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A NEW ALGORITHM FOR THE FOUR
COUNTERFEIT COINS PROBLEM

Ivica Bošnjak1

Abstract. We consider the problem of determining the minimum number
of weighings which suffice to find the counterfeit (heavier) coins in a set of
n coins given a balance scale and the information that there are exactly
four heavier coins present. A sequential algorithm is constructed for which
the maximum number of steps differs by at most one from the information-
theoretical lower bound.
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1 Introduction

Let X be a set of n coins indistinguishable except for the fact that exactly
m of them are slightly heavier than the rest. All heavier (counterfeit) coins are
supposed to be of equal weight and so are all good coins. We denote the set
of counterfeit coins by SC. Given a balance scale, we want to find an optimal
weighing algorithm, i.e. an algorithm which minimizes the maximum number
of steps (weighings) which are required to determine SC. We assume that the
difference in weight between a normal and a counterfeit coin is so small that we
can gain no information by balancing two subsets of different cardinalities, i.e.
the larger of two numerically unequal subsets is always heavier.

The step (A,B) will mean balancing A against B, where A and B are two
disjoint subsets of X of the same cardinality. There are three possible outcomes
of the step:

1) A ≈ B which means A and B are of the same weight, i.e. they contain
the same number of counterfeit coins.

2) A > B which means A is heavier than B, i.e. A contains more counterfeit
coins than B.

3) A < B which means B is heavier than A.
Let cm(n) be the minimum number of weighings required to find all coun-

terfeit coins (if there are exactly m of them in the set of n coins). There is a
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simple lower bound for cm(n) usually referred to as the information-theoretical
lower bound

cm(n) ≥
⌈
log3

(
n

m

)⌉
.(1)

The case m = 1 is a simple one. It is well known (see [1, 5]) that

c1(n) = dlog3 ne.(2)

The case m = 2 turned out to be much more complicated. R. Tošić [8]
proved the following:

c2(n) ≤
⌈
log3

(
n

2

)⌉
+ 1.(3)

For this case, it is still an open question whether the information-theoretical
lower bound is achievable for every n.

The following statements proved in [2] will be of use in the sequel:

n ≤ 4 · 3k ⇒ c2(n) ≤ 2k + 2(4)

n ≤ 20 · 3k ⇒ c2(n) ≤ 2k + 5(5)

The case m = 3 has been studied in [3, 4, 11]. I. Bošnjak [3] obtained the
following result:

c3(n) ≤
⌈
log3

(
n

3

)⌉
+ 1.

A slight improvement has been made in [4] by proving the following state-
ments:

n ≤ 10 · 3k ⇒ c3(n) ≤ 3k + 5(6)

n ≤ 15 · 3k ⇒ c3(n) ≤ 3k + 6(7)

n ≤ 20 · 3k ⇒ c3(n) ≤ 3k + 7.(8)

Suppose now that A1, A2, . . . , Ak are pairwise disjoint subsets of X such that
|Ai| = ni, i = 1, 2, . . . , k, and we have the information that each of the sets Ai

contains exactly mi counterfeit coins. By cm1,m2,...,mk
(n1, n2, . . . , nk) we denote

the minimum number of weighings required to find all counterfeit coins in this
case. In the sequel, we will use the following result from [3]:

c2,1(3k, 2 · 3k−1) = 3k − 1.(9)

L. Pyber [7] investigated the general case. He proposed an algorithm for the
situation when m is an upper bound for the number of counterfeit coins and
proved that

cm(n) ≤
⌈
log3

(
n

m

)⌉
+ 15m.
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2. The Results

R. Tošić [10] studied the case m = 4. He obtained the following results:

c4(2 · 3k) ≤ 4k + 2

c4(4 · 3k) ≤ 4k + 4.

R.C. Guy and R.J. Nowakowski [6] gave a survey of coin-weighing problems in
which they included another result concerning this case

c4(3k) ≤ 4k − 1.

To improve these results, we will prove the following three theorems:

Theorem 1.

n ≤ 4 · 3k ⇒ c4(n) ≤ 4k + 3, k = 0, 1, 2 . . .(10)

n ≤ 20 · 3k−1 ⇒ c4(n) ≤ 4k + 5, k = 0, 1, 2 . . . .(11)

Proof. The proof is by induction. It is obvious that (10) and (11) are true for
k=0. Also, it is easy to verify that c4(7) = 4. Suppose now that k > 0 and the
theorem is true for all l < k.
(i) Let n ≤ 4 · 3k and |A| = |B| = bn/2c. The first step is (A, B).

(a) If A ≈ B, then |A ∩ SC| = |B ∩ SC| = 2 and according to (5), we can
determine SC using at most 4k + 2 additional weighings.

(b) If A > B, the second step is (B1, B2), where Bi ⊆ B and |Bi| = b|B|/2c,
i = 1, 2.

(b.1) If B1 ≈ B2, then SC ∩ (B1 ∪ B2) = φ and according to the induction
hypothesis we can find counterfeit coins using 4k + 1 additional steps, since
c4(2 · 3k + 1) ≤ 4k + 1.

(b.2) If B1 > B2, then |SC ∩ (X \B)| = 3 and according to (8) and (2), we
need not more than c3(2·3k)+c1(3k) = 4k+1 additional weighings to determine
SC.

(b.3) The case B1 < B2 is analogous to (b.2).
(c) The case A < B is analogous to (b).

(ii) Let n ≤ 20 · 3k−1 and |A| = |B| = bn/2c. The first step is (A,B).
(a) If A ≈ B, then |A ∩ SC| = |B ∩ SC| = 2 and according to (4) we can

determine SC using at most 4k + 4 additional weighings.
(b) If A > B, the second step is (B1, B2), where Bi ⊆ B and |Bi| = b|B|/2c,

i = 1, 2.
(b.1) If B1 ≈ B2, then SC ∩ (B1 ∪B2) = φ and according to (i), we can find

irregular coins using 4k + 3 additional steps.
(b.2) If B1 > B2, then |SC ∩ (X \ B)| = 3 and we can determine SC using

not more than c3(10 · 3k−1) + c1(5 · 3k−1) = 4k + 3 additional weighings.
(b.3) The case B1 < B2 is analogous to (b.2).
(c) The case A < B is analogous to (b). 2
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Theorem 2.

12 · 3k < n ≤ 16 · 3k ⇒ c4(n) ≤ 4k + 8, k = 0, 1, 2, . . .(12)

Proof. Let |A| = |B| = |C| = |D| = 3 ·3k, E = X \(A∪B∪C∪D), E = E1∪E2,
|Ei| ≤ 2 · 3k for i = 1, 2.
The first two steps are (A, B) and (C, D).

(a) If A ≈ B and C ≈ D, the third step is (B,C).
(a.1) If B ≈ C, the next step is (E, F ) where F is any subset of X \E such

that |F | = |E|.
(a.1.1) If E > F , then SC ⊆ E and we can apply (10).
(a.1.2) If E ≈ F or E < F , then |SC ∩ A| = |SC ∩ B| = |SC ∩ C| =

|SC ∩D| = 1 and we can determine SC using 4(k + 1) additional steps.
(a.2) If B > C, we weigh E against B adding good coins from C if necessary.
(a.2.1) If E > B, then |SC ∩ A| = |SC ∩ B| = 1 and |SC ∩ E| = 2.

Therefore, according to (2) and (4), 4k + 4 additional weighings will suffice to
identify counterfeit coins.

(a.2.2) If E < B, then |SC ∩ A| = |SC ∩ B| = 2 and according to (4), we
can determine SC using 4k + 4 additional steps.

(a.2.3) The case E ≈ B is impossible.
(a.3) The case B < C is analogous to (a.2).
(b) If A > B and C ≈ D, the third step is (B, C).
(b.1) If B ≈ C, we first weigh A against E (using good coins from B,C or

D).
(b.1.1) If A ≈ E, then |SC∩A| = |SC∩E| = 2. Therefore, 4k+4 additional

weighings will suffice to determine SC.
(b.1.2) If A < E, then |SC ∩A| = 1 and |SC ∩E| = 3 and according to (2)

and (7), we can determine SC using 4k + 4 additional steps.
(b.1.3) If A > E, the fifth step is (E1, E2) (we again use the coins which

have been already proved to be good).
(b.1.3.1) If E1 ≈ E2, all counterfeit coins are in A and we can apply (10).
(b.1.3.2) If E1 6≈ E2, then |SC ∩ A| = 3 and according to (6) and (2), we

can determine SC using at most 4k + 3 additional weighings.
(b.2) If B < C, the fourth step is (E1, E2).
(b.2.1) If E1 ≈ E2, then |SC ∩ A| = 2 and |SC ∩ C| = |SC ∩ D| = 1.

Therefore, we can find counterfeit coins using c2(3 · 3k) + 2c1(3 · 3k) = 4k + 4
additional weighings.

(b.2.2) If E1 6≈ E2, then |SC ∩ A| = |SC ∩ C| = |SC ∩D| = 1 and we need
at most 3c1(3 ·3k)+ c1(2 ·3k) = 4k +4 additional steps to find counterfeit coins.

(b.3) If B > C the fourth step is (E1, E2).
(b.3.1) If E1 ≈ E2, then |SC ∩A| = 3 and |SC ∩B| = 1. Therefore, we can

determine SC using 4k + 3 additional weighings.
(b.3.2) If E1 6≈ E2, then |SC∩A| = 2 and |SC∩B| = 1 and we can determine

SC using at most c2(3 · 3k) + c1(3 · 3k) + c1(2 · 3k) = 4k + 4 additional steps.
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(c) If A > B and C > D, the third step is (A,C).
(c.1) If A ≈ C, we first weigh A against E.
(c.1.1) The case A > E is quite similar to (a.2.2).
(c.1.2) The case A < E is quite similar to (a.2.1)
(c.1.3) The case A ≈ E is impossible.
(c.2) If A > C, we first weigh B against E.
(c.2.1) The case B ≈ E is analogous to (b.3.1)
(c.2.2) The case B > E is analogous to (b.2.1)
(c.2.3) If B < E, the fifth step is (E1, E2). Regardless of the result of the

weighing, c2,1(3 · 3k, 2 · 3k) + c1(3 · 3k) = 4k + 3 additional steps will suffice to
determine SC, according to (9) and (2).

(c.3) The case A < C is analogous to (c.2). 2

Theorem 3.

n ≤ 9 · 3k ⇒ c4(n) ≤ 4k + 6, k = 0, 1, 2, . . .(13)

Proof. Let A, B,C be disjoint subsets of X such that |A| = |B| = 2t ≤ 4 · 3k,
for some t ∈ N , C = X \ (A ∪B), |C| ≤ 3k.
The first step is (A,B).

(a) If A ≈ B, the second step is (A,B′ ∪ C), where B′ is any subset of B
such that |B′ ∪ C| = |A|.

(a.1) If A < B′ ∪ C, the third step is (A1, A2), where Ai ⊆ A, |Ai| = t, for
i = 1, 2.

(a.1.1) If A1 ≈ A2, then SC ⊆ C and we can obviously find counterfeit coins
using less than 4k + 3 additional weighings.

(a.1.2) If A1 6≈ A2, then |SC ∩ B| = 1 and |SC ∩ C| = 2 and we can find
counterfeit coins using not more than c1,1(2·3k, 4·3k)+c2(3k) = 4k+2 additional
steps, since c1,1(2, 4) = 2.

(a.2) If A ≈ B′ ∪ C or A > B′ ∪ C, then |A ∩ SC| = |B ∩ SC| = 2 and
according to (4), we can determine SC using at most 4k+4 additional weighings.

(b) If A > B, the second step is (B1, B2), where Bi ⊆ B, |Bi| = t, for
i = 1, 2.

(b.1) If B1 ≈ B2, then SC ⊆ A∪C and according to (12), we can determine
SC using at most 4k + 4 additional steps.

(b.2) If B1 6≈ B2, then |SC ∩ (A ∪ C)| = 3 and according to (7) and (2), we
can determine SC using not more than 4k + 4 additional steps.

(c) The case A < B is quite similar to the case A > B. 2

Let at be the sequence of integers defined in the following way: a4k+6 = 9·3k,
a4k+7 = 12 · 3k, a4k+8 = 16 · 3k and a4k+9 = 20 · 3k, k = 0, 1, 2, . . .. By TB(n)
we will denote the information-theoretical lower bound (1), for m = 4. Then
the following statement holds:
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Lemma 1 There exists t0 ∈ N such that:

t ≥ t0 ⇒ TB(at + 1) ≥ t(14)

Proof. It is easy to verify that

TB(at + 1) ≥ t ⇒ TB(at+4 + 1) ≥ t + 4.

Since TB(at + 1) ≥ t for t = 8, 10, 11, 17, the proof is completed. 2

Theorem 4

c4(n) ≤
⌈
log3

(
n

4

)⌉
+ 1.(15)

Proof. Let t, n ∈ N , TB(at + 1) ≥ t and at < n ≤ at+1. Then c4(n) ≤
t + 1 ≤ TB(n) + 1. According to Lemma 1, there are only finitely many n’s for
which c4(n) > TB(n)+1 might be true. In fact, careful analysis shows that the
only possibilities are n = 8, 10, 13, 21, 61. Algorithms which prove c4(8) ≤ 5,
c4(10) ≤ 6, c4(13) ≤ 7, c4(21) ≤ 9 and c4(61) ≤ 13, could be constructed by
slightly modifying the algorithms from Theorems 1,2 and 3. The full description
of the modified algorithms will be omitted here. 2
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