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ON SOME CLASSES OF GOOD QUOTIENT
RELATIONS
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Abstract. The notion of a good quotient relation has been introduced as
an attempt to generalize the notion of a quotient algebra to relations on an
algebra which are not necessarily congruence relations. In this paper we
investigate some special classes of good relations for which the generalized
versions of the well-known isomorphism theorems can be proved.
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1. Introduction

The notion of a generalized quotient algebra and the corresponding notion
of a good (quotient) relation has been introduced in [6] and [7] as an attempt
to generalize the notion of a quotient algebra to relations on an algebra which
are not necessarily congruences. From Definition 1 it is easy to see that every
non-trivial algebra has good relations which are not congruences.

Up to now, most of the results on good relations have been obtained in the
context of power structures (see [4] for an overview on power structures). One
of the reasons is that for any relation R ⊆ A2, the generalized quotient set
A/R is a subset of the power set P(A). A ”power version” of the well-known
homomorphism theorem was proved in [4]. This theorem was the motivation
for introducing the notions of very good ([6],[7]), Hoare good and Smyth good
relations ([5]). For these special good relations some versions of the ”power”
homomorphism theorems were proved in [5]. In [2] the relationships between
Hoare good, Smyth good and very good relations were described. In [3], these
sets of special good relations have been investigated with respect to the set-
theoretical operations and various ways of powering.

In the present paper we introduce and study some special good relations for
which the well-known isomorphism theorems can be proved. These sets of good
relations are also studied from the lattice-theoretical point of view.
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2. Definitions and the isomorphism theorems

Definition 1. ([6], [7]) Let A = 〈A,F 〉 be an algebra and R ⊆ A2.

(1) For any a ∈ A we define a/R = {b | bRa}. The corresponding general-
ized quotient set is A/R = {a/R | a ∈ A}.

(2) Relation ε(R) ⊆ A2 is defined by:

(a, b) ∈ ε(R) ⇐⇒ a/R = b/R.

(3) We call R a good (quotient) relation on A if ε(R) is a congruence on
A. The set of all good relations on A we denote by G(A).

(4) If R is a good quotient relation on A, the corresponding generalized
quotient algebra A/R is

A/R = 〈A/R, {dfe | f ∈ F}〉,

where operations dfe (f ∈ F ) are defined in the following way: if ar(f) =
n, then for any a1, . . . , an ∈ A

dfe(a1/R, . . . , an/R) = f(a1, . . . , an)/R.

Some examples of good relations are: partial orders, compatible quasiorders,
structure preserving relations (see [4]), and quasi-congruences (see Definition 2).

In [3] the set G(A) of all good relations on an algebra A is described and a
necessary and sufficient condition is given for the partially ordered set G(A) =
〈G(A),⊆〉 to be a lattice.

It can be easily proved that the following ”extended” homomorphism theo-
rem holds for good quotient relations.

Theorem 1. Let A and B be algebras of the same type. Then B is a homo-
morphic image of A if and only if there is a good relation R on A such that
B ∼= A/R.

In [4] and [5] some ”power” versions of the homomorphism theorem were
proved (for congruences and for Hoare good, Smyth good and very good rela-
tions). In [1] some isomorphism theorems for the so-called regular power rings
can be found. Unfortunately, the well-known isomorphism theorems cannot be
generalized to the whole class of good relations.

Example 1. Let A = {0, 1, 2, 3, 4}, R = {(0, 2), (1, 3), (2, 4), (3, 1), (4, 0)}, f(0) =
1, f(1) = 2, f(2) = 0, f(3) = 4, f(4) = 3. Then R is a good relation on
A = 〈A, f〉, while for B = {0, 1, 2}, R|B = R ∩ B2 is not a good relation on
subalgebra B of A.
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Example 2. Let A = 〈A, F 〉 be an algebra with all relations on it being good
(such algebras are described in [3]), and a, b, c ∈ A. If R = {(a, a), (a, b), (a, c)},
then (with the standard definition of a quotient relation) relation R/R is not
well defined since (a, c) ∈ R ⇒ (a/R, c/R) ∈ R/R and, on the other hand
(b, c) /∈ R ⇒ (a/R, c/R) = (b/R, c/R) /∈ R/R.

In the sequel, we are searching for smaller classes of good relations for which
some generalized versions of the isomorphism theorems could be proved. The
following classes proved to be suitable.

Definition 2. Let A be an algebra and R ⊆ A2.

(1) ([5]) We call R a quasi-equivalence on A if for all x,y ∈ A

x/R = y/R ⇔ xRy & yRx.

We denote the set of all quasi-equivalences on A by QEqvA.
(2) We call R a quasi-congruence on A if R is a good quasi-equivalence.

The set of all quasi-congruences on A we denote by QConA.

Let us note that the expression ”quasi-congruence” in [5] is used for com-
patible quasi-equivalences (which are also good relations). We will call these
quasi-congruences B-quasi-congruences (Brink’s quasi-congruences). The set of
all B-quasi-congruences on A we will denote by BQConA.

Definition 3. Let A be an algebra and R ∈ QConA. We call R a two-side
quasi-congruence on A if for all x,y,z ∈ A

xRy & yRx & xRz ⇒ yRz.

The set of all two-side quasi-congruences on A we denote by TSQConA.

Example 3. Every reflexive and transitive relation on A is a quasi-equivalence
on A. Every reflexive and anti-symmetric relation on A is a two-side quasi-
congruence on arbitrary algebra A with the carrier set A.

In general, TSQConA is a proper subset of QConA and incomparable with
BQConA.

Example 4. Let A = {a, b, c}, f(a) = f(b) = a, f(c) = c, A = 〈A, f〉, R =
{(a, a), (b, a), (a, b), (b, b), (a, c), (c, c)}, S = {(a, a), (b, b), (b, c), (c, c)}.
Then R ∈ BQConA \ TSQConA and S ∈ TSQConA \BQConA.

Lemma 1. Let A = 〈A,F 〉 be an algebra and R ∈ QEqvA. The following
conditions are equivalent:

(1) R ∈ QConA
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(2) For any f ∈ F , if ar(f) = n then for any x1, . . . , xn, y1, . . . , yn ∈ A

(∀i ≤ n)(xiRyi & yiRxi) ⇒ (f(x1, . . . , xn)Rf(y1, . . . , yn) &

f(y1, . . . , yn)Rf(x1, . . . , xn))

Definition 4. Let A be an algebra, B a subuniverse of A, R ⊆ A2. We define
BR ⊆ A as

BR = {a ∈ A | (∃b ∈ B) a/R = b/R}.
Lemma 2. Let A be an algebra and B a subalgebra of A. Then
a) If R ∈ QConA then R|B ∈ QConB.
b) If R ∈ G(A) then BR is a subuniverse of A.

If R ∈ G(A) and B ≤ A then the subalgebra of A with the universe BR we
denote by BR.

Theorem 2. Let A be an algebra, B ≤ A and R ∈ QConA. Then

B/R|B ∼= BR/R|BR .

Proof. According to Lemma 2, algebras B/R|B and BR/R|BR are well defined.
Let Φ : B/R|B → BR/R|BR be a mapping defined in the natural way:

Φ(b/R|B) = b/R|BR .

It is easy to prove that Φ is an isomorphism. 2

Definition 5. Let A be an algebra, R,S ∈ TSQConA, R ⊆ S. The relation
S/R ⊆ A/R×A/R is defined as

(a/R, b/R) ∈ S/R ⇔ (a, b) ∈ S.

Lemma 3. Let A be an algebra, R,S ∈ TSQConA, R ⊆ S. Then S/R ∈
TSQCon(A/R).

Theorem 3. Let A be an algebra, R,S ∈ TSQConA, R ⊆ S. Then

A/R
/

S/R ∼= A/S.

Proof. According to Lemma 3, the algebra A/R
/

S/R is well defined. Let us

define a mapping Φ : A/R
/

S/R → A/S in the natural way:

Φ(a/R
/

S/R) = a/S.

Then it is easy to prove that Φ is an isomorphism. 2
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3. The lattices of quasi-congruences

In [5] it is proved that for any algebra A, the set BQConA is closed under
arbitrary intersections. Hence 〈BQConA,⊆〉 is a complete lattice. It is easy to
see that the same is true for the sets QEqvA, QConA and TSQConA. We can
prove even more.

Theorem 4. Let A be an algebra with the carrier set A. Then 〈QEqvA,⊆〉,
〈QConA,⊆〉, 〈BQConA,⊆〉, 〈TSQConA,⊆〉 are algebraic lattices.

Proof. Let A be an algebra of type F . In all cases we will define an algebra B
with the universe A × A such that SubB (the set of all subuniverses of B) will
be equal to the corresponding set of quasi-equivalences. Since 〈SubB,⊆〉 is an
algebraic lattice, the proposition holds.

• Case 〈QEqvA,⊆〉:
It is not hard to see that R ⊆ A2 is a quasi-equivalence if and only if R is
reflexive and for all x,y,z ∈ A it holds

xRy & yRx & zRx ⇒ zRy.

Hence the fundamental operations of B will be:
- the nullary operations (a, a) for every a ∈ A;
- a ternary operation t : B3 → B defined by

t((a1, a2), (b1, b2), (c1, c2)) =
{

(c1, a2) if a1 = b2 = c2 & a2 = b1

(a1, a2) else

Then SubB = QEqvA and 〈QEqvA,⊆〉 is an algebraic lattice.

• Case 〈BQConA,⊆〉:
The fundamental operations of the algebra B are all operations defined in
the previous case and for all f ∈ F operations fB defined in the following
way: if ar(f) = n, then ar(fB) = n and for all a1, . . . , an, b1, . . . , bn ∈ A
it holds

fB((a1, b1), . . . , (an, bn)) = (fA(a1, . . . , an), fA(b1, . . . , bn)).

Then SubB = BQConA and 〈BQConA,⊆〉 is an algebraic lattice.

• Case 〈QConA,⊆〉:
The fundamental operations of the algebra B are all operations defined
in the case QEqvA and for all f ∈ F operations fB1 , fB2 defined in the
following way: if ar(f) = n, then ar(fB1 ) = ar(fB2 ) = 2n and for all
a1, . . . , an, b1, . . . , bn, c1, . . . , cn, d1, . . . , dn ∈ A it holds

fB1 ((a1, b1), . . . , (an, bn), (c1, d1), . . . , (cn, dn)) =
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{
(fA(a1, . . . , an), fA(b1, . . . , bn)) if ci = bi & di = ai for all i ≤ n
(a1, b1) else

fB2 ((a1, b1), . . . , (an, bn), (c1, d1), . . . , (cn, dn)) =
{

(fA(b1, . . . , bn), fA(a1, . . . , an)) if ci = bi & di = ai for all i ≤ n
(a1, b1) else

According to Lemma 1, SubB = QConA and 〈QConA,⊆〉 is an algebraic
lattice.

• Case 〈TSQConA,⊆〉:
The fundamental operations of the algebra B are all operations defined in
the previous case and a ternary operation t′ defined in the following way:

t′((a1, a2), (b1, b2), (c1, c2)) =
{

(a2, c2) if b1 = a2 & b2 = c1 = a1

(a1, a2) else

Then SubB = TSQConA and 〈TSQConA,⊆〉 is an algebraic lattice. 2

Let us note that 〈G(A),⊆〉 is almost never a lattice (see [3]).
In [5] it is proved that 〈ConA,⊆〉 is a sublattice of BQConA. We can prove

that it is also a sublattice of QEqvA,QConA and TSQConA.

Lemma 4. ([5])

(1) For every R,S ∈ QEqvA it holds

R ⊆ S ⇒ ε(R) ⊆ ε(S).

(2) For every R ∈ QEqvA it holds ε(R) ⊆ R.

Theorem 5. Let Σ be a set of quasi-congruences of some algebra A such that
ConA ⊆ Σ and Σ is closed under (finite) intersections. If 〈Σ,⊆〉 is a lattice,
then 〈ConA,⊆〉 is a sublattice of 〈Σ,⊆〉.
Proof. Since Σ is closed under intersections, the infimum in 〈Σ,⊆〉 coincides
with the intersection, like in ConA. Therefore, we only have to prove that
supremums coincide in these two lattices.

Let ρ, σ ∈ ConA and θ = supΣ(ρ, σ). Let us note that it is sufficient to prove
that θ is a congruence relation, for this implies θ = supConA(ρ, σ). According to
Lemma 4(1), since ρ ⊆ θ and σ ⊆ θ and all these relations are quasi-equivalences,
it holds ε(ρ) ⊆ ε(θ) and ε(σ) ⊆ ε(θ). But ρ,σ ∈ ConA which implies ε(ρ) = ρ
and ε(σ) = σ, i.e. ρ ⊆ ε(θ) and σ ⊆ ε(θ). Since θ ∈ QConA ⊆ G(A), we
have ε(θ) ∈ ConA, which implies θ ⊆ ε(θ). According to Lemma 4(2) it holds
ε(θ) ⊆ θ, so ε(θ) = θ which means θ ∈ ConA. 2

Corollary 1. For any algebra A, 〈ConA,⊆〉 is a sublattice of the following
lattices: 〈QConA,⊆〉, 〈BQConA,⊆〉, 〈TSQConA,⊆〉.
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Proof. Follows from Theorem 2. 2

Corollary 2. For any algebra A = 〈A,F 〉, 〈ConA,⊆〉 is a sublattice of
〈QEqvA,⊆〉.
Proof. Let B be an algebra with the carrier set A such that all fundamental
operations of B are projections. Then ConB = EqvA and BQConB = QEqvA.
Therefore, according to Corollary 1, EqvA is a sublattice of QEqvA. Since
ConA is a sublattice of EqvA for any algebra A = 〈A,F 〉, this implies that
ConA is a sublattice of QEqvA. 2

The above two corollaries cover all the cases when one of the lattices of
quasi-congruences is a sublattice of another.

Example 5. Let A = {a, b, c}, f(a) = f(c) = c,f(b) = b, A = 〈A, f〉, R =
{(a, b)}∪∆, S = {(b, a)}∪∆. Then R,S,R∪S ∈ QEqvA and sup(R, S) = R∪S.
On the other hand, R,S ∈ QConA but R ∪ S /∈ QConA, for (a, b) ∈ R ∪ S,
(b, a) ∈ R ∪ S but (f(a), f(b)) /∈ R ∪ S.

Example 6. Let A = {a, b, c, d, 1, 2, 3, 4}, A = 〈A, f〉 where f : A2 → A is
defined in the following way:
f(a, c) = 1, f(b, c) = 2, f(a, d) = 3, f(b, d) = 4 and f(x, y) = 1 for all other
(x, y) ∈ A2.
If R = {(a, b), (1, 2), (3, 4)} ∪ ∆, S = {(c, d), (1, 3), (2, 4)} ∪ ∆, then R,S ∈
BQConA, R ∪ S ∈ QEqvA, but R ∪ S /∈ BQConA because (a, b) ∈ R ∪ S,
(c, d) ∈ R ∪ S, but (f(a, c), f(b, d)) = (1, 4) /∈ R ∪ S.

Theorem 6.

(1) Lattices QConA,BQConA,TSQConA are not necessarily sublattices of
QEqvA.

(2) Lattices BQConA and TSQConA are not necessarily sublattices of QConA.

Proof.

(1) Example 5 shows that QConA does not have to be a sublattice of QEqvA.
This example also shows that TSQConA is not necessarily sublattice
of QEqvA for R,S,R ∪ S ∈ QEqvA, R,S ∈ TSQConA, but R ∪ S /∈
TSQConA.
Example 6 shows that BQConA does not have to be a sublattice of
QEqvA.

(2) Example 6 also shows that BQConA is not necessarily a sublattice of
QConA for R,S ∈ BQConA, R ∪ S ∈ QConA, but R ∪ S /∈ BQConA.
And finally, let A be an algebra from Example 6 and R = {(a, b), (1, 2),
(3, 4)} ∪ ∆, S = {c, d), (1, 3), (2, 4), (2, 1)} ∪∆. Then R,S ∈ TSQConA,
R ∪ S ∈ QConA, but R ∪ S /∈ TSQConA because (1, 2) ∈ R ∪ S, (2, 1) ∈
R ∪ S, (1, 3) ∈ R ∪ S and (2, 3) /∈ R ∪ S. 2



138 I. Bošnjak, R. Madarász

There exists algebras A = 〈A,F 〉 such that QEqvA = QConA, or QEqvA =
BQConA and it is not difficult to describe them.

Theorem 7. Let A be an algebra and |A| ≥ 3. The following conditions are
equivalent:

(1) QEqvA = QConA,
(2) QEqvA = BQConA,
(3) EqvA = ConA.

Proof.
(1) ⇒ (3)
If QEqvA = QConA then QEqvA ⊆ G(A) and consequently EqvA ⊆ G(A).
This implies ε(R) is a congruence for every R ∈ EqvA, and since ε(R) = R, we
conclude EqvA = ConA.
(3) ⇒ (2)
Let EqvA = ConA. It is known that all the fundamental operations of A
have to be projections or constant operations. Then, every reflexive relation is
compatible on A, so QEqvA = BQConA.
(2) ⇒ (1)
Obvious. 2

If |A| = 2, conditions (1) and (3) hold for any algebra A, but (2) is not
always true.

Another problem that might be interesting is to describe algebras A such
that BQConA = ConA (B-quasi-congruence-trivial algebras). Of course, one
can easily notice that for any non-trivial algebra A, QConA 6= ConA and
TSQConA 6= ConA.

Lemma 5. Let A be an algebra which has a term p(x, y, z) such that at least
two of the following identities are satisfied on A:

p(x, x, y) ≈ y, p(x, y, x) ≈ y, p(y, x, x) ≈ y.

Then BQConA = ConA.

Proof. It is easy to see that every symmetric quasi-equivalence is an equivalence
relation as well. Now, suppose, for example that p(x, x, y) ≈ p(x, y, x) ≈ y holds
on A. Then, for every R ∈ BQConA we have

(xRy & xRx & yRy) ⇒ p(x, x, y)Rp(y, x, y) ⇒ yRx.

Hence R ∈ ConA. The proof is analogous in two remaining cases. 2

Theorem 8. Let A be an algebra which has a Mal’cev term (or a minority
term). Then BQConA = ConA.
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Proof. If p(x, y, z) is a Mal’cev term on A then A satisfies identities p(x, x, y) ≈
y, p(x, y, y) ≈ x. Therefore, the conditions of Lemma 3 are satisfied. A
term m(x, y, z) is a minority term on A if A satisfies identities m(x, x, y) ≈
m(x, y, x) ≈ m(y, x, x) ≈ y and the theorem is a consequence of Lemma 3
again. 2

Corollary 3. Let V be a congruence permutable variety. Then for any A ∈ V ,
BQConA = ConA.

Proof. Follows from Theorem 6 and the well-known theorem of Mal’cev on the
congruence permutable varieties. 2

The following example shows that there exist B-quasi-congruence-trivial al-
gebras that are not congruence permutable.

Example 7. Let A = {a, b, c}, f(a) = f(c) = b, f(b) = a, g(a) = g(b) = c,
g(c) = a, A = 〈A, {f, g}〉. If R ∈ BQConA, the following is obvious:

(a, b) ∈ R ⇔ (b, a) ∈ R, (a, c) ∈ R ⇔ (c, a) ∈ R.

Also, if (b, c) ∈ R then
(f(b), f(c)) = (a, b) ∈ R;(1)

(g(b), g(c)) = (c, a) ∈ R;(2)

(f2(b), f2(c)) = (b, a) ∈ R.(3)

It follows directly from (1),(2),(3) and the definition of quasi-equivalence that
(c, b) ∈ R. We can prove in a similar way that (c, b) ∈ R ⇒ (b, c) ∈ R.
Thus every B-quasi-congruence on A is symmetric, which implies A is B-quasi-
congruence-trivial.
Since ConA is a 4-element set, it is easy to check that A is not congruence
permutable.

Example 8. Let A = 〈{a, b},∨,∧〉 be a two-element chain. Then R = {(a, a),
(a, b), (b, b)} is a B-quasi-congruence which is not a congruence relation. Hence
the variety of all lattices is an example of a congruence-distributive variety which
is not B-quasi-congruence trivial.

The following question remains to be answered: is it true that for any alge-
braic lattice L, there is an algebra A such that L ∼= BQConA?
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