 0 and thus k3 ≡ 0. 2

Remark 3.1. Also by making a null rotation from one null tetrad to another
null tetrad, we can make k3 ≡ 0. For more details, see [2].

Next, recall that a spacelike curve with a null principal normal is called
a pseudo null spacelike curve. Such curves are characterized by the following
theorem.
Theorem 3.5. A pseudo null spacelike unit speed curve α in E4

1 with curvatures
k1 > 0, k2 6= 0 lies fully in the space E4

1 .

Proof. The Frenet formulas imply the equations α̇ = T, α̈ = N,
...
α= k2B1,

....
α=

k2k3N + k̇2B1 − k2
2B2. Therefore, the vectors α̇, α̈,

...
α,

....
α are linearly indepen-

dent. On the other hand, all higher order derivatives of α may be expressed
as linear combinations of vectors α̇, α̈,

...
α,

....
α . Thus by using the MacLaurin ex-

pansion (3.1) for α, we conclude that α lies fully in the space E4
1 , spanned by

{α̇(0), α̈(0),
...
α (0),

....
α (0)}. 2

Theorem 3.6. Let α be a spacelike unit speed curve in E4
1 , with a spacelike

principal normal N and a spacelike binormal B1. Then α has:
(i) k1 = c1, k2 = c2, k3 = 0, c1, c2 ∈ R0 if and only if α can be parameterized
by

(3.2) α(s) =
1
λ2

(0, c2λs, c1 sin(λs), c1 cos(λs)), λ2 = c2
1 + c2

2;

(ii) k1 = c1, k2 = c2, k3 = c3, c1, c2, c3 ∈ R0 if and only if α can be parame-
terized by

(3.3) α(s) =
1
λ1

(V1 sinh(λ1s) + V2 cosh(λ1s)) +
1
λ2

(V3 sin(λ2s)− V4 cos(λ2s))



W-curve in Minkowski space-time 61

with λ2
1 = −K+

√
K2+4c2

1c2
3

2 , λ2
2 = K+

√
K2+4c2

1c2
3

2 , K = c2
1 + c2

2 − c2
3, where

V1, V2, V3, V4 are mutually orthogonal vectors satisfying the equations g(V1, V1) =
−g(V2, V2) = λ2

2−c2
1

λ2
1+λ2

2
, g(V3, V3) = g(V4, V4) = λ2

1+c2
1

λ2
1+λ2

2
.

Proof. (i) If α has constant curvatures, then by using the Frenet formulas
we find

...

T +(c2
1 + c2

2)Ṫ = 0. Solving this equation, we easily obtain T =
A + B cos(

√
c2
1 + c2

2s) + C sin(
√

c2
1 + c2

2s), where A, B, C ∈ E4
1 are constant

vectors. Next, the equation g(T, T ) = 1 implies that g(B, B) = g(C, C),
g(A, B) = g(A,C) = g(B, C) = 0, g(A, A) = 1 − g(B, B). On the other
hand, the equation g(Ṫ , Ṫ ) = c2

1 gives g(B,B) = c2
1

c2
1+c2

2
. Therefore, we may

take A = (0, c2√
c2
1+c2

2

, 0, 0), B = (0, 0, c1√
c2
1+c2

2

, 0), C = (0, 0, 0, c1√
c2
1+c2

2

) and up to

isometries of E4
1 the curve α has the form (3.2).

Conversely, if α has the form (3.2), then it lies fully in a spacelike hyperplane
of E4

1 , with the equation x1 = 0. Then the Theorem 3.2 implies that k3 ≡ 0.
Next, from the Frenet equations we get g(Ṫ , Ṫ ) = k2

1, g(Ṅ , Ṅ) = k2
1 + k2

2. Since
Ṫ = α̈ and N = α̈

||α̈|| , we find g(Ṫ , Ṫ ) = c2
1, g(Ṅ , Ṅ) = c2

1 + c2
2. Accordingly,

k1 = c1 and k2 = c2.
(ii) First assume that α has constant curvatures different from zero. Then

from the Frenet formulas we obtain the equation
....

T +(c2
1+c2

2−c2
3)T̈−c2

1c
2
3T = 0.

Solving the previous equation, we find

T = V1 cosh(λ1s) + V2 sinh(λ1s) + V3 cos(λ2s) + V4 sin(λ2s)

where V1, V2, V3, V4 ∈ E4
1 are constant vectors, λ2

1 = −K+
√

K2+4c2
1c2

3
2 , λ2

2 =
K+
√

K2+4c2
1c2

3
2 , K = c2

1 + c2
2 − c2

3. Next, the equation g(T, T ) = 1 implies
g(V1, V1) = −g(V2, V2), g(V3, V3) = g(V4, V4), g(V1, V1)+g(V3, V3) = 1, g(Vi, Vj) =
0 for i 6= j (i, j ∈ {1, 2, 3, 4}). Finally, by using the equation g(Ṫ , Ṫ ) = c2

1, we
get g(V3, V3) = λ2

1+c2
1

λ2
1+λ2

2
. Accordingly, α has the form (3.3).

Conversely, if α can be parameterized by (3.3), then it has spacelike prin-
cipal normal N and spacelike binormal B1, so that the Frenet formulas im-
ply g(Ṫ , Ṫ ) = k2

1, g(Ṅ , Ṅ) = k2
1 + k2

2. Since Ṫ = α̈ and N = α̈
||α̈|| , we get

g(Ṫ , Ṫ ) = c2
1, g(Ṅ , Ṅ) = c2

1 + c2
2. Thus k1 = c1 and k2 = c2. Finally, by

the Frenet equations we get g(Ḃ1, Ḃ1) = k2
2 − k2

3, and on the other hand since
Ḃ1 = 1

c2
(N̈ + c2

1N) we obtain g(Ḃ1, Ḃ1) = c2
2 − c2

3. Consequently, k3 = c3. 2

Remark 3.2. The curve (3.2) lies on a circular cylinder in E4
1 with the equation

x2
3 + x2

4 = c2
1

(c2
1+c2

2)
2 . The curve (3.3) lies on some hyperquadric in E4

1 . More

precisely, if c2
3 > c2

2, c2
3 < c2

2, or c2
3 = c2

2, then respectively α lies on pseudo–
Riemannian sphere with the equation −x2

1 + x2
2 + x2

3 + x2
4 = c2

3−c2
2

c2
1c2

3
, pseudo–

hyperbolic space with the same equation or light cone with the equation −x2
1 +
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x2
2 + x2

3 + x2
4 = 0.

By the Theorem 3.3, all spacelike W–curves with a spacelike (timelike) prin-
cipal normal N and a timelike (spacelike) binormal B1 which have k3 ≡ 0 lie
fully in E3

1 , so their classification is given in [10]. In the next two theorems we
consider the remaining cases and omite the proofs, since they are very similar
with the proof of the Theorem 3.6.

Theorem 3.7. A spacelike unit speed curve α in E4
1 with a spacelike principal

normal N and a timelike binormal B1 has k1 = c1, k2 = c2, k3 = c3, c1, c2,
c3 ∈ R0 if and only if α can be parameterized by

(3.4) α(s) =
1
λ1

(V1 sinh(λ1s) + V2 cosh(λ1s)) +
1
λ2

(V3 sin(λ2s)− V4 cos(λ2s)),

with λ2
1 = −K+

√
K2+4c2

1c2
3

2 , λ2
2 = K+

√
K2+4c2

1c2
3

2 , K = c2
1 − c2

2 − c2
3, where V1,

V2, V3, V4 are mutually orthogonal vectors satisfying the equations g(V1, V1) =
−g(V2, V2) = λ2

2−c2
1

λ2
1+λ2

2
, g(V3, V3) = g(V4, V4) = c2

1+λ2
1

λ2
1+λ2

2
.

Remark 3.3. The curve (3.4) lies on pseudo–Riemannian sphere with the
equation −x2

1 + x2
2 + x2

3 + x2
4 = c2

2+c2
3

c2
1c2

3
.

Theorem 3.8. A spacelike unit speed curve α in E4
1 with a timelike principal

normal N has k1 = c1, k2 = c2, k3 = c3, c1, c2, c3 ∈ R0 if and only if α can be
parameterized by

(3.5) α(s) =
1
λ1

(V1 sinh(λ1s) + V2 cosh(λ1s)) +
1
λ2

(V3 sin(λ2s)− V4 cos(λ2s)),

with λ2
1 = −K+

√
K2+4c2

1c2
3

2 , λ2
2 = K+

√
K2+4c2

1c2
3

2 , K = c2
3 − c2

1 − c2
2, where V1,

V2, V3, V4 are mutually orthogonal vectors satisfying the equations g(V1, V1) =
−g(V2, V2) = λ2

2+c2
1

λ2
1+λ2

2
, g(V3, V3) = g(V4, V4) = λ2

1−c2
1

λ2
1+λ2

2
.

Remark 3.4. The curve (3.5) lies on some hyperquadric in E4
1 . If c2

2 > c2
3,

c2
2 < c2

3, c2
2 = c2

3, then respectively α lies on pseudo–Riemannian sphere with
the equation −x2

1 + x2
2 + x2

3 + x2
4 = c2

2−c2
3

c2
1c2

3
, pseudo–hyperbolic space with the

same equation or light cone with the equation −x2
1 + x2

2 + x2
3 + x2

4 = 0.

By the Theorem 3.4, a partially null spacelike curve α has k3(s) = 0 for each
s. In the following theorem, we classify all partially null spacelike W–curves in
E4

1 .

Theorem 3.9. A partially null spacelike unit speed curve α in E4
1 has k1 =

c1 ∈ R0, k2 = constant 6= 0 if and only if α is a part of a partially null spacelike
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helix

(3.6) α(s) = (as, as,
1
c1

sin(c1s),
1
c1

cos(c1s)), a ∈ R0.

Proof. First assume that α has non–zero constant curvatures. Then by the
Frenet equations we find

...

T +c2
1Ṫ = 0. Solving this equation, we get T =

V1 +V2 cos(c1s)+V3 sin(c1s), where V1, V2, V3 ∈ E4
1 are constant vectors. Next,

the equation g(T, T ) = 1 implies that g(V1, V1) + g(V2, V2) = 1, g(V1, V2) =
g(V1, V3) = g(V2, V3) = 0, g(V2, V2) = g(V3, V3). Finally, by using the equation
g(Ṫ , Ṫ ) = c2

1, we obtain g(V2, V2) = 1. Therefore, we may take V1 = (a, a, 0, 0, ),
a ∈ R0, V2 = (0, 0, 1, 0), V3 = (0, 0, 0, 1), so up to isometries of E4

1 the curve α
has the form (3.6).

On the other hand, if α can be parameterized by (3.6), then we obtain that
α̈ = (0, 0,−c1 sin(c1s), c1 cos(c1s)) and thus g(α̈, α̈) = c2

1. However, from the
Frenet formulas we get g(Ṫ , Ṫ ) = g(α̈, α̈) = k2

1. It follows that k1 = c1. Next,
since N = α̈

||α̈|| , we obtain that
....
α= (0, 0, c3

1 sin(c1s),−c3
1 cos(c1s)) = −c3

1N .

However, by the Frenet equations we get
....
α= −k3

1N + k1k̇2B1. It follows that
k1k̇2 = 0 and therefore k2 = constant 6= 0. 2

Remark 3.5. The curve (3.6) lies on a circular cylinder in E4
1 with the equation

x2
3 + x2

4 = 1
c2
1
.

Theorem 3.10. Let α be a pseudo null spacelike unit speed curve in E4
1 . Then

α has:
(i) k1 = 1, k2 = c2, k3 = 0, c2 ∈ R0, if and only if α can be parameterized by

(3.7) α(s) =
1√
2c2

(cosh(
√

c2s), sinh(
√

c2s), sin(
√

c2s), cos(
√

c2s));

(ii) k1 = 1, k2 = c2, k3 = c3, c2, c3 ∈ R0 if and only if α can be parameterized
by

(3.8) α(s) =
1
λ1

(V1 sinh(λ1s) + V2 cosh(λ1s)) +
1
λ2

(V3 sin(λ2s)− V4 cos(λ2s)),

with λ2
1 = K +

√
K2 + c2

2, λ2
2 = −K +

√
K2 + c2

2, K = c2c3, where V1,
V2, V3, V4 are mutually orthogonal vectors satisfying the equations g(V1, V1) =
−g(V2, V2) = λ2

2
λ2

1+λ2
2
, g(V3, V3) = g(V4, V4) = λ2

1
λ2

1+λ2
2
.

Proof. (i) First assume that α has k1 = 1, k2 = c2, k3 = 0. Then by using
the Frenet equations we find

....

T −c2
2T = 0. Solving the previous equation, we

obtain that

T = V1 cosh(
√

c2s) + V2 sinh(
√

c2s) + V3 cos(
√

c2s) + V4 sin(
√

c2s),
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where V1, V2, V3, V4 ∈ E4
1 are constant vectors. Further, the equation g(T, T ) =

1 implies that g(V1, V1) = −g(V2, V2), g(V3, V3) = g(V4, V4), g(V1, V1)+g(V3, V3) =
0, g(Vi, Vj) = 0 for i 6= j, (i, j ∈ {1, 2, 3, 4}). Finally, by using the equa-
tion g(Ṫ , Ṫ ) = 0, we find g(V3, V3) = 1

2 . Consequently, we may take V1 =
(0, 1√

2
, 0, 0), V2 = ( 1√

2
, 0, 0, 0), V3 = (0, 0, 1√

2
, 0), V4 = (0, 0, 0, 1√

2
). Accord-

ingly, up to isometries of E4
1 the curve α has the form (3.7).

Conversely, if α can be parameterized by (3.7), then we find g(α̈, α̈) = 0
and therefore k1 = 1. Next, we find g(

...
α,

...
α) = g(Ṅ , Ṅ) = c2

2. However, the
Frenet formulas give g(Ṅ , Ṅ) = k2

2. It follows that k2 = c2. Finally, the Frenet
equations imply g(Ḃ1, Ḃ1) = −2k2k3 and on the other hand since B1 =

...
α

||...α || ,

we obtain that g(Ḃ1, Ḃ1) = 0. Therefore, k3 = 0.
(ii) Suppose that α has constant curvatures k1 = 1, k2 = c2, k3 = c3. Then

by the Frenet formulas we find
....

T −2c2c3T̈ − c2
2T = 0. Solving this equation,

we obtain

T = V1 cosh(λ1s) + V2 sinh(λ1s) + V3 cos(λ2s) + V4 sin(λ2s),

where V1, V2, V3, V4 ∈ E4
1 are constant vectors, λ2

1 = K+
√

K2 + c2
2, λ2

2 = −K+√
K2 + c2

2, K = c2c3. Next, the equation g(T, T ) = 1 implies that g(V1, V1) =
−g(V2, V2), g(V3, V3) = g(V4, V4), g(V1, V1)+ g(V3, V3) = 1, g(Vi, Vj) 6= 0 for i 6=
j (i, j ∈ {1, 2, 3, 4}). Finally, from the equation g(Ṫ , Ṫ ) = 0, we get g(V1, V1) =

λ2
2

λ2
1+λ2

2
. Consequently, α has the form (3.8).

On the other hand, if α can be parameterized by (3.8), then we find that
g(α̈, α̈) = 0 and thus k1 = 1. Further, we find that g(

...
α,

...
α) = c2

2 and from the
Frenet formulas we get g(Ṅ , Ṅ) = k2

2. It follows that k2 = c2. Finally, since
B1 =

...
α

||...α || , we obtain g(Ḃ1, Ḃ1) = −c2c3. However, the Frenet equations imply

g(Ḃ1, Ḃ1) = −k2k3 and consequently k3 = c3. 2

Remark 3.6. The curve (3.7) lies on a light cone in E4
1 with the equation

−x2
1 + x2

2 + x2
3 + x2

4 = 0. The curve (3.8) lies on some hyperquadric in E4
1 . If

c2c3 > 0 or c2c3 < 0, then respectively α lies on pseudo–Riemannian sphere
with the equation −x2

1 +x2
2 +x2

3 +x2
4 = 2c3

c2
or on pseudo–hyperbolic space with

the same equation.

Finally, note that some of a W–curves are the curves of 2–type. The proof
of the following theorem follows immediately from definition of 2–type curves.

Theorem 3.11. The curves (3.3), (3.4), (3.5) and (3.8) for which λ1, λ2 ∈ N
are a 2–type curves. The curve (3.7) for which

√
c2 ∈ N is a 2–type curve. The

curves (3.2) and (3.6) for which respectively λ ∈ N , c1 ∈ N are a null 2–type
curves.
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