W-CURVES IN MINKOWSKI SPACE-TIME

Miroslava Petrović-Torgašev ${ }^{1}$, Emilija Šućurović ${ }^{1}$

Abstract

In this paper we complete a classification of W -curves in Minkowski space-time. Namely, we classify all spacelike curves with constant curvatures in E_{1}^{4}.

AMS Mathematics Subject Classification (2000): primary 53C50, secondary 53C40
Key words and phrases:W-curves, Minkowski space-time

1. Introduction

It is well-known that to each unit speed curve $\alpha: I \rightarrow E^{n}$ in the Euclidean space E^{n} whose successive derivatives $\alpha^{\prime}(s), \alpha^{\prime \prime}(s), \ldots, \alpha^{(n)}(s)$ are linearly independent vectors, one can associate the orthonormal frame $\left\{V_{1}, V_{2}, V_{3}, \ldots, V_{n}\right\}$ and $n-1$ functions $k_{1}, \ldots, k_{n-1}: I \rightarrow R$ called the Frenet curvatures, such that the following Frenet formulas hold ([6]):

$$
\left[\begin{array}{c}
V_{1}^{\prime} \\
V_{2}^{\prime} \\
V_{3}^{\prime} \\
\vdots \\
V_{n-1}^{\prime} \\
V_{n}^{\prime}
\end{array}\right]=\left[\begin{array}{ccccccc}
0 & k_{1} & 0 & 0 & \ldots & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 & \ldots & 0 & 0 \\
0 & -k_{2} & 0 & k_{3} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & k_{n-1} \\
0 & 0 & 0 & 0 & \ldots & -k_{n-1} & 0
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
\vdots \\
V_{n-1} \\
V_{n}
\end{array}\right] .
$$

In particular, the first curvature k_{1} is also called the curvature k, and the second curvature k_{2} is also called the torsion τ. Recall that a curve α is called a W-curve (or a helix), if it has constant Frenet curvatures. W-curves in the Euclidean space E^{n} have been studied intensively. The simplest examples are circles as planar W-curves and helices as non-planar W-curves in E^{3}. A parameterization of a unit speed W -curve in $\mathrm{E}^{2 k+1}$ is given by

$$
\begin{equation*}
\gamma(s)=\gamma_{0}+a s e_{0}+\sum_{i=1}^{k} r_{i}\left(\cos \left(a_{i} s\right) e_{2 i-1}+\sin \left(a_{i} s\right) e_{2 i}\right) \tag{1.1}
\end{equation*}
$$

where $\left\{e_{0}, e_{1}, \ldots, e_{2 k}\right\}$ is an orthonormal basis of $\mathrm{E}^{2 k+1}, a \in R, a_{1}<a_{2}<\ldots<$ a_{k} are positive real numbers satisfying the equation $a^{2}+\sum_{i=1}^{k}\left(r_{i} a_{i}\right)^{2}=1$. If

[^0]$a \neq 0$ the curve γ lies fully in $\mathrm{E}^{2 k+1}$. Otherwise, γ lies fully in $\mathrm{E}^{2 k}$ and on a hypersphere in that space. We remark that a W -curve is closed if and only if $a=0$ and $a_{i}=\frac{p_{i}}{r}, p_{i} \in N, r \in R_{0}^{+}$. Further, we mention that W -curves in E^{n} are the examples of the finite type curves ([3]). In particular, closed W-curves in E^{4} are spherical 2-type curves ([4]).

All W-curves in the Minkowski 3 -space E_{1}^{3} are completely classified in [10]. For example, the only planar spacelike W -curves are circles and hyperbolas. In this paper, we classify all spacelike W -curves in the Minkowski space-time E_{1}^{4}. Since all three curvatures k_{1}, k_{2} and k_{3} are constant, the classification is reduced mainly to differential equations with constant coefficients and a method well developed by B. Y. Chen.

The examples of null W -curves in the Minkowski space-time E_{1}^{4} are given in [1]. Timelike W -curves in the same space have been studied in [8].

2. Preliminaries

Let E_{1}^{4} denote the 4 -dimensional Minkowski space-time, i.e. the Euclidean space E^{4} with the standard flat metric given by

$$
\begin{equation*}
g=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2} \tag{2.1}
\end{equation*}
$$

where $\left(x_{1}, \ldots x_{4}\right)$ is a rectangular coordinate system of E_{1}^{4}. Since g is indefinite metric, recall that a vector v in E_{1}^{4} can have one of three causal characters: it can be spacelike if $g(v, v)>0$ or $v=0$, timelike if $g(v, v)<0$, and null if $g(v, v)=0$ and $v \neq 0$. The norm of a vector v is given by $\|v\|=\sqrt{|g(v, v)|}$. Therefore, v is a unit vector if $g(v, v)= \pm 1$. Next, vectors v and w are said to be orthogonal if $g(v, w)=0$.

An arbitrary curve $\alpha: I \rightarrow E_{1}^{4}$ in the space E_{1}^{4} can locally be spacelike, timelike or null, if respectively all of its velocity vectors $\alpha^{\prime}(s)$ are spacelike, timelike or null. Next, α is a unit speed curve if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$.

Recall that a curve α in E_{1}^{n} is said to be of k-type for some natural number k, if its position vector $\alpha(s)$ can be written as a finite sum of eigenfunctions $s, \cos (p s), \sin (p s), \cosh (q s), \sinh (q s)$ of its Laplace operator $\Delta= \pm \frac{d^{2}}{d s^{2}}$ which has exactly k mutually different eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$. In particular, if one of the eigenvalues is equal to zero, α is said to be of null k-type. Therefore, α is a 2-type curve in E_{1}^{4} if and only if it has one of the following forms:

$$
\begin{aligned}
\text { (i) } & \alpha(s)=a_{0}+\sum_{i=1}^{2}\left(a_{i} \cos \left(p_{i} s\right)+b_{i} \sin \left(p_{i} s\right)\right) \\
\text { (ii) } & \alpha(s)=a_{0}+\sum_{i=1}^{2}\left(a_{i} \cosh \left(p_{i} s\right)+b_{i} \sinh \left(p_{i} s\right)\right) \\
\text { (iii) } & \alpha(s)=a_{0}+a_{1} \cos \left(p_{1} s\right)+b_{1} \sin \left(p_{1} s\right)+a_{2} \cosh \left(p_{2} s\right)+b_{2} \sinh \left(p_{2} s\right)
\end{aligned}
$$

where $a_{0}, a_{1}, a_{2}, b_{1}, b_{2} \in E_{1}^{4}$ are constant vectors and $0<p_{1}<p_{2}, p_{1}, p_{2} \in N$.

In particular, α is a null 2-type curve in E_{1}^{4} if and only if it has one of the following forms:

$$
\text { (iv) } \quad \alpha(s)=a_{0}+b_{0} s+a_{1} \cos (p s)+b_{1} \sin (p s)
$$

$(v) \quad \alpha(s)=a_{0}+b_{0} s+a_{1} \cosh (p s)+b_{1} \sinh (p s) ;$
where $a_{0}, a_{1}, b_{0}, b_{1} \in E_{1}^{4}$ are constant vectors and $p \in N$.
Denote by $\left\{T(s), N(s), B_{1}(s), B_{2}(s)\right\}$ the moving Frenet frame along the spacelike curve α, where s is a pseudo arclength parameter. Then $T(s)$ is a spacelike tangent vector, so depending on the causal character of the principal normal vector $N(s)$ and the binormal vector $B_{1}(s)$, we have the following Frenet formulas ([10]):

Case (1). N and B_{1} are spacelike;

$$
\left[\begin{array}{c}
\dot{T} \\
\dot{N} \\
\dot{B_{1}} \\
\dot{B_{2}}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & -k_{2} & 0 & k_{3} \\
0 & 0 & k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where T, N, B_{1}, B_{2} are mutually orthogonal vectors satisfying the equations

$$
g(T, T)=g(N, N)=g\left(B_{1}, B_{1}\right)=1, \quad g\left(B_{2}, B_{2}\right)=-1
$$

Case (2). N is spacelike, B_{1} is timelike;

$$
\left[\begin{array}{c}
\dot{T} \\
\dot{N} \\
\dot{B}_{1} \\
\dot{B}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & k_{2} & 0 & k_{3} \\
0 & 0 & k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where T, N, B_{1}, B_{2} are mutually orthogonal vectors satisfying the equations

$$
g(T, T)=g(N, N)=g\left(B_{2}, B_{2}\right)=1, \quad g\left(B_{1}, B_{1}\right)=-1
$$

Case (3). N is spacelike, B_{1} is null;

$$
\left[\begin{array}{c}
\dot{T} \\
\dot{N} \\
\dot{B_{1}} \\
\dot{B}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & 0 & k_{3} & 0 \\
0 & -k_{2} & 0 & -k_{3}
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where T, N, B_{1}, B_{2} satisfy the equations

$$
\begin{gathered}
g(T, T)=g(N, N)=1, \quad g\left(B_{1}, B_{1}\right)=g\left(B_{2}, B_{2}\right)=0 \\
g(T, N)=g\left(T, B_{1}\right)=g\left(T, B_{2}\right)=g\left(N, B_{1}\right)=g\left(N, B_{2}\right)=0, \quad g\left(B_{1}, B_{2}\right)=1
\end{gathered}
$$

Case (4). N is timelike, B_{1} is spacelike;

$$
\left[\begin{array}{c}
\dot{T} \\
\dot{N} \\
\dot{B}_{1} \\
\dot{B}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
k_{1} & 0 & k_{2} & 0 \\
0 & k_{2} & 0 & k_{3} \\
0 & 0 & -k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where T, N, B_{1}, B_{2} are mutually orthogonal vectors satisfying the equations

$$
g(T, T)=g\left(B_{1}, B_{1}\right)=g\left(B_{2}, B_{2}\right)=1, \quad g(N, N)=-1
$$

Case (5). N is null, B_{1} is spacelike;

$$
\left[\begin{array}{c}
\dot{T} \\
\dot{N} \\
\dot{B}_{1} \\
\dot{B}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
0 & 0 & k_{2} & 0 \\
0 & k_{3} & 0 & -k_{2} \\
-k_{1} & 0 & -k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where the curvature k_{1} can only take two values: 0 if α is a straight line, or 1 in all other cases. In this case, the vectors T, N, B_{1}, B_{2} satisfy the equations

$$
\begin{gathered}
g(T, T)=g\left(B_{1}, B_{1}\right)=1, \quad g(N, N)=g\left(B_{2}, B_{2}\right)=0 \\
g(T, N)=g\left(T, B_{1}\right)=g\left(T, B_{2}\right)=g\left(N, B_{1}\right)=g\left(B_{1}, B_{2}\right)=0, \quad g\left(N, B_{2}\right)=1
\end{gathered}
$$

The notion of causal character of vectors has a natural generalization to vector subspaces. A subspace V of E_{1}^{4} can be spacelike, timelike or lightlike if respectively $\left.g\right|_{V}$ is positive definite, $\left.g\right|_{V}$ is nondegenerate of index 1 or $\left.g\right|_{V}$ is degenerate. For a subspace V of the Minkowski space-time E_{1}^{4}, recall that V^{\perp} is a subspace defined by $V^{\perp}=\left\{v \in E_{1}^{4}: v \perp V\right\}$. Then the following simple property holds: a subspace V is timelike (spacelike) if and only if V^{\perp} is spacelike (timelike) ([7]). Moreover, if V is a timelike (spacelike) subspace, then $E_{1}^{4}=V \oplus V^{\perp}$, where \oplus denotes the direct sum of subspaces. Next, a subspace V is lightlike if and only if V^{\perp} is lightlike, but then $V \oplus V^{\perp}$ is not all of E_{1}^{4}.

Recall some of the most important hyperquadrics in E_{1}^{4}. The pseudo-Riemannian sphere and the pseudo-hyperbolic space in E_{1}^{4} are defined respectively by

$$
\begin{align*}
S_{1}^{3}(c, r) & =\left\{x \in E_{1}^{4}: g(x-c, x-c)=r^{2}\right\} \tag{2.2}\\
H^{3}(c,-r) & =\left\{x \in E_{1}^{4}: g(x-c, x-c)=-r^{2}\right\} \tag{2.3}
\end{align*}
$$

where $r>0$ is a radius and $c \in E_{1}^{4}$ is a center of the mentioned hyperquadrics. Finally, the light cone $C(c)$ with the vertex at a point c in E_{1}^{4} is defined by

$$
\begin{equation*}
C(c)=\left\{x \in E_{1}^{4}: g(x-c, x-c)=0\right\} \tag{2.4}
\end{equation*}
$$

3. A classification of spacelike \mathbf{W}-curves

First we give some introductory results which characterize spacelike curves in the Minkowski space-time E_{1}^{4}. In [10] it is proved that a spacelike curve α in E_{1}^{3} with $g(\ddot{\alpha}, \ddot{\alpha}) \neq 0$ has the second curvature $k_{2} \equiv 0$ if and only if α is a planar curve. Therefore, it is easy to prove that in E_{1}^{4} the following analogous theorem holds.

Theorem 3.1. Let α be a spacelike unit speed curve in E_{1}^{4} with curvature $k_{1}>0$. Then α has $k_{2} \equiv 0$ if and only if α lies fully in a 2-dimensional subspace of E_{1}^{4}.

The following theorems characterize spacelike curves with respect to their third curvature k_{3}.

Theorem 3.2. Let α be a spacelike unit speed curve in E_{1}^{4} with a spacelike principal normal N, a spacelike binormal B_{1} and with curvatures $k_{1}>0, k_{2} \neq 0$. Then α has $k_{3} \equiv 0$ if and only if α lies fully in a spacelike hyperplane of E_{1}^{4}.

Proof. If α has $k_{3} \equiv 0$, then by using the Frenet equations we obtain $\dot{\alpha}=T, \ddot{\alpha}=k_{1} N, \dddot{\alpha}=-k_{1}^{2} T+\dot{k_{1}} N+k_{1} k_{2} B_{1}, \dddot{\alpha}=-3 k_{1} \dot{k_{1}} T+\left(\ddot{k_{1}}-k_{1}^{3}-\right.$ $\left.k_{1} k_{2}^{2}\right) N+\left(2 \dot{k_{1}} k_{2}+k_{1} \dot{k_{2}}\right) B_{1}$. Next, all higher-order derivatives of α are linear combinations of vectors $\dot{\alpha}, \ddot{\alpha}, \dddot{\alpha}$, so by using the MacLaurin expansion for α given by

$$
\begin{equation*}
\alpha(s)=\alpha(0)+\dot{\alpha}(0) s+\ddot{\alpha}(0) \frac{s^{2}}{2!}+\dddot{\alpha}(0) \frac{s^{3}}{3!}+\ldots, \tag{3.1}
\end{equation*}
$$

we conclude that α lies fully in a spacelike hyperplane of the space E_{1}^{4}, spanned by $\{\dot{\alpha}(0), \ddot{\alpha}(0), \dddot{\alpha}(0)\}$.

Conversely, assume that α satisfies the asumptions of the theorem and lies fully in a spacelike hyperplane π of E_{1}^{4}. Then there exist points $p, q \in E_{1}^{4}$, such that α satisfies the equation of π given by $g(x(s)-p, q)=0$, where $q \in \pi^{\perp}$ is a timelike vector. Differentiation of the last equation yields $g(\dot{\alpha}, q)=g(\ddot{\alpha}, q)=$ $g(\dddot{\alpha}, q)=0$. Therefore, $\dot{\alpha}, \ddot{\alpha}, \dddot{\alpha} \in \pi$. Since $T=\dot{\alpha}, N=\frac{\ddot{\alpha}}{\|\ddot{\alpha}\|}$, it follows that $g(T, q)=g(N, q)=0$. Next, differentiation of the equation $g(N, q)=0$ gives $g(\dot{N}, q)=0$. From the Frenet equations we obtain $B_{1}=\frac{1}{k_{2}}\left(\dot{N}+k_{1} T\right)$, so $g\left(B_{1}, q\right)=0$. Since $B_{2}(s)$ is the unique timelike unit vector perpendicular to $\left\{T, N, B_{1}\right\}$, it follows that $B_{2}(s)=\frac{q}{\|q\|}$. Thus $\dot{B_{2}}(s)=k_{3} B_{1}=0$ for each s and therefore $k_{3} \equiv 0$.

Theorem 3.3. Let α be a spacelike unit speed curve in E_{1}^{4} with a spacelike (timelike) principal normal N, a timelike (spacelike) binormal B_{1} and with curvatures $k_{1}>0, k_{2} \neq 0$. Then α has $k_{3} \equiv 0$ if and only if α lies fully in a timelike hyperplane of E_{1}^{4}.

We omit the proof, as it is analogous to the proof of Theorem 3.2.
Next, recall that a spacelike curve with a spacelike principal normal N and a null binormal B_{1} is called a partially null spacelike curve.

Theorem 3.4. A partially null spacelike unit speed curve α in E_{1}^{4} with curvatures $k_{1}>0, k_{2} \neq 0$ lies fully in a lightlike hyperplane of E_{1}^{4} and has $k_{3} \equiv 0$.

Proof. By using the Frenet formulas for this case, we obtain $\dot{\alpha}=T, \ddot{\alpha}=k_{1} N, \dddot{\alpha}=$ $-k_{1} T+\dot{k_{1}} N+k_{1} k_{2} B_{1}, \dddot{\alpha}=-3 k_{1} \dot{k_{1}} T+\left(\ddot{k_{1}}-k_{1}^{3}\right) N+\left(2 \dot{k_{1}} k_{1}+k_{1} \dot{k_{2}}+k_{1} k_{2} k_{3}\right) B_{1}$. Thus $\dot{\alpha}, \ddot{\alpha}, \dddot{\alpha}$ are linearly independent vectors, while $\dot{\alpha}, \ddot{\alpha}, \dddot{\alpha}, \dddot{\alpha}$ are not linearly independent. Moreover, all higher-order derivatives of α are linear combinations of $\dot{\alpha}, \ddot{\alpha}, \dddot{\alpha}$, so by using the MacLaurin expansion (3.1) it follows that α lies fully in a lightlike hyperplane π of E_{1}^{4}, spanned by $\{\dot{\alpha}(0), \ddot{\alpha}(0), \dddot{\alpha}(0)\}$. Therefore, we may assume that there exist points $p, q \in E_{1}^{4}$, such that α satisfies the equation of π given by $g(x(s)-p, q)=0$, where $q \in \pi^{\perp}$ is a null vector. Since q is a null vector perpendicular to B_{1}, it follows that $q=\lambda B_{1}, \lambda \in R_{0}$. Then $\dot{q}=\lambda k_{3} B_{1}=0$ and thus $k_{3} \equiv 0$.

Remark 3.1. Also by making a null rotation from one null tetrad to another null tetrad, we can make $k_{3} \equiv 0$. For more details, see [2].

Next, recall that a spacelike curve with a null principal normal is called a pseudo null spacelike curve. Such curves are characterized by the following theorem.
Theorem 3.5. A pseudo null spacelike unit speed curve α in E_{1}^{4} with curvatures $k_{1}>0, k_{2} \neq 0$ lies fully in the space E_{1}^{4}.

Proof. The Frenet formulas imply the equations $\dot{\alpha}=T, \ddot{\alpha}=N, \dddot{\alpha}=k_{2} B_{1}, \dddot{\alpha}=$ $k_{2} k_{3} N+\dot{k_{2}} B_{1}-k_{2}^{2} B_{2}$. Therefore, the vectors $\dot{\alpha}, \ddot{\alpha}, \dddot{\alpha}, \dddot{\alpha}$ are linearly independent. On the other hand, all higher order derivatives of α may be expressed as linear combinations of vectors $\dot{\alpha}, \ddot{\alpha}, \dddot{\alpha}, \dddot{\alpha}$. Thus by using the MacLaurin expansion (3.1) for α, we conclude that α lies fully in the space E_{1}^{4}, spanned by $\{\dot{\alpha}(0), \ddot{\alpha}(0), \dddot{\alpha}(0), \dddot{\alpha}(0)\}$.

Theorem 3.6. Let α be a spacelike unit speed curve in E_{1}^{4}, with a spacelike principal normal N and a spacelike binormal B_{1}. Then α has:
(i) $k_{1}=c_{1}, k_{2}=c_{2}, k_{3}=0, c_{1}, c_{2} \in R_{0}$ if and only if α can be parameterized by

$$
\begin{equation*}
\alpha(s)=\frac{1}{\lambda^{2}}\left(0, c_{2} \lambda s, c_{1} \sin (\lambda s), c_{1} \cos (\lambda s)\right), \quad \lambda^{2}=c_{1}^{2}+c_{2}^{2} \tag{3.2}
\end{equation*}
$$

(ii) $k_{1}=c_{1}, k_{2}=c_{2}, k_{3}=c_{3}, c_{1}, c_{2}, c_{3} \in R_{0}$ if and only if α can be parameterized by

$$
\begin{equation*}
\alpha(s)=\frac{1}{\lambda_{1}}\left(V_{1} \sinh \left(\lambda_{1} s\right)+V_{2} \cosh \left(\lambda_{1} s\right)\right)+\frac{1}{\lambda_{2}}\left(V_{3} \sin \left(\lambda_{2} s\right)-V_{4} \cos \left(\lambda_{2} s\right)\right) \tag{3.3}
\end{equation*}
$$

with $\lambda_{1}^{2}=\frac{-K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, \lambda_{2}^{2}=\frac{K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, K=c_{1}^{2}+c_{2}^{2}-c_{3}^{2}$, where $V_{1}, V_{2}, V_{3}, V_{4}$ are mutually orthogonal vectors satisfying the equations $g\left(V_{1}, V_{1}\right)=$ $-g\left(V_{2}, V_{2}\right)=\frac{\lambda_{2}^{2}-c_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}, g\left(V_{3}, V_{3}\right)=g\left(V_{4}, V_{4}\right)=\frac{\lambda_{1}^{2}+c_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}$.

Proof. (i) If α has constant curvatures, then by using the Frenet formulas we find $\dddot{T}+\left(c_{1}^{2}+c_{2}^{2}\right) \dot{T}=0$. Solving this equation, we easily obtain $T=$ $A+B \cos \left(\sqrt{c_{1}^{2}+c_{2}^{2}} s\right)+C \sin \left(\sqrt{c_{1}^{2}+c_{2}^{2}} s\right)$, where $A, B, C \in E_{1}^{4}$ are constant vectors. Next, the equation $g(T, T)=1$ implies that $g(B, B)=g(C, C)$, $g(A, B)=g(A, C)=g(B, C)=0, g(A, A)=1-g(B, B)$. On the other hand, the equation $g(\dot{T}, \dot{T})=c_{1}^{2}$ gives $g(B, B)=\frac{c_{1}^{2}}{c_{1}^{2}+c_{2}^{2}}$. Therefore, we may take $A=\left(0, \frac{c_{2}}{\sqrt{c_{1}^{2}+c_{2}^{2}}}, 0,0\right), B=\left(0,0, \frac{c_{1}}{\sqrt{c_{1}^{2}+c_{2}^{2}}}, 0\right), C=\left(0,0,0, \frac{c_{1}}{\sqrt{c_{1}^{2}+c_{2}^{2}}}\right)$ and up to isometries of E_{1}^{4} the curve α has the form (3.2).

Conversely, if α has the form (3.2), then it lies fully in a spacelike hyperplane of E_{1}^{4}, with the equation $x_{1}=0$. Then the Theorem 3.2 implies that $k_{3} \equiv 0$. Next, from the Frenet equations we get $g(\dot{T}, \dot{T})=k_{1}^{2}, g(\dot{N}, \dot{N})=k_{1}^{2}+k_{2}^{2}$. Since $\dot{T}=\ddot{\alpha}$ and $N=\frac{\ddot{\alpha}}{\|\ddot{\alpha}\|}$, we find $g(\dot{T}, \dot{T})=c_{1}^{2}, g(\dot{N}, \dot{N})=c_{1}^{2}+c_{2}^{2}$. Accordingly, $k_{1}=c_{1}$ and $k_{2}=c_{2}$.
(ii) First assume that α has constant curvatures different from zero. Then from the Frenet formulas we obtain the equation $\dddot{T}+\left(c_{1}^{2}+c_{2}^{2}-c_{3}^{2}\right) \ddot{T}-c_{1}^{2} c_{3}^{2} T=0$. Solving the previous equation, we find

$$
T=V_{1} \cosh \left(\lambda_{1} s\right)+V_{2} \sinh \left(\lambda_{1} s\right)+V_{3} \cos \left(\lambda_{2} s\right)+V_{4} \sin \left(\lambda_{2} s\right)
$$

where $V_{1}, V_{2}, V_{3}, V_{4} \in E_{1}^{4}$ are constant vectors, $\lambda_{1}^{2}=\frac{-K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, \lambda_{2}^{2}=$ $\frac{K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, K=c_{1}^{2}+c_{2}^{2}-c_{3}^{2}$. Next, the equation $g(T, T)=1$ implies $g\left(V_{1}, V_{1}\right)=-g\left(V_{2}, V_{2}\right), g\left(V_{3}, V_{3}\right)=g\left(V_{4}, V_{4}\right), g\left(V_{1}, V_{1}\right)+g\left(V_{3}, V_{3}\right)=1, g\left(V_{i}, V_{j}\right)=$ 0 for $i \neq j(i, j \in\{1,2,3,4\})$. Finally, by using the equation $g(\dot{T}, \dot{T})=c_{1}^{2}$, we get $g\left(V_{3}, V_{3}\right)=\frac{\lambda_{1}^{2}+c_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}$. Accordingly, α has the form (3.3).

Conversely, if α can be parameterized by (3.3), then it has spacelike principal normal N and spacelike binormal B_{1}, so that the Frenet formulas imply $g(\dot{T}, \dot{T})=k_{1}^{2}, g(\dot{N}, \dot{N})=k_{1}^{2}+k_{2}^{2}$. Since $\dot{T}=\ddot{\alpha}$ and $N=\frac{\ddot{\alpha}}{\|\ddot{\alpha}\|}$, we get $g(\dot{T}, \dot{T})=c_{1}^{2}, g(\dot{N}, \dot{N})=c_{1}^{2}+c_{2}^{2}$. Thus $k_{1}=c_{1}$ and $k_{2}=c_{2}$. Finally, by the Frenet equations we get $g\left(\dot{B_{1}}, \dot{B_{1}}\right)=k_{2}^{2}-k_{3}^{2}$, and on the other hand since $\dot{B}_{1}=\frac{1}{c_{2}}\left(\ddot{N}+c_{1}^{2} N\right)$ we obtain $g\left(\dot{B}_{1}, \dot{B}_{1}\right)=c_{2}^{2}-c_{3}^{2}$. Consequently, $k_{3}=c_{3}$.

Remark 3.2. The curve (3.2) lies on a circular cylinder in E_{1}^{4} with the equation $x_{3}^{2}+x_{4}^{2}=\frac{c_{1}^{2}}{\left(c_{1}^{2}+c_{2}^{2}\right)^{2}}$. The curve (3.3) lies on some hyperquadric in E_{1}^{4}. More precisely, if $c_{3}^{2}>c_{2}^{2}, c_{3}^{2}<c_{2}^{2}$, or $c_{3}^{2}=c_{2}^{2}$, then respectively α lies on pseudoRiemannian sphere with the equation $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\frac{c_{3}^{2}-c_{2}^{2}}{c_{1}^{2} c_{3}^{2}}$, pseudohyperbolic space with the same equation or light cone with the equation $-x_{1}^{2}+$
$x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=0$.
By the Theorem 3.3, all spacelike W -curves with a spacelike (timelike) principal normal N and a timelike (spacelike) binormal B_{1} which have $k_{3} \equiv 0$ lie fully in E_{1}^{3}, so their classification is given in [10]. In the next two theorems we consider the remaining cases and omite the proofs, since they are very similar with the proof of the Theorem 3.6.

Theorem 3.7. A spacelike unit speed curve α in E_{1}^{4} with a spacelike principal normal N and a timelike binormal B_{1} has $k_{1}=c_{1}, k_{2}=c_{2}, k_{3}=c_{3}, c_{1}, c_{2}$, $c_{3} \in R_{0}$ if and only if α can be parameterized by

$$
\begin{equation*}
\alpha(s)=\frac{1}{\lambda_{1}}\left(V_{1} \sinh \left(\lambda_{1} s\right)+V_{2} \cosh \left(\lambda_{1} s\right)\right)+\frac{1}{\lambda_{2}}\left(V_{3} \sin \left(\lambda_{2} s\right)-V_{4} \cos \left(\lambda_{2} s\right)\right) \tag{3.4}
\end{equation*}
$$

with $\lambda_{1}^{2}=\frac{-K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, \lambda_{2}^{2}=\frac{K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, K=c_{1}^{2}-c_{2}^{2}-c_{3}^{2}$, where V_{1}, V_{2}, V_{3}, V_{4} are mutually orthogonal vectors satisfying the equations $g\left(V_{1}, V_{1}\right)=$ $-g\left(V_{2}, V_{2}\right)=\frac{\lambda_{2}^{2}-c_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}, g\left(V_{3}, V_{3}\right)=g\left(V_{4}, V_{4}\right)=\frac{c_{1}^{2}+\lambda_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}$.

Remark 3.3. The curve (3.4) lies on pseudo-Riemannian sphere with the equation $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\frac{c_{2}^{2}+c_{3}^{2}}{c_{1}^{2} c_{3}^{2}}$.

Theorem 3.8. A spacelike unit speed curve α in E_{1}^{4} with a timelike principal normal N has $k_{1}=c_{1}, k_{2}=c_{2}, k_{3}=c_{3}, c_{1}, c_{2}, c_{3} \in R_{0}$ if and only if α can be parameterized by

$$
\begin{equation*}
\alpha(s)=\frac{1}{\lambda_{1}}\left(V_{1} \sinh \left(\lambda_{1} s\right)+V_{2} \cosh \left(\lambda_{1} s\right)\right)+\frac{1}{\lambda_{2}}\left(V_{3} \sin \left(\lambda_{2} s\right)-V_{4} \cos \left(\lambda_{2} s\right)\right) \tag{3.5}
\end{equation*}
$$

with $\lambda_{1}^{2}=\frac{-K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, \lambda_{2}^{2}=\frac{K+\sqrt{K^{2}+4 c_{1}^{2} c_{3}^{2}}}{2}, K=c_{3}^{2}-c_{1}^{2}-c_{2}^{2}$, where V_{1}, V_{2}, V_{3}, V_{4} are mutually orthogonal vectors satisfying the equations $g\left(V_{1}, V_{1}\right)=$ $-g\left(V_{2}, V_{2}\right)=\frac{\lambda_{2}^{2}+c_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}, g\left(V_{3}, V_{3}\right)=g\left(V_{4}, V_{4}\right)=\frac{\lambda_{1}^{2}-c_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}$.

Remark 3.4. The curve (3.5) lies on some hyperquadric in E_{1}^{4}. If $c_{2}^{2}>c_{3}^{2}$, $c_{2}^{2}<c_{3}^{2}, c_{2}^{2}=c_{3}^{2}$, then respectively α lies on pseudo-Riemannian sphere with the equation $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\frac{c_{2}^{2}-c_{3}^{2}}{c_{1}^{2} c_{3}^{2}}$, pseudo-hyperbolic space with the same equation or light cone with the equation $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=0$.

By the Theorem 3.4, a partially null spacelike curve α has $k_{3}(s)=0$ for each s. In the following theorem, we classify all partially null spacelike W -curves in E_{1}^{4}.

Theorem 3.9. A partially null spacelike unit speed curve α in E_{1}^{4} has $k_{1}=$ $c_{1} \in R_{0}, k_{2}=\mathrm{constant} \neq 0$ if and only if α is a part of a partially null spacelike
helix

$$
\begin{equation*}
\alpha(s)=\left(\text { as }, a s, \frac{1}{c_{1}} \sin \left(c_{1} s\right), \frac{1}{c_{1}} \cos \left(c_{1} s\right)\right), \quad a \in R_{0} \tag{3.6}
\end{equation*}
$$

Proof. First assume that α has non-zero constant curvatures. Then by the Frenet equations we find $\dddot{T}+c_{1}^{2} \dot{T}=0$. Solving this equation, we get $T=$ $V_{1}+V_{2} \cos \left(c_{1} s\right)+V_{3} \sin \left(c_{1} s\right)$, where $V_{1}, V_{2}, V_{3} \in E_{1}^{4}$ are constant vectors. Next, the equation $g(T, T)=1$ implies that $g\left(V_{1}, V_{1}\right)+g\left(V_{2}, V_{2}\right)=1, g\left(V_{1}, V_{2}\right)=$ $g\left(V_{1}, V_{3}\right)=g\left(V_{2}, V_{3}\right)=0, g\left(V_{2}, V_{2}\right)=g\left(V_{3}, V_{3}\right)$. Finally, by using the equation $g(\dot{T}, \dot{T})=c_{1}^{2}$, we obtain $g\left(V_{2}, V_{2}\right)=1$. Therefore, we may take $V_{1}=(a, a, 0,0$,$) ,$ $a \in R_{0}, V_{2}=(0,0,1,0), V_{3}=(0,0,0,1)$, so up to isometries of E_{1}^{4} the curve α has the form (3.6).

On the other hand, if α can be parameterized by (3.6), then we obtain that $\ddot{\alpha}=\left(0,0,-c_{1} \sin \left(c_{1} s\right), c_{1} \cos \left(c_{1} s\right)\right)$ and thus $g(\ddot{\alpha}, \ddot{\alpha})=c_{1}^{2}$. However, from the Frenet formulas we get $g(\dot{T}, \dot{T})=g(\ddot{\alpha}, \ddot{\alpha})=k_{1}^{2}$. It follows that $k_{1}=c_{1}$. Next, since $N=\frac{\ddot{\alpha}}{\|\ddot{\alpha}\|}$, we obtain that $\dddot{\alpha}=\left(0,0, c_{1}^{3} \sin \left(c_{1} s\right),-c_{1}^{3} \cos \left(c_{1} s\right)\right)=-c_{1}^{3} N$. However, by the Frenet equations we get $\dddot{\alpha}=-k_{1}^{3} N+k_{1} k_{2} B_{1}$. It follows that $k_{1} \dot{k_{2}}=0$ and therefore $k_{2}=$ constant $\neq 0$.

Remark 3.5. The curve (3.6) lies on a circular cylinder in E_{1}^{4} with the equation $x_{3}^{2}+x_{4}^{2}=\frac{1}{c_{1}^{2}}$.

Theorem 3.10. Let α be a pseudo null spacelike unit speed curve in E_{1}^{4}. Then a has:
(i) $k_{1}=1, k_{2}=c_{2}, k_{3}=0, c_{2} \in R_{0}$, if and only if α can be parameterized by

$$
\begin{equation*}
\alpha(s)=\frac{1}{\sqrt{2 c_{2}}}\left(\cosh \left(\sqrt{c_{2}} s\right), \sinh \left(\sqrt{c_{2}} s\right), \sin \left(\sqrt{c_{2}} s\right), \cos \left(\sqrt{c_{2}} s\right)\right) \tag{3.7}
\end{equation*}
$$

(ii) $k_{1}=1, k_{2}=c_{2}, k_{3}=c_{3}, c_{2}, c_{3} \in R_{0}$ if and only if α can be parameterized by
(3.8) $\alpha(s)=\frac{1}{\lambda_{1}}\left(V_{1} \sinh \left(\lambda_{1} s\right)+V_{2} \cosh \left(\lambda_{1} s\right)\right)+\frac{1}{\lambda_{2}}\left(V_{3} \sin \left(\lambda_{2} s\right)-V_{4} \cos \left(\lambda_{2} s\right)\right)$,
with $\lambda_{1}^{2}=K+\sqrt{K^{2}+c_{2}^{2}}, \lambda_{2}^{2}=-K+\sqrt{K^{2}+c_{2}^{2}}, K=c_{2} c_{3}$, where V_{1}, V_{2}, V_{3}, V_{4} are mutually orthogonal vectors satisfying the equations $g\left(V_{1}, V_{1}\right)=$ $-g\left(V_{2}, V_{2}\right)=\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}, g\left(V_{3}, V_{3}\right)=g\left(V_{4}, V_{4}\right)=\frac{\lambda_{1}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}$.

Proof. (i) First assume that α has $k_{1}=1, k_{2}=c_{2}, k_{3}=0$. Then by using the Frenet equations we find $\dddot{T}-c_{2}^{2} T=0$. Solving the previous equation, we obtain that

$$
T=V_{1} \cosh \left(\sqrt{c_{2}} s\right)+V_{2} \sinh \left(\sqrt{c_{2}} s\right)+V_{3} \cos \left(\sqrt{c_{2}} s\right)+V_{4} \sin \left(\sqrt{c_{2}} s\right)
$$

where $V_{1}, V_{2}, V_{3}, V_{4} \in E_{1}^{4}$ are constant vectors. Further, the equation $g(T, T)=$ 1 implies that $g\left(V_{1}, V_{1}\right)=-g\left(V_{2}, V_{2}\right), g\left(V_{3}, V_{3}\right)=g\left(V_{4}, V_{4}\right), g\left(V_{1}, V_{1}\right)+g\left(V_{3}, V_{3}\right)=$ $0, g\left(V_{i}, V_{j}\right)=0$ for $i \neq j,(i, j \in\{1,2,3,4\})$. Finally, by using the equation $g(\dot{T}, \dot{T})=0$, we find $g\left(V_{3}, V_{3}\right)=\frac{1}{2}$. Consequently, we may take $V_{1}=$ $\left(0, \frac{1}{\sqrt{2}}, 0,0\right), V_{2}=\left(\frac{1}{\sqrt{2}}, 0,0,0\right), V_{3}=\left(0,0, \frac{1}{\sqrt{2}}, 0\right), V_{4}=\left(0,0,0, \frac{1}{\sqrt{2}}\right)$. Accordingly, up to isometries of E_{1}^{4} the curve α has the form (3.7).

Conversely, if α can be parameterized by (3.7), then we find $g(\ddot{\alpha}, \ddot{\alpha})=0$ and therefore $k_{1}=1$. Next, we find $g(\dddot{\alpha}, \dddot{\alpha})=g(\dot{N}, \dot{N})=c_{2}^{2}$. However, the Frenet formulas give $g(\dot{N}, \dot{N})=k_{2}^{2}$. It follows that $k_{2}=c_{2}$. Finally, the Frenet equations imply $g\left(\dot{B}_{1}, \dot{B}_{1}\right)=-2 k_{2} k_{3}$ and on the other hand since $B_{1}=\frac{\dddot{\alpha}}{\|\ddot{\alpha}\|}$, we obtain that $g\left(\dot{B}_{1}, \dot{B}_{1}\right)=0$. Therefore, $k_{3}=0$.
(ii) Suppose that α has constant curvatures $k_{1}=1, k_{2}=c_{2}, k_{3}=c_{3}$. Then by the Frenet formulas we find $\dddot{T}-2 c_{2} c_{3} \ddot{T}-c_{2}^{2} T=0$. Solving this equation, we obtain

$$
T=V_{1} \cosh \left(\lambda_{1} s\right)+V_{2} \sinh \left(\lambda_{1} s\right)+V_{3} \cos \left(\lambda_{2} s\right)+V_{4} \sin \left(\lambda_{2} s\right)
$$

where $V_{1}, V_{2}, V_{3}, V_{4} \in E_{1}^{4}$ are constant vectors, $\lambda_{1}^{2}=K+\sqrt{K^{2}+c_{2}^{2}}, \lambda_{2}^{2}=-K+$ $\sqrt{K^{2}+c_{2}^{2}}, K=c_{2} c_{3}$. Next, the equation $g(T, T)=1$ implies that $g\left(V_{1}, V_{1}\right)=$ $-g\left(V_{2}, V_{2}\right), g\left(V_{3}, V_{3}\right)=g\left(V_{4}, V_{4}\right), g\left(V_{1}, V_{1}\right)+g\left(V_{3}, V_{3}\right)=1, g\left(V_{i}, V_{j}\right) \neq 0$ for $i \neq$ $j(i, j \in\{1,2,3,4\})$. Finally, from the equation $g(\dot{T}, \dot{T})=0$, we get $g\left(V_{1}, V_{1}\right)=$ $\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}}$. Consequently, α has the form (3.8).

On the other hand, if α can be parameterized by (3.8), then we find that $g(\ddot{\alpha}, \ddot{\alpha})=0$ and thus $k_{1}=1$. Further, we find that $g(\dddot{\alpha}, \dddot{\alpha})=c_{2}^{2}$ and from the Frenet formulas we get $g(\dot{N}, \dot{N})=k_{2}^{2}$. It follows that $k_{2}=c_{2}$. Finally, since $B_{1}=\frac{\dddot{\alpha}}{\|\ddot{\alpha}\|}$, we obtain $g\left(\dot{B_{1}}, \dot{B_{1}}\right)=-c_{2} c_{3}$. However, the Frenet equations imply $g\left(\dot{B}_{1}, \dot{B}_{1}\right)=-k_{2} k_{3}$ and consequently $k_{3}=c_{3}$.

Remark 3.6. The curve (3.7) lies on a light cone in E_{1}^{4} with the equation $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=0$. The curve (3.8) lies on some hyperquadric in E_{1}^{4}. If $c_{2} c_{3}>0$ or $c_{2} c_{3}<0$, then respectively α lies on pseudo-Riemannian sphere with the equation $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\frac{2 c_{3}}{c_{2}}$ or on pseudo-hyperbolic space with the same equation.

Finally, note that some of a W-curves are the curves of 2-type. The proof of the following theorem follows immediately from definition of 2-type curves.

Theorem 3.11. The curves (3.3), (3.4), (3.5) and (3.8) for which $\lambda_{1}, \lambda_{2} \in N$ are a 2-type curves. The curve (3.7) for which $\sqrt{c_{2}} \in N$ is a 2-type curve. The curves (3.2) and (3.6) for which respectively $\lambda \in N, c_{1} \in N$ are a null 2-type curves.

References

[1] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor 20(1969), 229-242.
[2] Bonnor, W. B., Curves with null normals in Minkowski space-time, "A random walk in relativity and cosmology", Wiley Easten Limited, 1985, 33-47.
[3] Chen, B. Y., A report on submanifolds of finite type, Soochow J. Math. 22(1996), 1-128.
[4] Chen, B. Y., Dillen, F., Verstraelen, L., Finite type space curves, Soochow J. Math. 12(1986), 1-10.
[5] Dillen, F., Petrović-Torgašev, M., Verstraelen, L., Vrancken, L., Classification of curves of Chen-type 2, Differential Geometry, in honor of R. Rosca, K. U. Leuven, Fac. of Science, Leuven, (1991), 101-106.
[6] Gluck, H., Higher curvatures of curves in Euclidean space, Am. Math. Monthly 73(1966), 699-704.
[7] O'Neill, B., "Semi-Riemannian Geometry", Academic Press, New York, 1983.
[8] Synge, J. L., Timelike helices in flat space-time, Proc. Roy. Irish Academy, A65, (1967), 27-42.
[9] Synge, J. L., "Relativity: the special theory", North-Holland publ. company, Amsterdam, 1972.
[10] Walrave, J., Curves and surfaces in Minkowski space, Doctoral thesis, K. U. Leuven, Fac. of Science, Leuven, (1995).

Received by the editors July 10, 2001

[^0]: ${ }^{1}$ Institute of Mathematics, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Yugoslavia, e-mail: miraptuis0.uis.kg.ac.yu, emilija\$uis0.uis.kg.ac.yu

