Novi SAD J. MATH. 53

VoL. 33, No. 1, 2003, 53-65

CHARACTER ORIENTED PROGRAM
EDITING — HABIT OR NECESSITY?

Zorica Suvajdzin', Miroslav Hajdukovié¢!, Zarko Zivanov'

Abstract. This paper advocates a viewpoint that the program text is not
a simple string of characters but a complex structure built of components
defined by the programming language. So, the program editing is not to
be based on characters handling, but on handling components defined by
the programming language. The paper describes how such handling can
be done, and discusses properties of the suggested approach.

AMS Mathematics Subject Classification (2000): 68U15

Key words and phrases: editor, character oriented interface, programming
language

1. Introduction

The traditional approach to program editing, based on character oriented
user interface, is formed under the influence of the first character oriented input-
output devices, intended to support a user-computer interaction. Although
later appearance of graphical terminals and pointing devices has caused radical
changes in the user interface, this has not touched essentially the program edi-
tors. This poses a dilemma on whether program editors have not been changed
because there is no way to do so, or just because of inertia. This paper tries to
resolve the dilemma by presenting a new approach to program editing. Further,
it analyzes the characteristics of the presented approach.

2. User elementary activities during program editing

The program text can be seen as a complex structure composed of tem-
plates corresponding to the programming language statements. Presentation of
such view of a program text is based on a subset of C programming language
statements. This subset contains a variable definition statement, an assignment
statement and an if statement, i.e. statements that can form a C function body.
Table 1 contains the simplified templates of these three statements.

Each template of Table 1 contains zones with underscored names. Filling
all zones of some template with suitable content leads to the completion of the
corresponding C statement. Optional parts of templates are shown in italic.
Parts of templates shown in non-italic are mandatory.

IDepartment of Computing and Control, Faculty of Engineering, University of Novi Sad

54 Z. Suvajdzin et al.

statement type simplified template ‘

variable definition statement type new name = value ;
assignment statement name = operand;
if statement if (operand operator operand)
{body}
else
{body} ;

Table 1: Simplified variable definition, assignment and if templates.

A possible content of each template zone is known in advance. So the zone
type can hold a name of an already defined type, the zone new name can hold a
name of a previously undefined variable, the zone name can hold a name of an
already defined variable, and the zone operand can hold a name of an already
defined variable or constant. The zone value can hold a constant, the zone
operator can hold one of the relational operators, and the zone body can hold
a variable definition, assignment and if templates.

The zones could be nonterminal and terminal. The zone body is nontermi-
nal, while all other zones are terminal. Only the nonterminal zones can hold
templates.

When all zones of a template contain question-marks the template is empty.
Figure 1 shows the empty variable definition template (with mandatory zones
only).

2 .
S0y

Figure 1: The empty variable definition template

Filling all zones of a template with acceptable contents leaves the full tem-
plate (the filled content substitutes question-marks). Figure 2 shows the full
variable definition template.

char ascii_code;

Figure 2: The full variable definition template

A C function body can be composed by filling the templates (from Table 1)
to a special zone function body. The function body zone is similar to the zone
body. The only difference is that the first one belongs to a function definition
template, while the other belongs to an if template. Therefore, composing the C
function body is done by inserting templates to the zone function body, and also

Character oriented program editing — habit or necessity? 55

by deleting templates from this zone. After inserting, the template is to be filled.
This is done by inserting contents to the template zones, and also by deleting
these contents. The template filling can also include inserting of the optional
zones, and their deleting. Therefore, the user’s elementary activities during
editing a program text composed from templates, consist of zone handling. The
zones could be inserted and deleted. The same can be done with their contents.

3. Editor support to template zone handling

Insertion and deletion of zones or templates are supported by the editor op-
erations insert and delete. The both of them are context sensitive operations,
and are applied to the marked zone or to the marked template. The insert
operation inserts a new zone (or a new template) behind the marked zone (or
the marked template). The delete operation deletes the marked zone (if it is
optional) or the marked template. The deleted item could be substituted by a
question-mark.

Context sensitivity of insert and delete operations is possible only if mark-
ing is applied on the suitable text units. This is achieved by automatic marking
the whole terminal zone, when the cursor is inside it, or by automatic marking
the whole template, when the cursor is inside it, but outside of its zones. Fig-
ure 3 shows different cases of automatic marking on the example of a variable
definition template.

ascii_code;
ascii_code;

|char=ascii_code; |

charl gscii_code}

|char ascii_codeg

Figure 3: The cases of automatic marking (the cursor has the form of gray
rectangle, and marking is displayed by frames)

The zones and the templates build hierarchical structures. For example, the
zone function body can contain an if template. This template contains the zone
body with another if template and so on. This gives an idea to introduce an
operation mark (m) intended to widen up marking to the first higher level. For
example, when the zone body is marked, then the mark operation marks the
whole if template containing the previously marked zone, and so on.

The cursor moving is supported by operations —, «—, T, and |. The first two
move the cursor left and right horizontally, and the last two move the cursor
up and down vertically. An operation ? moves the cursor to the first following
question-mark.

56 Z. Suvajdzin et al.

Before inserting a new content to a zone it is necessary to enter the zone.
This is done by the operation enter. After entering the zone, if it is empty, the
question-mark can be substituted by a new content, while if it is a full terminal
zone, then its old content can be substituted by a new content. The enter
operation is not necessary for empty zones if marking of an empty zone causes
by default entering this zone (to be filled with a new content).

The enter operation provides a new content by (1) input (for example, a
new unique variable name in the case of the zone new name, or a constant in
the case of the zone value) or by (2) selection of an alternative from a set of
alternatives (for example, a type name from the set of defined types in the case
of the zone type, or a variable name from the set of defined variables in the case
of the zone name, or a template from the set of templates in the case of the zone
body). Similarly, the insert operation also requires selection of an alternative
from a set of alternatives. In any case selection is sensible only if there are
more alternatives. In the opposite case, it is natural to choose the only option
automatically.

Input of a new content is performed inside a special input dialog. In the
coming examples this input dialog is represented by the rectangle shown in
Figure 4.

L] inou

box
Figure 4: The input dialog

The user inputs the characters of a unique new variable name or a constant
into the input box of the input dialog. The input box enables character editing,
while the input dialog prevents incorrect characters input, and ensures that new
variable names are unique, and that constant types are correct.

Selection of an alternative from a set of alternatives is done inside a special
selection dialog. In the coming examples this selection dialog is represented by
the split rectangle shown in Figure 5.

= selection box
alternatives

box

Figure 5: The selection dialog

The alternatives box contains all possible options, while the selection box
mediates in selection of an option. The offered options are context sensitive (in
the case of the zone type options consist of defined types names, in the case of
the zone name options consist of defined variable names, in the case of the zone
operator options consist of relational operator symbols, and in the case of the
zone body options consist of statement symbols).

Character oriented program editing — habit or necessity? 57

The input dialog and selection dialog enable the composed program text to
be regular i.e. that is in accordance to the syntax of the programming language.
Therefore, the described editor is called regular editor, and its usage regular
editing.

4. The regular editing example

The example of regular editing is based on a C program fragment, shown in
Figure 6.

char ascii_code;
char control_character;
if (ascii_code < 32)
{contol_character = 1;}
else
{contol_character = 0;}

Figure 6: The C program fragment

An example of regular editing is given in Table 2. The first column contains
short description and keyboard keys needed to produce the screen state shown
in the second column.

Table 2: The regular editing example

| Description | Screen state
In this example regular editing

starts by filling the zone
function body.

The enter key activates the ?

selection dialog. char
if

58 Z. Suvajdzin et al.
Table 2: (continued)
] Description \ Screen state
The first option in the alternatives | |[?jchar_
box is the type name char, char
because it is a symbol of a variable if
definition statement (to simplify —
discussion the number of types is
limited to char type only). Also,
there are two more options:
symbols of assignment and if
statements. The c key selects a
variable definition template.
The enter key confirms the char ;
selected template.
The enter key activates the input | char [3_ |

dialog.

The input box receives variable
name characters a, s, c, i, i, _, c,
o,d, e.

char Eascii_codem

The enter key confirms received
variable name, and the « key
marks the variable definition
template.

[char_ascii_code;

The insert key activates the
selection dialog. Its intention is to
select a next template that is
going to be inserted behind the
marked template.

|char ascii_code;

=

char
if

Character oriented program editing — habit or necessity?

Table 2: (continued)

59

Description

\ Screen state

The c key selects the variable
definition template. The enter
key confirms the selected option.
The enter key activates the input
dialog. Its input box receives the
new variable name characters: c,
ontr ol _c haract,
e, r. The enter key confirms the
received variable name, and the «
key marks the just inserted
template.

char ascii_code;

|char:pontrol_character;

The insert key activates the
selection dialog that intervenes in
the selection of a new template.
The i key selects the if template.
The enter key confirms this
choice.

char ascii_code;
char control_character;
if ()

{2;)

The enter key activates the
selection dialog to enable selection
of an operand.

char ascii_code;

char control_character;

if (7o
{?i|lascii_code

control_character

The a key selects the variable
name ascii_code, and the enter
key confirms this selection.

char ascii_code;
char control_character;

if (fgscii_codel)

{2: 147

The insert key inserts two
optional zones: operator and

operand.

char ascii_code;

char control_character;

if (ascii_code ! ?)
{2;1;

60

Z. Suvajdzin et al.

Table 2: (continued)

Description

\ Screen state

The enter key activates the
selection dialog to enable selection
of a relational operator.

char ascii_code;
char control_character;
if (ascii_code

{2:};

<
<=

The < key selects the operator
less, and the enter key confirms
selection. The 7 and enter keys
help to select the remaining
operand.

char ascii_code;
char control_character;

if (ascii_code < [7

=

{2;}; ascii_code

control_character

The 3 key activates the input
dialog instead of the selection
dialog.

char ascii_code;
char control_character;

{2:1;

The 2 key ends the constant 32,
and the enter key confirms this
constant. The ? and enter keys
enable filling the if statement
body.

char ascii_code;
char control_character;
if (ascii_code < 32)

{|?2l=
char
if

The = key selects the assignment
template, and the enter key
confirms this choice.

char ascii_code;
char control_character;
if (ascii_code < 32)

{lg = 2i1;

The enter key activates the
selection dialog to enable filling
the left zone of an assignment
variable template.

char ascii_code;
char control_character;
if (ascii_code < 32)

{[?l=
ascii_code
control_character

Character oriented program editing — habit or necessity? 61

Table 2: (continued)

] Description \ Screen state

char ascii_code;
char control_character;

The c key selects the variable

name control_character, and if (ascii_code < 32)
the enter key confirms this S e
selection. The ? and enter keys contrgl_character

help to choose a new value of the
previously selected variable.

The 1 key activates the input char ascii_code;

. . . h 1 ch .
dialog instead of the selection char control_character;

. if (ascii_code < 32)
dialog.

{control_character =

The enter key confirms the char ascii_code;
received constant. The m m keys | char control character;

. if (ascii_code < 32)
mark th filled zone. T
a t eJUSt ed zone |{control_character = l;}J

The insert key inserts the char ascii_code;
opﬁonalzone char control_character;

if (ascii_code < 32)

{control_character = 1;};
else
e
The keys enter, =, enter, enter, | char ascii_code;

char control_character;
if (ascii_code < 32)
{control_character = 1;};
else
{control_character = @;};

c, enter, 7, enter, 0 and enter
help to fill the optional zone.

Traditional character oriented editors demand 112 keystrokes to input the
C program fragment from Figure 6. To input the same fragment by the regular
editor 78 keystrokes are needed, or even 66 strokes if only the automatic entering
to the marked empty zones is presumed (in the second case the enter operation is
not needed). Therefore, in the presented example the regular editor reduces the
number of keystrokes comparing to traditional editors by 41%. During the usage
of the implemented prototype of the regular editor [4] reduction of keystrokes
number was between 30% and 60%, comparing to traditional editors.

The previous example shows that the regular editor leads users, and does not
require exact knowledge of the programming language syntax. It also prevents

62 Z. Suvajdzin et al.

all editing errors (lexical, syntax and semantic errors that can be detected in
compile-time).

5. Regular editor discussion

The described regular editing prevents errors only during initial program
text inserting. This means that changing of an already inserted program text
can leave inconsistencies, despite the regular editing. For example, a C program
fragment:

int number;
number = 1000;

becomes incorrect when the variable number type is changed from int to char.
Such inconsistencies could be removed if the regular editor would automatically
intervene and expel the name number from all zones where its usage becomes
unacceptable. Therefore, after the described change of the variable number
type, and after the editor intervention, the previous C program fragment looks
like:

char number;
? = 1000;

Consequences of the regular editor automatic intervention on a program
text can be very extensive, so it is important to offer the undo operation to
cancel thoughtless changes and their consequences. A regular editor automatic
intervention on a program text would also cover propagation of the changes like
variable name changes. For example, if the name number is changed to the
name count, then, after the regular editor intervention the previous C program
fragment becomes:

int count;
count = 1000;

The regular editing influences the operations find, copy&paste and cut&paste.
The find operation activates the special selection dialog to choose text to be
retrieved. The copy (cut) operation denotes the marked text, and the paste
operation inserts the denoted text behind or instead of the marked text (the
denoted text is moved from the previous to the new position in the case of the
operation cut). The paste operation is specific in the sense that the denoted
text can not be inserted everywhere. For example, if a content of the zone
operand is denoted, then it can not be inserted into the zone operator. Besides,

Character oriented program editing — habit or necessity? 63

the paste operation activates the special dialog (1) in the case that the copy
operation denotes a global variable or a function definition statement, and (2)
in the case that the copy&paste (cut&paste) operation moves statements from
the body of one function to the body of the other function. In the first case
the dialog purpose is to change the names of the copied variable or the function
to preserve their unique appearance. In the second case the dialog purpose is
to exchange the local variables names of the source function (used in moved
statements) for the local variables names of the destination function. The reg-
ular editing requires a special treatment of expressions in order to provide an
automatic handling of the parentheses and the unary operations.

6. On implementation of the regular editor prototype

The idea of the regular editing is worked out, applied and checked [4] in the
development of the Structure Text programming language environment (Inter-
national Standard IEC 1131-3 [2]). This programming language is intended to
be used for Programmable Controllers (PLC). The developed programming en-
vironment comprises the Structure Text editor (partly implemented), the trans-
lator from Structure Text programming language to C programming language,
C compiler, the linker, the PLC loader and the PLC executive support. The
environment uses the existing C compiler, the linker and the PLC executive
support, and the editor, the translator and the PLC loader are developed. This
environment was used to develop a complex application for controlling a big
industrial section. The biggest program text composed with Structure Text Ed-
itor contains about 3000 lines. User’s reactions to the implemented prototype
of a regular editor [4] were very favorable, although it is not completely clear if
these impressions can be generalized, because there were a few users and spe-
cific ones (only PLC programmers). The main advantages of the implemented
regular editor prototype include:

- avoiding editing errors,

- guiding the user and

- reducing significantly the number of keystrokes.

The fact that the user is guided in the process of regular editing, implies
that the user does not need to be familiar with the syntax of the programming
language. The reduction of the keystroke number is the result of the following:

- names are assigned only once, than selected,

- keywords are automatically inserted into the program text,

- program text marking is automatic and

- results of the program text modifications are automatically propagated
down the rest of the program text.

All these advantages are important for novice programmers, non-professional
programmers (like PLC programmers), but should not be neglected by the pro-
fessionals either.

64 Z. Suvajdzin et al.

7. Regular editor generator

In order to implement the idea of regular editing of the program text, the
reditor must have knowledge of programming language syntax and semantics.
This means that regular editors must be adapted to individual programming
languages. Therefore, it is important to facilitate this adaptation as much as
possible. This can be done by developing a software tool for generating reditors
specialized for particular programming languages. The aim of such generator
would be to automate the reditor’s adaptation to the programming language.
The generator input must contain some form of the programming language
description, and the generator output would be the program code for the reditor
specialized for the given programming language. The generator input should
contain the following items:

- the lexical rules (the base for generating a lexical filter in a lexical dialog)

- the syntax rules (the base for generating a syntax filter in a syntax dialog)

- the set of all data types with their characteristics (name, length, ...)

- the set of all applicable operators, defined for data types

- the set of possible name attributes (each name can have an attribute as-
signed) and

- semantic sets, where each set contains a description of names that are used
in the syntax dialog.

The generator output is produced from the regular editor implementation
core, modified in accordance to the given input.

8. Regular editor review

In some respect, regular editing is similar to structure editing [1]. Both ap-
proaches try to avoid editing errors. The difference of these approaches is in
the way this aim is fulfilled. Structure editing is character oriented and editing
errors are discovered by lexical and syntax analysis. Regular editing is not char-
acter oriented and editing errors are prevented. It could be said that regular
editing imposes the way of editing a program text and for that reason limits
the user’s freedom, because it offers only a subset of all available actions from
traditional editors. So, it is natural to wonder if this restriction has serious
consequences, in the sense of preventing the user of doing what he/she wants.
For example, during the traditional editing, the user can transform a while
statement into an if statement directly replacing the string ”while” with the
string ”if”. Although regular editing does not allow exactly the same method,
it does not prevent the user from making the same effect either by copying the
content of the zones condition and body from the while regular template into
the if regular template, or applying a special operation introduced just for such
modification of the program text. The previous suggests that regular editing,
in principle, does not prevent arbitrary program text modifications, but offers
eventually indirect way of their accomplishing, or at least demands existence of

Character oriented program editing — habit or necessity? 65

operations with such purpose (which makes sense only when its usage frequency
is high enough). Therefore, this paper does not discuss regular editing limita-
tions, which it objectively introduces, but its indisputable advantages, which
it definitely offers. Authors are not aware of any paper with similar subject.
So the proposed regular editor is to be compared only to the latest commercial
editors like Microsoft Visual C# editor from .NET development environment
[3]. Similarity of these two kinds of editors is in the attitude to facilitate editing.
They differ in the way how it is done. The editors like Microsoft Visual C#
editor have the following characteristics:

- they try to improve readability of the program text by analyzing it and
showing keywords in different color

- they analyze the program text in editing time to reveal lexical and syntax
errors

- they offer to users possible options like method names of classes in editing
time.

Such approach implies active participating of the user. The user makes
an independent step and editor warns him about possible errors. The idea of
regular editor is to lead the user only through correct states preventing him
from doing any erroneous step. In this way, the user can compose only a correct
program text, comprised of the elements supported by the used compiler.

9. Conclusion

This paper describes a new approach to program editing. The approach is
based on handling the programming language statements as integral components
of a program text, in contrast to traditional editors that treat a program text
as a simple and unstructured string of characters. It is shown that the proposed
approach can lead to a shorter and easier editing and avoiding editing errors.

References
[1] Aho, A.V., Sethi, R., Ullman, J.D., Compilers: Principles, Techniques, and Tools,
Addison Wesley, 1985.

[2] International Standard IEC 1131-3, Programmable Controllers — Part 3: Program-
ming Languages, IEC, 1993.
[3] Microsoft Visual C# .NET development environment 2002.

[4] Suvajdzin, Z., Structured syntax driven editor for ST programming language, Mas-
ter thesis, Faculty of Engineering, Department of Computer Science, University of
Novi Sad, 2000.

Received by the editors January 5, 2002

