IDEALS AND DIVISIBILITY IN A RING WITH RESPECT TO A FUZZY SUBSET

$A.K.Ray^1$, $T.Ali^1$

Abstract. Ideals of a ring generated by a fuzzy subset and an element of a ring are defined and their properties are discussed. The notions of units, associates, prime element, irreducible element, etc. in classical ring theory are generalized with respect to a fuzzy subset and analogous results are obtained . Images and pre-images of translational invariant fuzzy subset under ring homomorphisms are studied.

AMS Mathematics Subject Classification (2000): 08A72 Key words and phrases:Translational invariant fuzzy subset

1. Introduction

The notion of fuzzy subset of a set was introduced by Zadeh [4]. Rosenfeld [3] introduced the concept of a fuzzy subgroup of a group and established many important properties. The notion of a fuzzy ideal of a ring was introduced by Liu [1]. Ray [2] introduced the concept of translational invariant fuzzy subset. The purpose of this paper is to generalize some of the classical results of ring theory using the notion of a translational invariant fuzzy subset.

2. Preliminaries

Throughout this paper R is an arbitrary ring with binary operations ' + ' and '. '. The operation '. ' is suppressed and indicated by juxtaposition. A fuzzy subset P of any set S is a mapping from S into [0, 1]. Let ' * ' be a binary operation in S.

Definition 2.1. *P* is said to be left translational invariant with respect to '*' if $P(x) = P(y) \Rightarrow P(a * x) = P(a * y) \forall x, y, a \in S.$

Definition 2.2. *P* is said to be right translational invariant with respect to '* ' if $P(x) = P(y) \Rightarrow P(x * a) = P(y * a) \quad \forall x, y, a \in S.$

Definition 2.3. *P* is said to be translational invariant with respect to '*' if *P* is both left and right translational invariant with respect to *.

 $^{^1 \}rm Dibrugarh$ University, Dibrugarh - 4, Assam, India, Department of Mathematics, Dibrugarh University, Dibrugarh - 4, Assam, India

Remark 2.1. If P is commutative, i.e., $P(x * y) = P(y * x) \quad \forall x, y \in S$, then P is left translational invariant if and only if P is right translational invariant.

Example 2.1. Consider the ring $Z_6 = \{0, 1, 2, 3, 4, 5\}$, the ring of integers modulo 6.

Let P be a fuzzy subset of Z_6 defined as follows:

$$P(0) = P(3) = 1$$

$$P(1) = P(4) = .5$$

$$P(2) = P(5) = .3$$

It can be easily verified that P is a translational invariant fuzzy subset of Z_6 with respect to addition and multiplication modulo 6.

3. Ideals of a ring generated by an element and a fuzzy subset

Throughout this section P is a fuzzy subset of R satisfying $P(x) = P(-x) \quad \forall x \in \mathbb{R}.$

Proposition 3.1. Suppose P is left translational invariant with respect to both ' + ' and '. '. Then for any $a \in R$, the set

$$L(a, P) = \{r \in R : P(r) = P(xa), \text{ for some } x \in R\}$$

is a left ideal of R.

Proof. Let $s, r \in L(a, P)$. Then P(s) = P(xa) and P(r) = P(ya) for some $x, y \in R$. Now

(i)
$$P(s) = P(xa) \Rightarrow P(s-r) = P(xa-r) = P(r-xa)$$

Also

(*ii*)
$$P(r) = P(ya) \Rightarrow P(r-s) = P(ya-s) = P(s-ya)$$

(i) and (ii) implies $P(r - xa) = P(s - ya) \Rightarrow P(r - s) = P((x - y)a)$. Thus $r - s \in L(a, P)$, since $x - y \in R$. Also for any $u \in R$, $P(us) = P(u(xa)) = P((ux)a) \Rightarrow us \in L(a, P)$, since $ux \in R$. Hence L(a, P) is a left ideal of R. \Box

Analogously we can prove:

Proposition 3.2. Suppose P is right translational invariant with respect to both '+ ' and '. '. Then for any $a \in R$, the set $R(a, P) = \{r \in R : P(r) = P(ax), for some x \in R\}$ is a right ideal of R.

Remark 3.1. If P is commutative , then $L(a, P) = R(a, P) \ \forall a \in R$.

Remark 3.2. We observe that for any $a \in R$, the ideal $Ra = \{ra : r \in R\}$ of R is contained in the left ideal L(a, P). Also for any $a \in R$, the ideal $aR = \{ar : r \in R\}$ of R is contained in the right ideal R(a, P).

If R is a commutative ring with identity then the principal ideal $\langle a \rangle = aR = Ra$ is a subset of L(a, P) = R(a, P).

Example 3.1. Let Z be the ring of integers. We define $P : Z \to [0, 1]$ as follows:

$$P(x) = 1$$
, if x is even
= .5, otherwise.

Then $< 6 >= \{..., -12, -6, 0, 6, 12, ...\}$ and L(6, P) =All even integers. We observe that $< 6 > \subseteq L(6, P) \subseteq Z$.

Definition 3.1. L(a, P) is called left *P*-principal ideal of *R* generated by *a* and *P*, and R(a, P) is called right *P*-principal ideal of *R* generated by *a* and *P*.

Definition 3.2. If L(a, P) = R(a, P), then the ideal is denoted by I(a, P) and is called P-principal ideal of R generated by a and P.

Definition 3.3. *R* is called *P*-principal ideal ring if *P* is commutative and every ideal of *R* is a *P*-principal ideal generated by some $a \in R$ and *P*.

Example 3.2. We consider Z_2 , the ring of integers modulo 2. Let $P : Z_2 \rightarrow [0, 1]$, such that P(0) = 1 and P(1) = .5. Then Z_2 is a P-principle ideal ring.

Definition 3.4. Let R be a ring with identity e and $P(0) \neq P(e)$. An element $a \in R$ with $P(a) \neq P(0)$ is called a P-unit of R if there exists an element $u \in R$ such that $P(u) \neq P(0)$ and P(au) = P(ua) = P(e).

Proposition 3.3. If R contains the identity e and a is a P-unit of R, then L(a, P) = R(a, P) = R.

Proof. As a is a P-unit of R, there exists $u \in R$ such that $P(u) \neq P(0)$ and P(au) = P(ua) = P(e). Let $x \in R$. Then

$$P(e) = P(au) \Rightarrow P(ex) = P(aux) \Rightarrow P(x) = P(aux) \Rightarrow x \in R(a, P),$$

since $ux \in R$. Therefore $R \subseteq R(a, P)$. Similarly, $R \subseteq L(a, P)$. Hence L(a, P) = R(a, P) = R.

Proposition 3.4. Let $a, b \in R$. Then

 $a \in L(b, P) \Rightarrow L(a, P) \subseteq L(b, P)$ and $a \in R(b, P) \Rightarrow R(a, P) \subseteq R(b, P)$.

Proof. Let $a \in L(b, P)$, then P(a) = P(xb), for some $x \in R$. Let $r \in L(a, P)$. Then P(r) = P(ya) for some $y \in R$.

Now $P(a) = P(xb) \Rightarrow P(ya) = P(yxb) \Rightarrow P(r) = P(yxb) \Rightarrow r(L(b, P))$. Hence $L(a, P) \subseteq L(b, P)$.

Similarly, we can prove $a \in R(b, P) \Rightarrow R(a, P) \subseteq R(b, P)$.

Remark 3.3. We observe that $L(0, P) = \{r \in R : P(r) = P(0)\}$.

Proposition 3.5. Let $a, b \in R$. Then P(a) = P(b) implies L(a, P) = L(b, P)and R(a, P) = R(b, P).

Proof. Let P(a) = P(b). Suppose $x \in L(a, P)$. Then P(x) = P(ra) for some $r \in R$, so P(x) = P(rb). Hence $x \in L(b, P)$. Thus $L(a, P) \subseteq L(b, P)$.

Next, let $y \in L(b, P)$. Then P(y) = P(sb) for some $s \in R$, and so P(y) = P(sa). Hence $y \in L(a, P)$. Thus $L(b, P) \subseteq L(a, P)$. Consequently, L(a, P) = L(b, P). Similarly we can prove R(a, P) = R(b, P).

In the next two sections R is assumed to be a commutative ring with the identity e and P is assumed to be a translational invariant fuzzy subset of R satisfying $P(x) = P(-x), \forall x \in R$. Henceforth, the ideal generated by an element a with respect to P will be denoted by I(a, P).

4. P- divisors of zero, P-associates

Definition 4.1. An element $a \in R$ with $P(a) \neq P(0)$ is said to be a P-divisor of zero if there exists some $b \in R$ with $P(b) \neq P(0)$ such that P(ab) = P(0).

Henceforth we shall assume that R contains no P-divisor of zero and $P(e) \neq P(0)$. Let $S = \{a \in R : P(a) \neq P(0)\}$.

Definition 4.2. Let $a, b \in R$ and $P(a) \neq P(0)$. We say that a divides b with respect to P or a is a P- divisor of b, written as $(a/b)_P$, if there exists $c \in R$ such that P(b) = P(ac) = P(ca).

Theorem 4.1. Let $a, b \in R$ and $P(a) \neq P(0)$. Then $(a/b)_P$ if and only if $I(b, P) \subseteq I(a, P)$.

Proof. Suppose that $(a/b)_P$. Then P(b) = P(ca) for some $c \in R$, which implies that $b \in I(a, P)$ and therefore $I(b, P) \subseteq I(a, P)$. Conversely, let $I(b, P) \subseteq I(a, P)$. As R contains identity $e, P(b) = P(eb) \Rightarrow b \in I(b, P) \subseteq I(a, P)$. Therefore, P(b) = P(ca), for some $c \in R$. Also $P(a) \neq P(0)$. Hence $(a/b)_P$. \Box

Definition 4.3. Let $a, b \in S$. We say that a and b are P-associates if $(a/b)_P$ and $(b/a)_P$.

Proposition 4.2. Let $a, b \in S$. Then a, b are *P*-associates if and only if P(a) = P(bu) for some *P*-unit $u \in R$.

Proof. Let a, b be P-associates. Then $(a/b)_P$ and $(b/a)_P$. So P(b) = P(ad) and P(a) = P(bc) for some $c, d \in R$. Hence

$$\begin{split} P(a) &= P(bc) = P(adc) \\ \Rightarrow P(a - adc) &= P(0) \\ \Rightarrow P(a(e - dc)) &= P(0) \\ \Rightarrow P(e - dc) &= P(0), \text{ since } P(a) \neq P(0) \text{ and } R \text{ is without P-divisor of zero.} \\ \Rightarrow P(dc) &= P(e) \\ \Rightarrow c \text{ and } d \text{ are P -units.} \end{split}$$

Hence P(a) = P(bc), where c is a P-unit in R. Conversely, suppose that P(a) = P(bu), for some P-unit u in R. Now, $P(a) = P(bu) \Rightarrow (b/a)_P$. Since u is a P-unit, there exists $v \in S$ such that P(uv) = P(vu) = P(e). Hence $P(a) = P(bu) \Rightarrow P(av) = P(buv) = P(be) = P(b)$. This shows that $(a/b)_P$. Thus we find $(a/b)_P$ and $(b/a)_P$. Hence a, b are P-associates.

Corollary 4.3. Let $a, b \in S$. If a, b are *P*-associates then I(a, P) = I(b, P).

Proof. Suppose a and b are P-associates. Then by Proposition 4.2, P(a) = P(ub), for some P-unit $u \in R$. Then, $a \in I(b, P)$, and so $I(a, P) \subseteq I(b, P)$. Since u is a P-unit of R, and $P(a) \neq P(0)$ there exists $v \in S$ such that P(uv) = P(e) = P(vu). Hence $P(buv) = P(be) = P(b) \Rightarrow P(av) = P(b)$ and so $b \in I(a, P)$. Therefore $I(b, P) \subseteq I(a, P)$.

Remark 4.1. The relation of being P-associates is an equivalence relation on *S*.

Definition 4.4. Suppose $a \in S$ and a is not a *P*-unit. Then a is said to be *P*-irreducible if P(a) = P(bc) implies either b or c is a *P*-unit.

Definition 4.5. Suppose $a \in S$ and a not a *P*-unit. Then a is said to be *P*-prime if $(a/bc)_P$ implies $(a/b)_P$ or $(a/c)_P$.

Proposition 4.4. In the ring R any P-prime is P-irreducible.

Proof. Let a be P-prime. Suppose P(a) = P(bc). We can write P(bc) = P(ae). Hence $(a/bc)_P$. Since a is P-prime, either $(a/b)_P$ or $(a/c)_P$. Suppose $(a/b)_P$. Then P(b) = P(ad) for some $d \in R$. Now

$$P(a) = P(bc) = P(adc)$$
$$P(a(e - dc)) = P(0)$$

 $\Rightarrow P(a(e - dc)) = P(0)$

 $\Rightarrow P(e - dc) = P(0), \text{ since } P(a) \neq P(0) \text{ and } R \text{ is without P-divisor of zero.}$

$$\Rightarrow P(dc) = P(e)$$

 \Rightarrow c and d are P -units.

Similar is the case if $(a/bc)_P$. Hence *a* is P-irreducible.

Theorem 4.5. Suppose $a \in S$ and a is not a P-unit. Then

- (i) The element a is P-irreducible if and only if the ideal I(a, P) is maximal among all ideals I(b, P), where $b \in R$ and $P(a) \neq P(b)$.
- (ii) Let $a \in S$ and $I(a, P) \neq R$. Then a is P-prime if and only if the ideal I(a, P) is a non-zero prime ideal.

Proof. (i) Suppose a is P-irreducible. Let $I(a, P) \subseteq I(b, P) \neq R$ for some $b \in R$ with $P(b) \neq P(0)$. As R contains the identity, $a \in I(a, P) \subseteq I(b, P)$ and so P(a) = P(cb) for some $c \in R$. Since a is P-irreducible, either b is a P-unit or c is a P-unit. Since $I(b, P) \neq R$, by Proposition 3.3, we find that b is not a P-unit. Hence c is a P-unit . So there exists $u \in S$ such that $P(cu) = P(uc) = P(e) \Rightarrow P(bcu) = P(be) = P(b)$. Again, P(a) = P(cb) implies P(au) = P(cbu) = P(bcu) = P(b). Hence P(b) = P(au). This implies $b \in I(a, P)$ and so $I(b, P) \subseteq I(a, P)$. Consequently, I(b, P) = I(a, P). Thus I(a, P) is maximal.

Conversely, assume I(a, P) is maximal. Assume that P(a) = P(cd) where $c, d \in R$. Then $a \in I(d, P)$ and so $I(a, P) \subseteq I(d, P)$. Hence by our hypothesis either I(a, P) = I(d, P) or I(d, P) = R. If I(a, P) = I(d, P), then $d \in I(d, P) = I(a, P)$. Therefore P(d) = P(ra) for some $r \in R$. This gives P(cd) = P(cra). Thus we have P(a) = P(cra) and so P(a(e-cr)) = P(0). Since R is without P-divisors of zero and $P(a) \neq P(0)$, we have P(e-cr) = P(0), i.e., P(cr) = P(e). This shows that c is a P-unit. If I(d, P) = R, then as $e \in R$, $e \in I(d, P) = R$. Hence P(e) = P(ds) for some $s \in R$. Thus P(a) = P(dc) implies either c or d is a P-unit. Hence a is P-irreducible . This proves (i).

(ii) Suppose a is P-prime in R. Let $x, y \in R$ and $xy \in I(a, P)$. Then P(xy) = P(ar) for some $r \in R$. Which shows that $(a/xy)_P$. As a is P-prime, either $(a/x)_P$ or $(a/y)_P$. If $(a/x)_P$, then P(x) = P(ac) for some $c \in R$, and so $x \in I(a, P)$. If $(a/y)_P$, then P(y) = P(ad) for some $d \in R$, and so $y \in I(a, P)$. Thus $xy \in I(a, P)$ implies either $x \in I(a, P)$ or $y \in I(a, P)$. Since $P(a) \neq P(0)$, we must have $a \neq 0$. As $e \in R$, it follows that $a \in I(a, P)$. Hence $I(a, P) \neq \{0\}$. Consequently I(a, P) is a non-zero prime ideal of R. Conversely, let I(a, P) be a non-zero prime ideal of R. Let $x, y \in R$ and $(a/xy)_P$. Then P(xy) = P(ac) = P(ca), for some $c \in R$. Hence $xy \in I(a, P)$. Since I(a, P) is a prime ideal of R, either $x \in I(a, P)$ or $y \in I(a, P)$.

If $x \in I(a, P)$, then P(x) = P(da) for some $d \in R$. Hence $(a/x)_P$.

If $y \in I(a, P)$, then P(y) = P(ra) for some $r \in R$. Hence $(a/y)_P$. Thus $(a/xy)_P$ implies either $(a/x)_P$ or $(a/y)_P$. Hence a is P-prime.

5. Images and inverse images under ring homomorphisms

In this section we discuss the invariance of translational invariace property of a fuzzy subset under ring homomorphism. Also we study the algebraic nature of P-ideals under ring homomorphism.

Ideals and divisibility in a ring with respect to a fuzzy subset

Definition 5.1. Let f be a function from a ring R into a ring R' and let P be a fuzzy subset of R. Then P is called f-invariant if $f(x) = f(y) \Rightarrow P(x) = P(y)$, where $x, y \in R$.

Proposition 5.1. Let f be a homomorphism of a ring R into a ring R'. Let Q be a translational invariant fuzzy subset of R'. Then $f^{-1}(Q)$ is a translational invariant fuzzy subset of R.

Proof. Let $a, b \in R$ and $f^{-1}(Q)(a) = f^{-1}(Q)(b)$. Then Q(f(a)) = Q(f(b)). Let $x \in R$ and $f(x) = y \in R'$. Since Q is a translational invariant fuzzy subset of R' and Q(f(a)) = Q(f(b)), we have Q(f(a) + y) = Q(f(b) + y) and Q(f(a)y) = Q(f(b)y), Q(yf(a)) = Q(yf(b)). Now Q(f(a)+y) = Q(f(b)+y) implies Q(f(a)+f(x)) = Q(f(b) + f(x)), and so Q(f(a + x)) = Q(f(b + x)). Hence $f^{-1}(Q)(a + x) = f^{-1}(Q)(b + x)$. On the other hand, from Q(f(a)y) = Q(f(b)y) and Q(yf(a)) = Q(yf(b)), we get Q(f(a)f(x)) = Q(f(b)f(x)) and Q(f(x)f(a)) = Q(f(x)f(b)), and so Q(f(ax)) = Q(f(bx)) and Q(f(xa)) = Q(f(xb)). Thus we have $f^{-1}(Q)(ax) = f^{-1}(Q)(bx)$ and $f^{-1}(Q)(xa) = f^{-1}(Q)(xb) \forall a, b, x \in R$. Consequently $f^{-1}(Q)$ is translational invariant fuzzy subset of R. □

Proposition 5.2 Let f be a homomorphism of a ring R onto a ring R'. Let P be a translational invariant fuzzy subset of R. If P is f-invariant, then f(P) is a translational invariant fuzzy subset of R'.

Proof. Suppose P is f-invariant. Then $\forall x, y \in R$, f(x) = f(y) implies P(x) = P(y). Now for any $a \in R'$, $f(P)(a) = \sup \{P(x) : x \in R, f(x) = a\}$, since f is onto. Let $x, y \in R$ and f(x) = a, f(y) = a. Then f(x) = f(y), and so P(x) = P(y). Hence f(P)(a) = P(x), where $x \in R$ and f(x) = a. Thus $\forall a \in R'$, f(P)(a) = P(x), where $x \in R$ and f(x) = a. Now, let $a, b \in R'$, and f(P)(a) = f(P)(b). Then P(x) = P(y), where $x, y \in R$, and f(x) = a, f(y) = b. Let $c \in R'$ be such that f(z) = c, where $z \in R$. Then, a + c = f(x) + f(z) = f(x + z) and b + c = f(y) + f(z) = f(y + z). Hence f(P)(a + c) = P(x + z) and f(P)(b+c) = P(y+z). Again, ac = f(x)f(z) = f(xz), ca = f(z)f(x) = f(zx), bc = f(y)f(z) = f(yz), and cb = f(z)f(y) = f(zy).

Hence f(P)(ac) = P(xz), f(P)(ca) = P(zx), f(P)(bc) = P(yz), and f(P)(cb) = P(zy). Since P is translational invariant and P(x) = P(y), we have P(x + z) = P(y + z), P(xz) = P(yz), and P(zx) = P(zy). Hence f(P)(a + c) = f(P)(b + c), f(P)(ac) = f(P)(bc), and f(P)(ca) = f(P)(cb). Thus if $a, b \in R'$ and f(P)(a) = f(P)(b), then f(P)(a + c) = f(P)(b + c), f(P)(ac) = f(P)(bc), and f(P)(ca) = f(P)(bc) is a translational invariant fuzzy subset of R'.

Theorem 5.3. Let f be a homomorphism of a ring R onto a ring R' and P be a translational invariant fuzzy subset of R. If P is f-invariant then,

$$f(I(a, P)) = I(f(a), f(P)), \quad \forall a \in R.$$

Proof. Suppose P is f-invariant. Let $y \in I(f(a), f(P))$. Then f(P)(y) = f(P)(sf(a)) for some $s \in R'$. Since $y, s \in R'$ and f is onto, there exist $x, r \in R$ such that f(x) = y and f(r) = s. Thus f(P)f(x) = f(P)(f(r)f(a)) = f(P)(f(ra)). Since P is translational invariant, by what we have proved in Proposition 5.2, we get f(P)(f(x)) = P(x) and f(P)(f(ra)) = P(ra). Thus P(x) = P(ra), which implies $x \in I(a, P)$, and so $f(x) \in f(I(a, P))$, i.e., $y \in f(I(a, P))$. Consequently, $I(f(a), f(P)) \subseteq f(I(a, P))$. Again, let $y \in f(I(a, P))$. Then there exists $x \in I(a, P)$ such that f(x) = y. Also, $x \in I(a, P)$ implies P(x) = P(ar) for some $r \in R$. Now,

$$f(P)(y) = \sup \{P(x) : x \in f^{-1}(y)\}$$

= $P(x)$, since P is f-invariant
= $P(ar)$.

Also, if f(r) = s we have f(P)(f(a)s) = f(P)(f(a)f(r)) = f(P)(f(ar)) =sup $\{P(x'), \text{ such that } x' \in f^{-1}(f(ar))\} = P(ar), \text{ since } P$ is f-invariant. Thus f(P)(y) = f(P)(f(a)s) which implies $y \in I(f(a), f(P))$. Hence $f(I(a, P)) \subseteq I(f(a), f(P)), a \in R$. Consequently, $f(I(a, P)) = I(f(a), f(P)), a \in R$.

Proposition 5.4. Let f be a homomorphism of a ring R onto a ring R'. Let Q be a translational invariant fuzzy subset of S. Let $a' \in R'$. Then $\forall a, b \in f^{-1}(a')$, $I(a, f^{-1}(Q)) = I(b, f^{-1}(Q))$, provided $f^{-1}(a')$ contains more than one element.

Proof. Let $x \in I(a, f^{-1}(Q))$. Then $f^{-1}(Q)(x) = f^{-1}(Q)(ra)$ for some $r \in R$ and so $f^{-1}(Q)(x) = Q(f(ra))$. Thus $f^{-1}(Q)(x) = Q(f(a)f(r))$. Since $a, b \in f^{-1}(a')$, f(a) = f(b) = a' and hence we have $f^{-1}(Q)(x) = Q(f(b)f(r)) = Q(f(br)) = f^{-1}(Q)(br)$. This shows that $x \in I(b, f^{-1}(Q))$. Hence $I(a, f^{-1}(Q)) \subseteq I(b, f^{-1}(Q))$. Now let $y \in I(b, f^{-1}(Q))$. Then $f^{-1}(Q)(y) = f^{-1}(Q)(br')$ for some $r' \in R$, and so $f^{-1}(Q)(y) = Q(f(br')) = Q(f(b)f(r'))$. Since $a, b \in f^{-1}(a')$, f(a) = a' = f(b) and hence we have $f^{-1}(Q)(y) = Q(f(a)f(r')) = Q(f(ar')) = f^{-1}(Q)(ar')$. This shows that $y \in I(a, f^{-1}(Q))$. Hence $I(b, f^{-1}(Q)) \subseteq I(a, f^{-1}(Q))$. Consequently, $I(a, f^{-1}(Q)) = I(b, f^{-1}(Q)) \forall a, b \in f^{-1}(a')$.

Theorem 5.5. Let f be an isomomorphism of a ring R onto a ring R'. Let Q be a translational invariant fuzzy subset of R'. Then

$$I(f^{-1}(y), f^{-1}(Q)) = f^{-1}(I(y, Q)) \quad \forall y \in R'.$$

Proof. Let $x \in I(f^{-1}(y), f^{-1}(Q))$. Then

$$\begin{split} f^{-1}(Q)(x) &= f^{-1}(Q)(f^{-1}(y)r) & \text{for some } r \in R. \\ &= f^{-1}(Q)(f^{-1}(y)f^{-1}(s)), & \text{where } s \in R' & \text{such that } f(r) = s. \\ \Rightarrow Q(f(x)) &= f^{-1}(Q)(f^{-1}(ys)), & \text{since } f \text{ is bijective.} \\ &= Q(f(f^{-1}(ys))) \\ &= Q(ys) \\ \Rightarrow f(x) \in I(y,Q) \\ \Rightarrow x \in f^{-1}(I(y,Q)). \end{split}$$

Ideals and divisibility in a ring with respect to a fuzzy subset

Hence $I(f^{-1}(y), f^{-1}(Q)) \subseteq f^{-1}(I(y, Q)) \quad \forall y \in R'$. Again, let $a \in f^{-1}(I(y, Q))$ then $f(a) \in I(y, Q) \Rightarrow Q(f(a)) = Q(ys)$, for some $s \in R'$. Also, $y, s \in R'$ and f is onto implies there exist $x, r \in R$ such that f(x) = y and f(r) = s. Now, $Q(f(a)) = Q(ys) \Rightarrow Q(f(a)) = Q(f(x)f(r)) = Q(f(xr)) \Rightarrow f^{-1}(Q)(a) = f^{-1}(Q)(xr) = f^{-1}(Q)(f^{-1}(y)r)$ which implies $a \in I(f^{-1}(y), f^{-1}(Q))$. Thus, $f^{-1}(I(y,Q)) \subseteq I(f^{-1}(y), f^{-1}(Q)), \forall y \in R'$. Consequently, $I(f^{-1}(y), f^{-1}(Q)) = f^{-1}(I(y,Q)), \forall y \in R'$.

Acknowledgement: The authors express their sincere gratitude to the referee for his constructive comments and valuable suggestions.

References

- Liu, W.J., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set and Systems 8 (1982), 133-139.
- [2] Ray, A.K., Quotient group of a group generated by a subgroup and a fuzzy subset, The Journal of Fuzzy Mathematics Vol. 7, No. 2 (1999), 459-463.
- [3] Rosenfeld, A., Fuzzy Groups, J. Math. Anal. Appl. 35(1971), 512-517.
- [4] Zadeh, L.A., Fuzzy Sets, Inform. And Control 8 (1965), 338-353.

Received by the editors August 29, 2001