IDEALS AND DIVISIBILITY IN A RING WITH RESPECT TO A FUZZY SUBSET

A.K.Ray ${ }^{1}$, T.Ali ${ }^{1}$

Abstract

Ideals of a ring generated by a fuzzy subset and an element of a ring are defined and their properties are discussed. The notions of units, associates, prime element, irreducible element, etc. in classical ring theory are generalized with respect to a fuzzy subset and analogous results are obtained. Images and pre-images of translational invariant fuzzy subset under ring homomorphisms are studied.

AMS Mathematics Subject Classification (2000): 08A72
Key words and phrases:Translational invariant fuzzy subset

1. Introduction

The notion of fuzzy subset of a set was introduced by Zadeh [4]. Rosenfeld [3] introduced the concept of a fuzzy subgroup of a group and established many important properties. The notion of a fuzzy ideal of a ring was introduced by Liu [1]. Ray [2] introduced the concept of translational invariant fuzzy subset. The purpose of this paper is to generalize some of the classical results of ring theory using the notion of a translational invariant fuzzy subset.

2. Preliminaries

Throughout this paper R is an arbitrary ring with binary operations ' + ' and '.'. The operation '. ' is suppressed and indicated by juxtaposition. A fuzzy subset P of any set S is a mapping from S into $[0,1]$. Let ${ }^{*}{ }^{*}$ ' be a binary operation in S.

Definition 2.1. P is said to be left translational invariant with respect to ${ }^{*}$, if $P(x)=P(y) \Rightarrow P(a * x)=P(a * y) \forall x, y, \quad a \in S$.

Definition 2.2. P is said to be right translational invariant with respect to ** ' if $P(x)=P(y) \Rightarrow P(x * a)=P(y * a) \forall x, y, a \in S$.

Definition 2.3. P is said to be translational invariant with respect to ${ }^{*}$, if P is both left and right translational invariant with respect to *.

[^0]Remark 2.1. If P is commutative, i.e., $P(x * y)=P(y * x) \forall x, y \in S$, then P is left translational invariant if and only if P is right translational invariant.

Example 2.1. Consider the ring $Z_{6}=\{0,1,2,3,4,5\}$, the ring of integers modulo 6 .

Let P be a fuzzy subset of Z_{6} defined as follows:

$$
\begin{aligned}
& P(0)=P(3)=1 \\
& P(1)=P(4)=.5 \\
& P(2)=P(5)=.3
\end{aligned}
$$

It can be easily verified that P is a translational invariant fuzzy subset of Z_{6} with respect to addition and multiplication modulo 6 .

3. Ideals of a ring generated by an element and a fuzzy subset

Throughout this section P is a fuzzy subset of R satisfying $P(x)=P(-x) \forall x \in$ R.

Proposition 3.1. Suppose P is left translational invariant with respect to both ' + ' and '.'. Then for any $a \in R$, the set

$$
L(a, P)=\{r \in R: P(r)=P(x a), \text { for some } x \in R\}
$$

is a left ideal of R.
Proof. Let $s, r \in L(a, P)$.
Then $P(s)=P(x a)$ and $P(r)=P(y a)$ for some $x, y \in R$. Now

$$
\begin{equation*}
P(s)=P(x a) \Rightarrow P(s-r)=P(x a-r)=P(r-x a) \tag{i}
\end{equation*}
$$

Also

$$
\begin{equation*}
P(r)=P(y a) \Rightarrow P(r-s)=P(y a-s)=P(s-y a) \tag{ii}
\end{equation*}
$$

(i) and (ii) implies $P(r-x a)=P(s-y a) \Rightarrow P(r-s)=P((x-y) a)$. Thus $r-s \in L(a, P)$, since $x-y \in R$. Also for any $u \in R, P(u s)=P(u(x a))=$ $P((u x) a) \Rightarrow u s \in L(a, P)$, since $u x \in R$. Hence $L(a, P)$ is a left ideal of R.

Analogously we can prove:
Proposition 3.2. Suppose P is right translational invariant with respect to both ' + ' and '.' . Then for any $a \in R$, the set $R(a, P)=\{r \in R: P(r)=P(a x)$, for some $x \in R\}$ is a right ideal of R.

Remark 3.1. If P is commutative, then $L(a, P)=R(a, P) \forall a \in R$.

Remark 3.2. We observe that for any $a \in R$, the ideal $R a=\{r a: r \in R\}$ of R is contained in the left ideal $L(a, P)$. Also for any $a \in R$, the ideal $a R=$ \{ar: $r \in R\}$ of R is contained in the right ideal $R(a, P)$.

If R is a commutative ring with identity then the principal ideal $\langle a\rangle=$ $a R=R a$ is a subset of $L(a, P)=R(a, P)$.

Example 3.1. Let Z be the ring of integers. We define $P: Z \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
P(x) & =1, & & \text { if } x \text { is even } \\
& =.5, & & \text { otherwise. }
\end{aligned}
$$

Then $\langle 6\rangle=\{\ldots,-12,-6,0,6,12, \ldots\}$ and $L(6, P)=$ All even integers. We observe that $<6>\subsetneq L(6, P) \subsetneq Z$.

Definition 3.1. $L(a, P)$ is called left P-principal ideal of R generated by a and P, and $R(a, P)$ is called right P-principal ideal of R generated by a and P.

Definition 3.2. If $L(a, P)=R(a, P)$, then the ideal is denoted by $I(a, P)$ and is called P-principal ideal of R generated by a and P.

Definition 3.3. R is called P-principal ideal ring if P is commutative and every ideal of R is a P-principal ideal generated by some $a \in R$ and P.
Example 3.2. We consider Z_{2}, the ring of integers modulo 2. Let $P: Z_{2} \rightarrow$ $[0,1]$, such that $P(0)=1$ and $P(1)=.5$. Then Z_{2} is a P-principle ideal ring .

Definition 3.4. Let R be a ring with identity e and $P(0) \neq P(e)$. An element $a \in R$ with $P(a) \neq P(0)$ is called a P-unit of R if there exists an element $u \in R$ such that $P(u) \neq P(0)$ and $P(a u)=P(u a)=P(e)$.
Proposition 3.3. If R contains the identity e and a is a-unit of R, then $L(a, P)=R(a, P)=R$.

Proof. As a is a P-unit of R, there exists $u \in R$ such that $P(u) \neq P(0)$ and $P(a u)=P(u a)=P(e)$. Let $x \in R$. Then

$$
P(e)=P(a u) \Rightarrow P(e x)=P(a u x) \Rightarrow P(x)=P(a u x) \Rightarrow x \in R(a, P),
$$

since $u x \in R$. Therefore $R \subseteq R(a, P)$. Similarly, $R \subseteq L(a, P)$. Hence $L(a, P)=$ $R(a, P)=R$.

Proposition 3.4. Let $a, b \in R$. Then

$$
a \in L(b, P) \Rightarrow L(a, P) \subseteq L(b, P) \quad \text { and } \quad a \in R(b, P) \Rightarrow R(a, P) \subseteq R(b, P)
$$

Proof. Let $a \in L(b, P)$, then $P(a)=P(x b)$, for some $x \in R$. Let $r \in L(a, P)$.
Then $P(r)=P(y a)$ for some $y \in R$.
Now $P(a)=P(x b) \Rightarrow P(y a)=P(y x b) \Rightarrow P(r)=P(y x b) \Rightarrow r(L(b, P)$.
Hence $L(a, P) \subseteq L(b, P)$.
Similarly, we can prove $a \in R(b, P) \Rightarrow R(a, P) \subseteq R(b, P)$.

Remark 3.3. We observe that $L(0, P)=\{r \in R: P(r)=P(0)\}$.

Proposition 3.5. Let $a, b \in R$. Then $P(a)=P(b)$ implies $L(a, P)=L(b, P)$ and $R(a, P)=R(b, P)$.

Proof. Let $P(a)=P(b)$. Suppose $x \in L(a, P)$. Then $P(x)=P(r a)$ for some $r \in R$, so $P(x)=P(r b)$. Hence $x \in L(b, P)$. Thus $L(a, P) \subseteq L(b, P)$.

Next, let $y \in L(b, P)$. Then $P(y)=P(s b)$ for some $s \in R$, and so $P(y)=$ $P(s a)$. Hence $y \in L(a, P)$. Thus $L(b, P) \subseteq L(a, P)$. Consequently, $L(a, P)=$ $L(b, P)$. Similarly we can prove $R(a, P)=R(b, P)$.

In the next two sections R is assumed to be a commutative ring with the identity e and P is assumed to be a translational invariant fuzzy subset of R satisfying $P(x)=P(-x), \forall x \in R$. Henceforth, the ideal generated by an element a with respect to P will be denoted by $I(a, P)$.

4. P- divisors of zero, P-associates

Definition 4.1. An element $a \in R$ with $P(a) \neq P(0)$ is said to be a P-divisor of zero if there exists some $b \in R$ with $P(b) \neq P(0)$ such that $P(a b)=P(0)$.

Henceforth we shall assume that R contains no P-divisor of zero and $P(e) \neq$ $P(0)$. Let $S=\{a \in R: P(a) \neq P(0)\}$ 。

Definition 4.2. Let $a, b \in R$ and $P(a) \neq P(0)$. We say that a divides b with respect to P or a is a P-divisor of b, written as $(a / b)_{P}$, if there exists $c \in R$ such that $P(b)=P(a c)=P(c a)$.

Theorem 4.1. Let $a, b \in R$ and $P(a) \neq P(0)$. Then $(a / b)_{P}$ if and only if $I(b, P) \subseteq I(a, P)$.

Proof. Suppose that $(a / b)_{P}$. Then $P(b)=P(c a)$ for some $c \in R$, which implies that $b \in I(a, P)$ and therefore $I(b, P) \subseteq I(a, P)$. Conversely, let $I(b, P) \subseteq$ $I(a, P)$. As R contains identity $e, P(b)=P(e b) \Rightarrow b \in I(b, P) \subseteq I(a, P)$. Therefore, $P(b)=P(c a)$, for some $c \in R$. Also $P(a) \neq P(0)$. Hence $(a / b)_{P}$.

Definition 4.3. Let $a, b \in S$. We say that a and b are P-associates if $(a / b)_{P}$ and $(b / a)_{P}$.

Proposition 4.2. Let $a, b \in S$. Then a, b are P-associates if and only if $P(a)=$ $P(b u)$ for some P-unit $u \in R$.

Proof. Let a, b be P-associates. Then $(a / b)_{P}$ and $(b / a)_{P}$. So $P(b)=P(a d)$ and $P(a)=P(b c)$ for some $c, d \in R$. Hence
$P(a)=P(b c)=P(a d c)$
$\Rightarrow P(a-a d c)=P(0)$
$\Rightarrow P(a(e-d c))=P(0)$
$\Rightarrow P(e-d c)=P(0)$, since $P(a) \neq P(0)$ and R is without P-divisor of zero.
$\Rightarrow P(d c)=P(e)$
$\Rightarrow c$ and d are P -units.
Hence $P(a)=P(b c)$, where c is a P-unit in R. Conversely, suppose that $P(a)=$ $P(b u)$, for some P-unit u in R. Now, $P(a)=P(b u) \Rightarrow(b / a)_{P}$. Since u is a P-unit, there exists $v \in S$ such that $P(u v)=P(v u)=P(e)$. Hence $P(a)=$ $P(b u) \Rightarrow P(a v)=P(b u v)=P(b e)=P(b)$. This shows that $(a / b)_{P}$. Thus we find $(a / b)_{P}$ and $(b / a)_{P}$. Hence a, b are P-associates.

Corollary 4.3. Let $a, b \in S$. If a, b are P-associates then $I(a, P)=I(b, P)$.
Proof. Suppose a and b are P-associates. Then by Proposition 4.2, $P(a)=$ $P(u b)$, for some P-unit $u \in R$. Then, $a \in I(b, P)$, and so $I(a, P) \subseteq I(b, P)$. Since u is a P-unit of R, and $P(a) \neq P(0)$ there exists $v \in S$ such that $P(u v)=P(e)=$ $P(v u)$. Hence $P(b u v)=P(b e)=P(b) \Rightarrow P(a v)=P(b)$ and so $b \in I(a, P)$. Therefore $I(b, P) \subseteq I(a, P)$.

Remark 4.1. The relation of being P-associates is an equivalence relation on S.

Definition 4.4. Suppose $a \in S$ and a is not a P-unit. Then a is said to be P-irreducible if $P(a)=P(b c)$ implies either b or c is a P-unit.

Definition 4.5. Suppose $a \in S$ and a not a P-unit. Then a is said to be P prime if $(a / b c)_{P}$ implies $(a / b)_{P}$ or $(a / c)_{P}$.

Proposition 4.4. In the ring R any P-prime is P-irreducible.
Proof. Let a be P-prime. Suppose $P(a)=P(b c)$. We can write $P(b c)=P(a e)$. Hence $(a / b c)_{P}$. Since a is P-prime, either $(a / b)_{P}$ or $(a / c)_{P}$.

Suppose $(a / b)_{P}$. Then $P(b)=P(a d)$ for some $d \in R$. Now

$$
\begin{aligned}
& P(a)=P(b c)=P(a d c) \\
\Rightarrow & P(a(e-d c))=P(0) \\
\Rightarrow & P(e-d c)=P(0), \quad \text { since } P(a) \neq P(0) \text { and } R \text { is without P-divisor of zero. } \\
\Rightarrow & P(d c)=P(e) \\
\Rightarrow & c \text { and } d \text { are } \mathrm{P} \text {-units. }
\end{aligned}
$$

Similar is the case if $(a / b c)_{P}$.
Hence a is P-irreducible.

Theorem 4.5. Suppose $a \in S$ and a is not a P-unit. Then
(i) The element a is P-irreducible if and only if the ideal $I(a, P)$ is maximal among all ideals $I(b, P)$, where $b \in R$ and $P(a) \neq P(b)$.
(ii) Let $a \in S$ and $I(a, P) \neq R$. Then a is P-prime if and only if the ideal $I(a, P)$ is a non-zero prime ideal.

Proof. (i) Suppose a is P-irreducible. Let $I(a, P) \subseteq I(b, P) \neq R$ for some $b \in R$ with $P(b) \neq P(0)$. As R contains the identity , $a \in I(a, P) \subseteq I(b, P)$ and so $P(a)=P(c b)$ for some $c \in R$. Since a is P-irreducible, either b is a P-unit or c is a P-unit. Since $I(b, P) \neq R$, by Proposition 3.3, we find that b is not a P-unit. Hence c is a P-unit . So there exists $u \in S$ such that $P(c u)=P(u c)=P(e) \Rightarrow P(b c u)=P(b e)=P(b)$. Again, $P(a)=P(c b)$ implies $P(a u)=P(c b u)=P(b c u)=P(b)$. Hence $P(b)=P(a u)$. This implies $b \in I(a, P)$ and so $I(b, P) \subseteq I(a, P)$. Consequently, $I(b, P)=I(a, P)$. Thus $I(a, P)$ is maximal.

Conversely, assume $I(a, P)$ is maximal. Assume that $P(a)=P(c d)$ where $c, d \in R$. Then $a \in I(d, P)$ and so $I(a, P) \subseteq I(d, P)$. Hence by our hypothesis either $I(a, P)=I(d, P)$ or $I(d, P)=R$. If $I(a, P)=I(d, P)$, then $d \in I(d, P)=$ $I(a, P)$. Therefore $P(d)=P(r a)$ for some $r \in R$. This gives $P(c d)=P(c r a)$. Thus we have $P(a)=P(c r a)$ and so $P(a(e-c r))=P(0)$. Since R is without Pdivisors of zero and $P(a) \neq P(0)$, we have $P(e-c r)=P(0)$, i.e., $P(c r)=P(e)$. This shows that c is a P-unit. If $I(d, P)=R$, then as $e \in R, e \in I(d, P)=R$. Hence $P(e)=P(d s)$ for some $s \in R$. Thus $P(a)=P(d c)$ implies either c or d is a P -unit. Hence a is P -irreducible. This proves (i).
(ii) Suppose a is P-prime in R. Let $x, y \in R$ and $x y \in I(a, P)$. Then $P(x y)=$ $P(a r)$ for some $r \in R$. Which shows that $(a / x y)_{P}$. As a is P-prime, either $(a / x)_{P}$ or $(a / y)_{P}$. If $(a / x)_{P}$, then $P(x)=P(a c)$ for some $c \in R$, and so $x \in I(a, P)$. If $(a / y)_{P}$, then $P(y)=P(a d)$ for some $d \in R$, and so $y \in I(a, P)$. Thus $x y \in I(a, P)$ implies either $x \in I(a, P)$ or $y \in I(a, P)$. Since $P(a) \neq P(0)$, we must have $a \neq 0$. As $e \in R$, it follows that $a \in I(a, P)$. Hence $I(a, P) \neq\{0\}$. Consequently $I(a, P)$ is a non-zero prime ideal of R. Conversely, let $I(a, P)$ be a non-zero prime ideal of R. Let $x, y \in R$ and $(a / x y)_{P}$. Then $P(x y)=P(a c)=$ $P(c a)$, for some $c \in R$. Hence $x y \in I(a, P)$. Since $I(a, P)$ is a prime ideal of R, either $x \in I(a, P)$ or $y \in I(a, P)$.

If $x \in I(a, P)$, then $P(x)=P(d a)$ for some $d \in R$. Hence $(a / x)_{P}$.
If $y \in I(a, P)$, then $P(y)=P(r a)$ for some $r \in R$. Hence $(a / y)_{P}$. Thus $(a / x y)_{P}$ implies either $(a / x)_{P}$ or $(a / y)_{P}$. Hence a is P-prime.

5. Images and inverse images under ring homomorphisms

In this section we discuss the invariance of translational invariace property of a fuzzy subset under ring homomorphism. Also we study the algebraic nature of P-ideals under ring homomorphism.

Definition 5.1. Let f be a function from a ring R into a ring R^{\prime} and let P be a fuzzy subset of R. Then P is called f-invariant if $f(x)=f(y) \Rightarrow P(x)=P(y)$, where $x, y \in R$.

Proposition 5.1. Let f be a homomorphism of a ring R into a ring R^{\prime}. Let Q be a translational invariant fuzzy subset of R^{\prime}. Then $f^{-1}(Q)$ is a translational invariant fuzzy subset of R.

Proof. Let $a, b \in R$ and $f^{-1}(Q)(a)=f^{-1}(Q)(b)$. Then $Q(f(a))=Q(f(b))$. Let $x \in R$ and $f(x)=y \in R^{\prime}$. Since Q is a translational invariant fuzzy subset of R^{\prime} and $Q(f(a))=Q(f(b))$, we have $Q(f(a)+y)=Q(f(b)+y)$ and $Q(f(a) y)=$ $Q(f(b) y), Q(y f(a))=Q(y f(b))$. Now $Q(f(a)+y)=Q(f(b)+y)$ implies $Q(f(a)+$ $f(x))=Q(f(b)+f(x))$, and so $Q(f(a+x))=Q(f(b+x))$. Hence $f^{-1}(Q)(a+$ $x)=f^{-1}(Q)(b+x)$. On the other hand, from $Q(f(a) y)=Q(f(b) y)$ and $Q(y f(a))=Q(y f(b))$, we get $Q(f(a) f(x))=Q(f(b) f(x))$ and $Q(f(x) f(a))=$ $Q(f(x) f(b))$, and so $Q(f(a x))=Q(f(b x))$ and $Q(f(x a))=Q(f(x b))$. Thus we have $f^{-1}(Q)(a x)=f^{-1}(Q)(b x)$ and $f^{-1}(Q)(x a)=f^{-1}(Q)(x b) \forall a, b, x \in R$. Consequently $f^{-1}(Q)$ is translational invariant fuzzy subset of R.

Proposition 5.2 Let f be a homomorphism of a ring R onto a ring R^{\prime}. Let P be a translational invariant fuzzy subset of R. If P is f-invariant, then $f(P)$ is a translational invariant fuzzy subset of R^{\prime}.

Proof. Suppose P is f-invariant. Then $\forall x, y \in R, f(x)=f(y)$ implies $P(x)=$ $P(y)$. Now for any $a \in R^{\prime}, f(P)(a)=\sup \{P(x): x \in R, f(x)=a\}$, since f is onto. Let $x, y \in R$ and $f(x)=a, f(y)=a$. Then $f(x)=f(y)$, and so $P(x)=P(y)$. Hence $f(P)(a)=P(x)$, where $x \in R$ and $f(x)=a$. Thus $\forall a \in R^{\prime}$, $f(P)(a)=P(x)$, where $x \in R$ and $f(x)=a$. Now, let $a, b \in R^{\prime}$, and $f(P)(a)=$ $f(P)(b)$. Then $P(x)=P(y)$, where $x, y \in R$, and $f(x)=a, f(y)=b$. Let $c \in R^{\prime}$ be such that $f(z)=c$, where $z \in R$. Then, $a+c=f(x)+f(z)=f(x+z)$ and $b+c=f(y)+f(z)=f(y+z)$. Hence $f(P)(a+c)=P(x+z)$ and $f(P)(b+c)=P(y+z)$. Again, $a c=f(x) f(z)=f(x z), c a=f(z) f(x)=f(z x)$, $b c=f(y) f(z)=f(y z)$, and $c b=f(z) f(y)=f(z y)$.

Hence $f(P)(a c)=P(x z), f(P)(c a)=P(z x), f(P)(b c)=P(y z)$, and $f(P)(c b)=P(z y)$. Since P is translational invariant and $P(x)=P(y)$, we have $P(x+z)=P(y+z), P(x z)=P(y z)$, and $P(z x)=P(z y)$. Hence $f(P)(a+c)=f(P)(b+c), f(P)(a c)=f(P)(b c)$, and $f(P)(c a)=f(P)(c b)$. Thus if $a, b \in R^{\prime}$ and $f(P)(a)=f(P)(b)$, then $f(P)(a+c)=f(P)(b+c)$, $f(P)(a c)=f(P)(b c)$, and $f(P)(c a)=f(P)(c b) \forall c \in R^{\prime}$. Hence $f(P)$ is a translational invariant fuzzy subset of R^{\prime}.

Theorem 5.3. Let f be a homomorphism of a ring R onto a ring R^{\prime} and P be a translational invariant fuzzy subset of R. If P is f-invariant then,

$$
f(I(a, P))=I(f(a), f(P)), \quad \forall a \in R .
$$

Proof. Suppose P is f-invariant. Let $y \in I(f(a), f(P))$. Then $f(P)(y)=$ $f(P)(s f(a))$ for some $s \in R^{\prime}$. Since $y, s \in R^{\prime}$ and f is onto, there exist $x, r \in$ R such that $f(x)=y$ and $f(r)=s$. Thus $f(P) f(x)=f(P)(f(r) f(a))=$ $f(P)(f(r a))$. Since P is translational invariant, by what we have proved in Proposition 5.2, we get $f(P)(f(x))=P(x)$ and $f(P)(f(r a))=P(r a)$. Thus $P(x)=P(r a)$, which implies $x \in I(a, P)$, and so $f(x) \in f(I(a, P))$, i.e., $y \in$ $f(I(a, P))$. Consequently, $I(f(a), f(P)) \subseteq f(I(a, P))$. Again, let $y \in f(I(a, P))$. Then there exists $x \in I(a, P)$ such that $f(x)=y$. Also, $x \in I(a, P)$ implies $P(x)=P(a r)$ for some $r \in R$. Now,

$$
\begin{aligned}
f(P)(y) & =\sup \left\{P(x): x \in f^{-1}(y)\right\} \\
& =P(x), \text { since } P \text { is f-invariant } \\
& =P(\text { ar }) .
\end{aligned}
$$

Also, if $f(r)=s$ we have $f(P)(f(a) s)=f(P)(f(a) f(r))=f(P)(f(a r))=$ $\sup \left\{P\left(x^{\prime}\right)\right.$, such that $\left.x^{\prime} \in f^{-1}(f(a r))\right\}=P(a r)$, since P is f-invariant. Thus $f(P)(y)=f(P)(f(a) s)$ which implies $y \in I(f(a), f(P))$. Hence $f(I(a, P)) \subseteq$ $I(f(a), f(P)), a \in R$. Consequently, $f(I(a, P))=I(f(a), f(P)), a \in R$.

Proposition 5.4. Let f be a homomorphism of a ring R onto a ring R^{\prime}. Let Q be a translational invariant fuzzy subset of S. Let $a^{\prime} \in R^{\prime}$. Then $\forall a, b \in f^{-1}\left(a^{\prime}\right)$, $I\left(a, f^{-1}(Q)\right)=I\left(b, f^{-1}(Q)\right)$, provided $f^{-1}\left(a^{\prime}\right)$ contains more than one element.

Proof. Let $x \in I\left(a, f^{-1}(Q)\right)$. Then $f^{-1}(Q)(x)=f^{-1}(Q)(r a)$ for some $r \in R$ and so $f^{-1}(Q)(x)=Q(f(r a))$. Thus $f^{-1}(Q)(x)=Q(f(a) f(r))$. Since $a, b \in f^{-1}\left(a^{\prime}\right)$, $f(a)=f(b)=a^{\prime}$ and hence we have $f^{-1}(Q)(x)=Q(f(b) f(r))=Q(f(b r))=$ $f^{-1}(Q)(b r)$. This shows that $x \in I\left(b, f^{-1}(Q)\right)$. Hence $I\left(a, f^{-1}(Q)\right) \subseteq I\left(b, f^{-1}(Q)\right)$. Now let $y \in I\left(b, f^{-1}(Q)\right)$. Then $f^{-1}(Q)(y)=f^{-1}(Q)\left(b r^{\prime}\right)$ for some $r^{\prime} \in R$, and so $f^{-1}(Q)(y)=Q\left(f\left(b r^{\prime}\right)\right)=Q\left(f(b) f\left(r^{\prime}\right)\right)$. Since $a, b \in f^{-1}\left(a^{\prime}\right), f(a)=a^{\prime}=$ $f(b)$ and hence we have $f^{-1}(Q)(y)=Q\left(f(a) f\left(r^{\prime}\right)\right)=Q\left(f\left(a r^{\prime}\right)\right)=f^{-1}(Q)\left(a r^{\prime}\right)$. This shows that $y \in I\left(a, f^{-1}(Q)\right)$. Hence $I\left(b, f^{-1}(Q)\right) \subseteq I\left(a, f^{-1}(Q)\right)$. Consequently, $I\left(a, f^{-1}(Q)\right)=I\left(b, f^{-1}(Q)\right) \forall a, b \in f^{-1}\left(a^{\prime}\right)$.

Theorem 5.5. Let f be an isomomorphism of a ring R onto a ring R^{\prime}. Let Q be a translational invariant fuzzy subset of R^{\prime}. Then

$$
I\left(f^{-1}(y), f^{-1}(Q)\right)=f^{-1}(I(y, Q)) \quad \forall y \in R^{\prime}
$$

Proof. Let $x \in I\left(f^{-1}(y), f^{-1}(Q)\right)$. Then

$$
\begin{aligned}
f^{-1}(Q)(x) & =f^{-1}(Q)\left(f^{-1}(y) r\right) \quad \text { for some } r \in R . \\
& =f^{-1}(Q)\left(f^{-1}(y) f^{-1}(s)\right), \quad \text { where } s \in R^{\prime} \quad \text { such that } f(r)=s . \\
\Rightarrow Q(f(x)) & =f^{-1}(Q)\left(f^{-1}(y s)\right), \quad \text { since } f \text { is bijective. } \\
& =Q\left(f\left(f^{-1}(y s)\right)\right. \\
& =Q(y s) \\
\Rightarrow f(x) & \in I(y, Q) \\
\Rightarrow x \in & f^{-1}(I(y, Q))
\end{aligned}
$$

Hence $I\left(f^{-1}(y), f^{-1}(Q)\right) \subseteq f^{-1}(I(y, Q)) \quad \forall y \in R^{\prime}$. Again, let $a \in f^{-1}(I(y, Q))$ then $f(a) \in I(y, Q) \Rightarrow Q(f(a))=Q(y s)$, for some $s \in R^{\prime}$. Also, $y, s \in R^{\prime}$ and f is onto implies there exist $x, r \in R$ such that $f(x)=y$ and $f(r)=s$. Now ,$Q(f(a))=Q(y s) \Rightarrow Q(f(a))=Q(f(x) f(r))=Q(f(x r)) \Rightarrow f^{-1}(Q)(a)=$ $f^{-1}(Q)(x r)=f^{-1}(Q)\left(f^{-1}(y) r\right)$ which implies $a \in I\left(f^{-1}(y), f^{-1}(Q)\right)$. Thus, $f^{-1}(I(y, Q)) \subseteq I\left(f^{-1}(y), f^{-1}(Q)\right), \forall y \in R^{\prime}$. Consequently, $I\left(f^{-1}(y), f^{-1}(Q)\right)=$ $f^{-1}(I(y, Q)), \forall y \in R^{\prime}$.

Acknowledgement: The authors express their sincere gratitude to the referee for his constructive comments and valuable suggestions.

References

[1] Liu, W.J., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set and Systems 8 (1982), 133-139.
[2] Ray, A.K., Quotient group of a group generated by a subgroup and a fuzzy subset, The Journal of Fuzzy Mathematics Vol. 7 , No. 2 (1999), 459-463.
[3] Rosenfeld, A., Fuzzy Groups, J. Math. Anal. Appl. 35(1971), 512-517.
[4] Zadeh, L.A., Fuzzy Sets, Inform. And Control 8 (1965), 338-353.

Received by the editors August 29, 2001

[^0]: ${ }^{1}$ Dibrugarh University, Dibrugarh - 4, Assam, India, Department of Mathematics, Dibrugarh University, Dibrugarh - 4, Assam, India

