SIMPLE SCORE SEQUENCES IN ORIENTED GRAPHS

S. Pirzada ${ }^{1}$

Abstract

We characterize irreducible score sequences of oriented graphs and give a condition for a score sequence to belong to exactly one oriented graph.

AMS Mathematics Subject Classification (2000): 05C
Key words and phrases: oriented graphs, score sequences

1. Introduction

An oriented graph is a digraph with no symmetric pairs of directed arcs and without loops. Let D be an oriented graph with the vertex set $V=v_{1}, v_{2}, . ., v_{n}$, and let $o d v$ and $i d v$ denote the outdegree and indegree, respectively, of a vertex v. Avery [1] defined $s_{v}=n-1+o d v-i d v, 0 \leq s_{v} \leq 2 n-2$, as the score of vertex v and $S=\left(s_{1}, s_{2}, . ., s_{n}\right)$ in nondecreasing order is the score sequence of D. An arc from the vertex u to the vertex v is denoted by $u \rightarrow v$ and $u \sim v$ or $v \sim u$ means neither $u \rightarrow v$ nor $v \rightarrow u$. Avery [1] has characterized the score sequence of oriented graphs.

Theorem 1.1. [1] A nondecreasing sequence of non-negative integers $S=\left(s_{1}\right.$, s_{2}, \ldots, s_{n}) is the score sequence of an oriented graph if and only if for $k=$ $1,2, \ldots, n$

$$
\sum_{i=1}^{k} s_{i} \geq K(k-1)
$$

and equality holds for $k=n$.
A triple in an oriented graph is an induced subdigraph with three vertices. The triples of the form $u \leftarrow v, v \leftarrow w, w \leftarrow u$ or $u \leftarrow v, u \leftarrow w, u \sim w$ are called intransitive triples and the triples $u \sim v, v \sim w, w \sim u$ or $u \sim v, v \sim w$, $u \leftarrow w$ are called transitive triples.

Avery [1] gave the following results.
Theorem 1.2. [1] Let D and D be two oriented graphs with the same score sequence. Then D can be transformed to D by successively transforming appropriate triples in one of the following ways:

[^0]either (a) by changing a cyclic triple $u \leftarrow v, v \leftarrow w, w \leftarrow u$ to a transitive triple $u \sim v, v \sim w, w \sim u$, which has the same score sequence, or vice versa;
or (b) by changing an intransitive triple $u \leftarrow v, v \leftarrow w, u \sim w$ to a transitive triple $u \sim v, v \sim w, u \leftarrow w$, which has the same score sequence, or vice versa.

The next result provides a useful recursive test of whether a given sequence S of nonnegative integers is the score sequence or an oriented graph and if S is a score sequence, an oriented graph $\triangle(s)$ with score sequence S is constructed.

Theorem 1.3. [1] Suppose S is a sequence of n integers between 0 and $2 n-2$ inclusive. Let S be obtained from S by deleting the greatest entry, $2 n-2-r$ say, and reducing each of the greatest remaining entries in S by 1 . Then S is a score sequence if and only if S is.

2. Irreducible score sequences

An oriented graph D is reducible if it is possible to partition its vertices in to two nonempty sets V_{1} and V_{2} in such a way that every vertex of V_{2} is adjacent to all vertices of V_{1}. Let D_{1} and D_{2} be induced digraphs having vertex sets V_{1} and V_{2} respectively. Then D consists of D_{1} and D_{2} and every vertex of D_{2} is adjacent to all vertices of D_{1}. We write $D=\left[D_{1}, D_{2}\right]$. If this is not possible, then the oriented graph D is irreducible. Let $D_{1}, D_{2}, \ldots, D_{k}$ be irreducible oriented graphs with disjoint vertex sets. Now $D=\left[D_{1}, D_{2}, \ldots, D_{k}\right]$ denotes the oriented graph having all arcs of $D_{i} \leq i \leq k$, and every vertex of D_{j} is adjacent to all vertices of D_{i} with $1 \leq i \leq j \leq k . D_{1}, D_{2}, \ldots, D_{k}$ are called as irreducible components of D. Such a decomposition is known as irreducible component decomposition of D, which is unique.

A score sequence S is said to be irreducible if all the oriented graphs D_{1} with score sequence S are irreducible.

In case of ordinary tournaments, the score sequence $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is used to decide whether a tournament T having score sequence S, is strong or not [3]. This is not true in the case of oriented graphs. For example, the oriented graphs D_{1} and D_{2} in Figure 1, both have score sequence $(2,2,2)$ but D_{1} is strong and D_{2} is not.

Figure 1
The following result charaterises irreducible oriented graphs.

Theorem 2.1. Let D be an oriented graph having score sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Then D is irreducible if and only if, for $k=1,2, \ldots, n-1$

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i}>k(k-1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i}=n(n-1) \tag{2.2}
\end{equation*}
$$

Proof. Suppose D is an irreducible oriented graph having score $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Condition (2) holds since Theorem 1.1 has already established it for any oriented graph. To verify inequalities (1), we observe that for any integer $k<n$, the subdigraph induced by any set of k vertices has a sum of scores $k(k-1)$. Since D is irreducible, there must be an arc from at least one of these vertices to one of the other $n-k$ vertices. Thus for $1 \leq k \leq n-1$,

$$
\sum_{i=1}^{k} s_{i}>k(k-1)
$$

For the converse, suppose conditions (1) and (2) hold, we know by Theorem 1.1 that there exists an oriented graph D with these scores. Assume that such an oriented graph D is reducible. Let $D=\left[D_{1}, D_{2}, \ldots, D_{k}\right]$ be the irreducible component decomposition of D. If m is the number of vertices in D_{1}, then $m<n$, and the equation

$$
\sum_{i=1}^{m} s_{i}=m(m-1)
$$

holds, which is a contradiction. This proves the converse part.
The following result is an extension of Theorem 2, [2]. The proof is obvious.
Theorem 2.2. Let D be an oriented graph with score sequence $S=\left(s_{1}, s_{2}, \ldots\right.$, s_{n}). Suppose that

$$
\begin{aligned}
& \sum_{i=1}^{p} s_{i}=p(p-1), \\
& \sum_{i=1}^{q} s_{i}=q(q-1)
\end{aligned}
$$

and

$$
\sum i=1^{k} s_{i}>k(k-1) \quad \text { for } p+1 \leq k \leq q-1
$$

where $0 \leq p<q \leq n$.
Then the subdigraph induced by the vertices $v_{p+1}, v_{p+2}, \ldots, v_{q}$ is an irreducible component of D with score sequence $\left(s_{p+1}-2 p, \ldots, s_{q}-2 p\right)$.

Now S is irreducible if D is irreducible and the irreducible components of S are the score sequences of the irreducible components of D. Theorem 2.2 shows that the irreducible components of S are determined by the successive values of k for which

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i}=k(k-1), 1 \leq k \leq n \tag{2.3}
\end{equation*}
$$

We illustrate it with the following example.
Let $S=(1,2,3,8,8,8,13,13)$. Equation (3) is satisfied for $k=3,6,8$. Thus the irreducible components of S are $(1,2,3),(2,2,2)$ and $(1,1)$ in ascending order.

3. Simple score sequences

A score sequence is simple if it belongs to exactly one oriented graph. Avery [2] has characterised simple score sequences in ordinary tournaments. Here we characterise simple score sequences of oriented graphs. First we have the following observation.

Theorem 3.1. The score sequence S of an oriented graph is simple if and only if every irreducible component of S is simple.

The following result determines which irreducible score sequences are simple.
Theorem 3.2. Let S be an irreducible score sequence. Then S is simple if and only if it is one of (0), or $(1,1)$.
Proof. Suppose S is an irreducible score sequence and let D be an oriented graph having score sequence S. We have three cases to consider. (1) D has $n \geq 3$ vertices. (2) D has two vertices. (3) D has one vertex.

Case 1. D has $n \geq 3$ vertices. Since S is irreducible, therefore there exist vertices u, v and w such that D has a cyclic triple $u \leftarrow v, v \leftarrow w, w \leftarrow u$; or an intransitive triple $u \leftarrow v, v \leftarrow w, w \sim u$; or a transitive triple $u \sim v, v \sim w$, $u \leftarrow w$; or a transitive triple $u \sim v, v \sim w, w \sim u$. Now, if D contains the cyclic triple $u \leftarrow v, v \leftarrow w, w \leftarrow u$, it can be changed to the transitive triple $u \sim v$, $v \sim w, w \sim u$ to form an oriented graph D with the same score sequence, or vice versa. So the number of arcs in D and D is different. If D contains the intransitive triple $u \leftarrow v, v \leftarrow w, w \sim u$, we can transform it to the transitive triple $u \sim v, v \sim w, u \leftarrow w$ to form an oriented graph D having the same score sequence, or vice versa. Here, the number of arcs in D and D is also different. Since in every case the number of arcs in D and D is not same, therefore D is not isomorphic to D. Thus S is not simple.

Case 2. D has two vertices. Then $S=(1,1)$ is the only irreducible score sequence and it belongs to exactly one oriented graph, namely $u \sim v$.

Case 3. D has just one vertex. Then $S=(0)$ which is obviously simple. Hence (0) and $(1,1)$ are the only irreducible score sequences that are simple.

Corollary 1. The score sequence S is simple if and only if every irreducible component of S is one of (0), or $(1,1)$.

References

[1] Avery, P., Score sequence of oriented graphs. J. of Graph Theory, 15(3) (1991), 251-257.
[2] Avery, P., Condition for a tournament score sequence to be simple. J. of Graph Theory, 4 (1980), 157-164.
[3] Landau, H. G., On dominance relations and the structure of animal societies, III. The condition for a score structure. Bull. Math. Biophysics, 15(1953), 143-148.

Received by the editors September 5, 2001

[^0]: ${ }^{1}$ Department of Mathematics and Statistics The University of Kashmir Srinagar-190 006, Kashmir, India

