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LAGRANGE GEOMETRY VIA COMPLEX
LAGRANGE GEOMETRY

Gheorghe Munteanu1

Abstract. Asking that the metric of a complex Finsler space should
be strong convex, Abate and Patrizio ([1]) associate to the real tangent
bundle a real Finsler metric for which they analyze the relation between
Cartan (real) connection of the obtained space and the real image of
Chern-Finsler complex connection.

Following the same ideas, in the present paper we shall deal with the
more general case of a complex Lagrange space (M, L).

As distinct from these authors, we shall associate to the Hermitian

metric gij̄(z, η) of a complex Lagrangian L its real representation
R
gab

(x, y). The obtained real space (M,
R
gab) is a generalized Lagrange space

([10]). Furthermore, the possibility of its reduction to one real Lagrange
space, in particular the Finsler one, is studied.

A comparative analysis of the elements of Lagrange geometry ([10]):
nonlinear connection, N−linear connection, metric canonical connection,
and so on, and their corresponding real image from the complex Lagrange
geometry ([11]) is made.
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1. Introduction

The study of complex Lagrange geometry was initiated by us starting with
the paper [11].

A complex Lagrange space is the pair (M, L), where M is a complex mani-
fold and L(z, η) is a real Lagrangian differentiable function on the holomorphic
bundle T ′M , which determines a nondegenerate metric gij̄ = ∂2L/∂ηi∂η̄j .

This geometry generalizes that of the known complex Finsler space ([1],[2],[5],
[6],[7],[13],[14]), where, in addition, the homogeneity condition of complex La-
grangian in respect to η is required.

In this paper, a complex Lagrange space determines a real structure of Her-
mitian manifold on the tangent real bundle. Everywhere, the indices i, j, k, ...
run in the interval 1, n, and a, b, c, ... run in 1, 2n. We shall assume that the
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reader is familiar with the geometry of T ′M , the holomorphic tangent bundle,
and with the Lagrange geometry ([10]).

Let M be a complex manifold, dimCM = n, (U, zk) the local coordinates in
a local chart, zk = xk + ixn+k. M is also a real manifold, dimRM = 2n, (U, xa)

is a real chart, and is endowed with the complex structure
R

J ,
R

J2= −I, acting

on TR,xM by
R

J ( ∂
∂xa ) = ∂

∂xn+k ,
R

J ( ∂
∂xn+k ) = − ∂

∂xk .
Let us consider the well-known Poincaire operators:

∂

∂zk
=

1
2
(

∂

∂xk
− i

∂

∂xn+k
);

∂

∂z̄k
=

1
2
(

∂

∂xk
+ i

∂

∂xn+k
)(1.1)

from which clearly results that:

∂

∂xk
=

∂

∂zk
+

∂

∂z̄k
;

∂

∂xn+k
= i(

∂

∂zk
− ∂

∂z̄k
)(1.2)

The complex structure
R

J is extended to the complexification TCM of the

tangent bundle, obtaining the complex structure J(X + iY ) =
R

J (X)+ i
R

J (Y ),
J2 = −I, behaving on Poincare operators as follows: J( ∂

∂zk ) = i ∂
∂zk ; J( ∂

∂z̄k ) =
−i ∂

∂z̄k . The eigenspaces of J determines two subbundles of TCM denoted by
T ′M , the (1, 0)−type vectors, and respectively T ′′M = T ′M , the (0, 1)−type
vectors and TCM = T ′M ⊕ T ′′M.

The bundle T ′M is holomorphic and as a manifold it is the geometric support
of the complex Lagrange geometry.

The bundle T ′M is isomorphic with the real tangent bundle TRM by the
map that acts on the corresponding tangent space as follows ([1]):

R◦: X → XR = X + X(1.3)

with the inverse:
C◦: X → XC =

1
2
(X − iJX)(1.4)

Locally, if X = ηk ∂
∂zk , with ηk = yk+iyn+k, then XR = yk ∂

∂xk +yn+k ∂
∂xn+k ,

and conversely, if X = ya ∂
∂xa , then XC = (yk + iyn+k) ∂

∂zk .

Let us consider π : T ′M → M the holomorphic bundle, u = (zk, ηk) ∈
T ′M and p : TRM → M the tangent real bundle, u = (xa, ya) ∈ TRM. Now,
taking T ′M as a base manifold, arguing as before, we obtain: TC(T ′M) =
T ′(T ′M) ⊕ T ′′(T ′M). The bundle πT : T ′(T ′M) → T ′M is holomorphic and
Ker πT = V (T ′M) is called the vertical bundle, a local base in Vu(T ′M) being
{ ∂

∂ηk }. Through conjugation, a local base { ∂
∂η̄k } in Vu(T ′M) is obtained. Let

us denote by VC(T ′M) = V (T ′M)⊕ V (T ′M) the vertical complexified bundle.
Analogously, we can consider the real vertical bundle V (TRM) = Ker pT ,

where pT : TR(TRM) → TRM is the tangent map. A local base in Vu(TRM)
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is indeed { ∂
∂ya } and because the vertical bundle is isomorphic with the tangent

bundle TRM , we have:

∂

∂ηk
=

1
2
(

∂

∂yk
− i

∂

∂yn+k
);

∂

∂η̄k
=

1
2
(

∂

∂yk
+ i

∂

∂yn+k
)(1.5)

and conversely,

∂

∂yk
= (

∂

∂ηk
)R =

∂

∂ηk
+

∂

∂η̄k
;

∂

∂yn+k
= (i

∂

∂ηk
)R = i(

∂

∂ηk
− ∂

∂η̄k
)(1.6)

Therefore, if V = V k ∂
∂ηk is a vertical complex field then V R = Ua ∂

∂ya , with
Uk = ReV k and Un+k = ImV k, is a real vertical field, and conversely. Hence,
(VC(T ′M))R = V (TRM). We denote the same here by

R◦ the isomorphism of
passing to real on T ′M.

2. The induced real nonlinear connection

As is known, in the study of tangent bundles it is very useful to use the
notion of a nonlinear connection that determines the adapted base in which the
study is ”linearized”: many of the computations are made similarly as on the
base manifold M.

A nonlinear connection can be given by a splitting in an exact sequence that
determines a supplementary subbundle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) =
H(T ′M)⊕V (T ′M), called the horizontal subbundle. This determines the distri-
bution N : u = (zk, ηk) → Hu(T ′M), called the complex nonlinear connection,
shortly (c.n.c.). A local base on Hu(T ′M) is { δ

δzj = ∂
∂zj −Nk

j
∂

∂ηk }, where Nk
j

are the coefficients of (c.n.c.) and they are transforms at the local change of
charts after the rule:

N ′i
k

∂z′k

∂zj
=

∂z′i

∂zk
Nk

j −
∂2z′i

∂zj∂zk
ηk(2.1)

and then the base { δ
δzi }, called the adapted base of N j

i (c.n.c.), satisfies the
following rule of transformation:

δ

δzi
=

∂z′j

∂zi

δ

δz′j
(2.2)

Through conjugation is obtained an adapted base { δ
δzk , ∂

∂ηk , δ
δz̄k , ∂

∂η̄k }
on TC(T ′M) , shortly denoted by {δk , ∂k , δk̄ , ∂k̄}. The dual adapted base is
denoted by {dzk , δηk , dz̄k , δη̄k}.

From (2.2) it results that there exists an isomorphism ([1])
C

θ : VC(T ′M) →
HC(T ′M), locally given by

C

θ ( ∂
∂ηi ) = δ

δzi and
C

θ ( ∂
∂η̄i ) = δ

δz̄i , where HC(T ′M) =

H(T ′M)⊕H(T ′M) is the complexified horizontal bundle.
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As a complex manifold T ′M has the natural complex structure, still denoted
by J , and locally given by:

J(∂/∂zk) = i∂/∂zk ; J(∂/∂ηk) = i∂/∂ηk ; J(∂/zk) = −i∂/∂zk

J(∂/∂ηk) = −i∂/∂ηk.
Since, J(δk) = iδk and J(δk̄) = −iδk̄ we deduce that J(H(T ′M)) = iH(T ′M)

and J(H(T ′M)) = −iH(T ′M).
The same reasonings can be made on TR(TRM). A real nonlinear connection,

shortly (r.n.c.), is given by the splitting TR(TRM) = H(TRM)⊕ V (TRM).
The H(TRM) bundle is for the moment not unique, being only supplemen-

tary to V (TRM). We shall fix H(TRM) acting analogously to [1]:

We see that TRM and T ′M bundles are isomorphic by
C◦ and

R◦. The same
isomorphism is between TR(TRM) and T ′(T ′M). On the other hand, the com-
plex horizontal lift, locally expressed by lhC( ∂

∂zk ) = δ
δzk determines an isomor-

phism between T ′M and H(T ′M). Then the image of map lhR =
R◦ ·lhC ·

C◦
: TRM → TR(TRM) defines a real horizontal lift. Let us consider now the
local base δ

δxa = lhR( ∂
∂xa ) in H(TRM) = lhR(TRM) which determines in turn an

(r.n.c.).
As it is known that the local expression of a real horizontal lift is ([10]):

δ
δxa = ∂

∂xa−
R

N b
a

∂
∂yb , where

R

N b
a are the coefficients of (r.n.c.). Taking into

account the local expression of a complex vertical field, we can deduce that:
R

Nh
k = ReNh

k ;
R

Nn+h
k = ImNh

k(2.3)

and therefore : Nh
k =

R

Nh
k +i

R

Nn+h
k and δk = ∂

∂zk −Nh
k ∂h.

Note that the map
R∗ =

R

θ · R◦ ·
C

θ−1 : HC(T ′M) → H(TRM) is an isomor-

phism, where
R

θ : V (TRM) → H(TRM) is the corresponding real isomorphism

to
C

θ . Because the horizontal bundle HC(T ′M) is J invariant, applying the op-

erator
R∗ it follows that H(TRM) is

R

J invariant. Hence, δ
δxn+k corresponds to

i δ
δzk and in consequence

R

Na
n+k corresponds to iNh

k . So, we deduce that:

R

Nh
n+k= −ImNh

k ;
R

Nn+h
n+k = ReNh

k(2.4)

Thus we obtain an (r.n.c.) ,
R

Na
b , on TRM , determined by the given (c.n.c.)

Nh
k on T ′M , whose coefficients are in fact the real representation of the complex

matrix Nh
k .

Now, taking into account the action of the
R∗ operator on the adapted base

{δk, ∂k}, we get in addition to (1.6) that:

δ

δxk
= (

δ

δzk
)R ;

δ

δxn+k
= (i

δ

δzk
)R(2.5)
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and the inverse through
C∗ =

C

θ · R◦ ·
R

θ−1 .
For the next computation it will be useful to have the following consequences

of (1.6) and (2.5):

(
∂

∂η̄k
)R =

∂

∂yk
; (

δ

δz̄k
)R =

δ

δxk
and

δ

δxk
=

δ

δzk
+

δ

δz̄k
;

δ

δxn+k
= i(

δ

δzk
− δ

δz̄k
)

Further, let us consider (M,L) a complex Lagrange space ([11]), where
L : T ′M → R is a Lagrangian function such that gjk̄ = ∂2L/∂ηj∂η̄k is a non-
degenerate metric on T ′M. At each point u = (zk, ηk) ∈ T ′M, L(u) = L(zk, ηk)
is a differentiable function. Because zk = xk + ixn+k and ηk = yk + iyn+k, it
follows that L(u) = LR(xa, ya) is a real differentiable function.

Let as note that, in general,
R
gab= 1

2∂2LR/∂ya∂yb might be degenerate and
hence the pair (M,LR) is not always a real Lagrange space. In the special case

when (gjk̄) determines a nondegenerate matrix (
R
gab), (A-P) ([1]) calls the metric

gjk̄ as being strongly convex.
Moreover, let us note that if L(z, λη) = |λ|2 L(z, η), then LR(x, λy) =

|λ|2 LR(x, y) and conversely. So, if (M, L) is a strong convex Finsler complex
space then (M,LR) is a Finsler real one.

From now on we shall act in a manner different from [1]. We shall consider
the real metric structure determined by the real representation of gjk̄.

Proposition 2.1. Let gjk̄(z, η) be the Hermitian metric of a complex Lagrange

space (M,L). Then the pair (M,
R

gab (x, y)), where :

R
gjk= Re gjk̄ =

1
2
(gjk̄ + gkj̄) ;

R
gn+jk= −Im gjk̄(2.6)

R
gjn+k= Im gjk̄ =

−i

2
(gjk̄ − gkj̄) ;

R
gn+jn+k= Re gjk̄

determines a (real) generalized Lagrange space([10]).

For proof it suffices to remark that
R
gab=

R
gbaand det

(
R
gab

)
6= 0

Thanks to (2.6) and gjk̄gk̄l = δl
j it results that

R
g

ab

, the inverse of
R
gab, is

the real representation of gk̄l, i.e.
R
g

jk

= Re gj̄k;
R
g

jn+k

= Im gj̄k;
R
g

n+jn+k

=

Re gj̄k; and
R
g

n+jk

= −Im gj̄k.
Now, considering a fixed (c.n.c.)Nh

k and {dzk , δηk , dz̄k , δη̄k} the dual
adapted base determined by it, then ([11]):

G = gijdzi ⊗ dzj + gijδη
i ⊗ δηj(2.7)
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gives a Hermitian metric on T ′M with respect to the complex structure J and
both to the almost Hermitian structure JN , locally given by JN (δk) = ∂k;
JN (∂k) = −δk; JN (δk̄) = ∂k̄; JN (∂k̄) = −δk̄ and globally defined.

Replacing gij̄ = Re gij̄ +iIm gij̄ ; dzj = dxj +idxn+j and δηj = δyj +iδyn+j

in (2.7), it results that:

Proposition 2.2. The structure

R

G= Re G =
R
gab dxa ⊗ dxb+

R
gab δya ⊗ δyb(2.8)

is a Hermitian metric on TRM with respect to the complex structure
R

J , and
an almost Hermitian metric with respect to J R

N
structure, ( J R

N
)2 = −I, locally

given by J R

N
( δ

δxa ) = ∂
∂ya and J R

N
( ∂

∂ya ) = − δ
δxa .

The integrability of JN and J R

N
structures depends only on the vanishing of

torsion of (c.n.c.) and respectively (r.n.c.).

Let as note that
R

G̃= Im G also defines a metric structure on TRM.

From the computation gjk̄ = ∂2
R

L
∂ηj∂η̄k = 1

4 ( ∂
∂yk + i ∂

∂yn+k )( ∂
R

L
∂yj − i ∂

R

L
∂yn+j ) =

1
4 ( ∂2

R

L
∂yj∂yk + ∂2

R

L
∂yn+j∂yn+k ) + i

4 ( ∂2
R

L
∂yj∂yn+k − ∂2

R

L
∂yn+j∂yk ) we deduce just the real rep-

resentation of the matrix gjk̄ :

R
gjk=

1
4
(

∂2
R

L

∂yj∂yk
+

∂2
R

L

∂yn+j∂yn+k
) ;

R
gjn+k=

1
4
(

∂2
R

L

∂yj∂yn+k
− ∂2

R

L

∂yn+j∂yk
)(2.9)

Let us remark that, in general, the tensor Cabc = 1
2{∂

R
gbc

∂ya + ∂
R
gac

∂yb − ∂
R
gab

∂yc } is

not totally symmetric and therefore the generalized Lagrange space (M,
R
gab) is

not always reducible to a Largange space ([10]). Moreover, the space is neither
weakly regular, hence the known procedures of Lagrange (real) geometry to
obtain a (r.n.c.) cannot be applied, remaining in principle the method described
above.

The question is, however, when the generalized Lagrange space is a Lagrange

one, particularly a Finsler space. This means that the tensor hab = 1
2

∂2
R

L
∂ya∂yb is

nondegenerated. In particular, if L is a complex Finsler metric then
R

L becomes

a real Finsler metric. A sufficient condition is when hab =
R
gab, which in view of

(2.9) is equivalent to:

∂2
R

L

∂yj∂yk
=

∂2
R

L

∂yn+j∂yn+k
;

∂2
R

L

∂yj∂yn+k
= − ∂2

R

L

∂yn+j∂yk
(2.10)
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and that happens if and only if :

gjk =
∂2L

∂ηj∂ηk
= 0 , ∀j, k = 1, n(2.11)

Obviously, by conjugation from (2.11) it results also gj̄k̄ = 0.

Definition 2.1. In the condition (2.11) we call the complex Lagrange space
(M,L) being with pure Hermitian metric.

In particular, the Finsler complex space with pure Hermitian metric is ob-
tained.

Proposition 2.3. The generalized Lagrange space (M,
R
gab) associated to a com-

plex Lagrange space with pure Hermitian metric is reductible to a real Lagrange

space (M,
R

L).

As shown in [10], the variational method in the real Lagrange space (M,
R

L)
gives an (r.n.c.):

0

Na
b =

∂Ga

∂yb
, where(2.12)

Ga =
1
4

R
g

ac





∂2
R

L

∂yc∂xd
yd − ∂

R

L

∂xc



 =

1
4

R
g

ac

Φc

On the other hand, by the variational method a (c.n.c.), called canonical, in
a complex Lagrange space (M,L) is obtained ([11]):

c

Nk
j =

∂Hk

∂ηj
, where(2.13)

Hk =
1
2
gm̄k ∂2L

∂zh∂η̄m
ηh

Our next goal is to determine the circumstances when
cR

Na
b , the (r.n.c.) in-

duced by
c

Nk
j , coincides with

0

Na
b or, in an equivalent way, when the complex

image
0C

Nk
j =

0

Nk
j +i

0

Nn+k
j of

0

Na
b coincides with

c

Nk
j .

For this reason we shall calculate the difference d−tensor of two (c.n.c.) :

2Dk
l = (

∂

∂ηl
+

∂

∂η̄l
)(Gk + iGn+k)− ∂Hk

∂ηl
(2.14)

First, we make the computation:
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4(Gk +iGn+k) = Re gm̄kΦm−Im gm̄kΦn+m +i(Im gm̄kΦm+Re gm̄kΦn+m)
= gm̄k(Φm + iΦn+m).

Replacing Φm and Φn+m from (2.12) and recalling that ∂
∂ym = ∂

∂ηm + ∂
∂η̄m

and yk = 1
2 (ηk + η̄k) ; ∂

∂yn+m = i( ∂
∂ηm − ∂

∂η̄m ) and yn+k = i
2 (ηk − η̄k), a long

but trivial computation gives:

4Dk
l =

∂

∂ηl
[gm̄k(

∂2L

∂η̄m∂z̄p
η̄p − ∂L

∂z̄m
)] +(2.15)

∂

∂η̄l
[gm̄k(

∂2L

∂η̄m∂zp
ηp +

∂2L

∂η̄m∂z̄p
η̄p − ∂L

∂z̄m
)]

Hence, we have:

Proposition 2.4. In the complex Lagrange space (M, L) the induced (r.n.c.) of

the
c

Nk
j (c.n.c.) from (2.13) coincides with the

0

Na
b (r.n.c.) given by (2.12) if and

only if Dk
l = 0.

We recall here that a complex Lagrange space is called local Minkowski
([2],[3]) if there exist local charts in any u = (z, η) such that the Lagrange
function L depends only on the direction, i.e., L = L(η, η̄).

The above Proposition and (2.15) yields:

Proposition 2.5. If (M, L) is a complex Lagrange local Minkowski space there

exist local charts in any u = (z, η) ∈ T ′M such that
cR

Na
b =

0

Na
b .

More interesting results are obtained in the particular case of complex Finsler
space, when L(z, λη) = |λ|2 L(z, η) and the consequences from it ([1],[12]).

Then the formulas (2.12) lead to ([10]):

0F

Na
b =

1
2

∂γa
00

∂yb
, where γa

00 = γa
bcy

byc and(2.16)

γa
bc =

1
2

R
g

da

{∂
R
gdc

∂xb
+

∂
R
gbd

∂xc
− ∂

R
gbc

∂xd
}

0F

Na
b is the well-known Cartan (r.n.c.).

And the formulas (2.13) give the Cartan (c.n.c.) ([11],[12]):

cF

Nk
j =

1
2

∂Γk
00

∂ηj
, where Γk

00 = Γk
ijη

iηj with(2.17)

Γk
ij =

1
2
gm̄k{∂gjm̄

∂zi
+

∂gim̄

∂zj
}

Γk
ij being the first complex Christoffel symbol.



Lagrange geometry via complex Lagrange geometry 149

Now, acting as before, after a long computation of passing from real to

complex, we obtain that
0F

Na
b coincides with

cFR

Na
b , the real image of complex

Cartan connection, if and only if the difference d−tensor Dk
l given by:

Dk
l =

∂

∂ηl
(Γk

ij̄η
iη̄j) +

∂

∂η̄l
(Γk

ijη
iηj + Γk

ij̄η
iη̄j)(2.18)

is vanishing, where Γk
ij̄

= 1
2gm̄k{∂gim̄

∂z̄j − ∂gij̄

∂z̄m } is the second Chritoffel symbol
of the Levi-Civita connection on T ′M.

Clearly, if Γk
ij̄

= 0, that is the Levi-Civita connection is of (1, 0)−type, or
equivalently the fact that gij̄ is a Kähler metric, then the difference d−tensor is

reduced to Dk
l = ∂Γk

ij

∂η̄l ηiηj . Therefore, we can state:

Proposition 2.6. If gij̄ is a Kähler metric of the complex Finsler space (M,L)
and the coefficients Γk

ij of the Levi-Civita linear connection on T ′M are holo-

morphic functions, then
0F

Na
b coincides with

cFR

Na
b .

Also, let us note that if gij̄ locally depends on T ′M only on z, i.e. gij̄(z) (the
point is called normal cf. [3]), then the metric comes from a Hermitian metric
on M. In the Kählerian situation such metric is called Hermitian-Kähler ([1],
[12]). So, from the local expression of Γk

ij , we have:

Proposition 2.7. If gij̄ is a Hermitian-Kähler metric of the complex Finsler

space (M,L), then
0F

Na
b coincides with

cFR

Na
b .

3. The induced N−real linear connection

Let us study now the real image of other geometric elements on TRM induced
from a (c.n.c.) on T ′M.

Let D : χ(T ′M)×χ(T ′M) → χ(T ′M) be a normal complex linear connection
(shortly, N − (c.n.c.)), that is a derivative law on T ′M which preserves the
distributions V (T ′M), H(T ′M) and their conjugates. Locally, an N − (c.l.c.) is
characterized by its coefficients (Li

jk ;Li
jk̄

;Ci
jk ;Ci

jk̄
), where:

Dδk
δj = Li

jkδi ; D∂k
∂j = Ci

jk∂i

Dδk̄
δj = Li

jk̄δi ; D∂k̄
∂j = Ci

jk̄∂i(3.1)

As was proved in [11], D is an N − (c.l.c.) iff DJ = DF = DF ∗ = 0,
where J is the complex structure on T ′M , F is the natural tangent structure
and F ∗ is the adjoint tangent structure of F with respect to the adapted base
determined by a given (c.n.c.)N. Locally, F ∗ behaves on the adapted base as
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follow: F ∗(δk) = 0; F ∗(∂k) = δk ; F ∗(δk̄) = 0; F ∗(∂k̄) = δk̄ , and globally
defined.

Correspondingly, on TRM we have in addition to the complex structure
R

J ,

the natural tangent structure
R

F defined by
R

F (XR) = (FX)R, and its adjoint

tangent structure
R

F ∗ in respect to an adapted base. Locally, their actions are
given by:

R

F ( δ
δxa ) = ∂

∂ya ;
R

F ( ∂
∂ya ) = 0;

R

F ∗ ( δ
δxa ) = 0;

R

F ∗ ( ∂
∂ya ) = δ

δxa

Then a derivative law
R

D on TRM is an
R

N −real linear connection, shortly
R

N −(r.l.c.), conformity to [10] iff
R

D
R

J=
R

D
R

F=
R

D
R

F ∗= 0.

Theorem 3.1. If D is an N − (c.l.c.) on T ′M , then the following derivative
law:

R

DA B = DAB , ∀ A,B ∈ χ(TRM)(3.2)

or in other words:

R

DXR Y R = (DXY )R + (DX Ȳ )R , ∀X, Y ∈ χ(T ′M)(3.3)

is an
R

N −(r.l.c.) on TRM.

Proof. Let us remark that
R

D is a linear connection on T ′M. Since J(A+ iB) =
R

J

(A) + i
R

J (B) and taking into account the definitions of
R

F and
R

F ∗ structures it

is verified that
R

D
R

J=
R

D
R

F=
R

D
R

F ∗= 0.
Moreover, if D is of (1, 0)−type, because DJXY = DXJY , it results that

R

DR

JA
B =

R

DA

R

J B.

If the
R

N −(r.l.c.)
R

D is given, obviously then D is obtained by linearity.

Now, let us suppose that
R

D is given in the local base by its coefficients ([10]):

R

D δ
δxc

δ

δxb
=

R

La
bc

δ

δxa
;

R

D ∂
∂yc

δ

δxb
=

R

Ca
bc

δ

δxa

R

D δ
δxc

∂

∂yb
=

R

La
bc

∂

∂ya
;

R

D ∂
∂yc

∂

∂yb
=

R

Ca
bc

∂

∂ya
(3.4)

Then making the computations in (3.3), thanks to (1.6) and (2.5) formulas,

we find the relation between the coefficients of induced
R

N −(r.l.c.)
R

D and N −
(c.l.c) D :

R

Li
jk=

R

Ln+i
n+jk= Re (Li

jk + Li
Jk̄)(3.5)
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R

Ln+i
jk =

R

−Li
n+jk= Im (Li

jk + Li
Jk̄)

R

Li
jn+k=

R

Ln+i
n+jn+k= Im (Li

jk̄ − Li
jk)

R

Ln+i
jn+k=

R

Li
n+jn+k= Re (Li

jk − Li
Jk̄)

Definition 3.1. An
R

N −(r.l.c.)
R

D whose coefficients are connected by the rela-

tions:
R

Li
jk=

R

Ln+i
n+jk ;

R

Ln+i
jk =

R

−Li
n+jk ;

R

Li
jn+k=

R

Ln+i
n+jn+k ;

R

Ln+i
jn+k=

R

Li
n+jn+k will be

called of Hermitian type.

The definition is justified by the fact that for a fixed index c the coefficient
R

La
bc is the real representation of a Hermitian matrix.

Proposition 3.1.
R

D is an
R

N −(r.l.c.) of Hermitian type if and only if
R

D
R

J=
R

J
R

D .

If D is of (1, 0)−type then formulas (3.5) are simplified, because Li
jk̄

= Ci
jk̄

=
0.

The calculus of bracket gives that
[
X, Y

]
= [X, Y ] and hence we have

[
XR, Y R

]
= [X, Y ]R . So, the curvature and the torsion of the induced

R

N

−(r.l.c.)
R

D are expressed as a function of the curvature and respectively the
torsion of N − (c.l.c.)D as follows:

R

R (XR, Y R)ZR = R(XR,YR)ZR ;
R

T (XR,YR) = T(XR,YR)(3.6)

The components of this curvature and torsion are directly obtained from (3.6)
as a function of the real and imaginary parts of the complex curvatures and
torsions.

As we have seen, the Hermitian metric G on T ′M is : G = Re G+iIm G =
R

G

+i
R

G̃ .
If D is a metrical N−(c.l.c.) , i.e. (DXG)(Y,Z) = XG(Y, Z)−G(DXY, Z)−

G(Y,DXZ) = 0, replacing X, Y, Z to their real parts, we obtain that
R

D
R

G=
R

D
R

G̃

= 0. Therefore,
R

D is metrical with respect to both real metric induced by G
from T ′M.

In a real case ([10]), and in the complex one ([11]), are known metrical
N−linear connections. In a real Lagrange geometry one has a special meaning,

the so-called real canonical, or Miron’s metric
R

N −(r.l.c.) :

cR

La
bc=

1
2

R
g

da

{δ
R
gdc

δxb
+

δ
R
gbd

δxc
− δ

R
gbc

δxd
}(3.7)
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cR

Ca
bc=

1
2

R
g

da

{∂
R
gdc

∂yb
+

∂
R
gbd

∂yc
− ∂

R
gbc

∂yd
}

In the complex case we know the next metric N − (c.l.c.) :
-The complex canonical connection([11]):

cC

Li
jk=

1
2
gli(

δgjl

δzk
+

δgkl

δzj
) ;

cC

Ci
jk=

1
2
gli(

∂gjl

∂ηk
+

∂gkl

∂ηj
) = gl̄i

∂gjl̄

∂ηk

cC

Lī
j̄k=

1
2
gīl(

δglj̄

δzk
− δgkj̄

δzl
) ;

cC

C ī
j̄k=

1
2
gil(

∂glj̄

∂ηk
− ∂gkj̄

∂ηl
) = 0(3.8)

-The Chern-Finsler complex connection ([1],[2]...), for the special Finsler
case:

KF

Li
jk= gl̄i

δgjl̄

δzk
;

KF

Li
jk̄=

KF

Ci
jk̄= 0 ;

KF

Ci
jk =

cC

Ci
jk(3.9)

(A comparative analysis of these is to be find in [12])

Let
R

N be the induced (r.n.c.) of the (c.n.c.)N. Because gjk̄ =
R
gjk +i

R
gjn+k,

gl̄i =
R
g

li

+i
R
g

ln+i

and δ
δzk = 1

2{ δ
δxk − i δ

δxn+k }, developing the computation in
(3.8) and then suitably grouping of terms, after a straightforward computation
we obtain that:

Re(
cC

Li
jk) =

1
2
(

cR

Li
jk −

cR

Li
n+jn+k)(3.10)

Im(
cC

Li
jk) =

1
2
(

cR

Ln+i
jk −

cR

Ln+i
n+jn+k)

Re(
cC

Li
jk̄) =

1
2
(

cR

Li
jk −

cR

Ln+i
jn+k)

Im(
cC

Li
jk̄) =

1
2
(

cR

Ln+i
jk +

cR

Li
jn+k)

and analogous formulas for the
cC

Ci
jk and

cC

Ci
jk̄

, where in addition we have that
cR

Ci
jk=

cR

Cn+i
jn+k and

cR

Cn+i
jk = −

cR

Ci
jn+k .

Now, corroborate the (3.10) and (3.5) formulas, we have the next correspon-
dence between the real image of canonical (c.l.c.) and canonical (r.l.c.) :

RcC

Li
jk=

cR

Li
jk −

1
2
(

cR

Li
n+jn+k +

cR

Ln+i
jn+k)

RcC

Ln+i
jk =

cR

Ln+i
jk −1

2
(

cR

Ln+i
n+jn+k −

cR

Li
jn+k)
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RcC

Li
jn+k=

1
2
(

cR

Li
jn+k +

cR

Ln+i
n+jn+k)

RcC

Ln+i
jn+k=

1
2
(

cR

Ln+i
jn+k −

cR

Li
n+jn+k)(3.11)

and analogous formulas for the coefficients
RcC

Ca
bc .

Proposition 3.2. The real image
RcC

D of the canonical N − (c.l.c.)
cC

D coincides

with the real canonical (Miron’s) connection
cR

D,in respect to the adapted base of

induced (r.n.c.)
R

N , if and only if
cR

D is of Hermitian type.

Finally, let us consider again the complex structure
R

J on TRM and the metric

structure given by (2.8) for a fixed (c.n.c.). It is easy to verify that (TRM,
R

J,
R

G)

is a Hermitian manifold in which
cR

D is a metrical N − (r.l.c.). Next we assume

in addition that (TRM,
R

J,
R

G,
cR

D) is a real Kähler space. Then, by the fact that
cR

D has zero torsion and because
cR

D coincides in this circumstances with
RcC

D , it

results that
cC

D has too zero torsion and hence, (M,L) is a complex Hermitian-
Kähler space ([1],[12]). By the above Proposition and because the complex
torsion vanishes if and only if the torsion of the induced (r.l.c.) vanishes, the
converse assertion is true.

So, really we have proved that:

Theorem 3.2. (M, L) is a complex Hermitian-Kähler space if and only if (TRM,
is a real Kähler manifold.
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