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SOME PROPERTIES OF THE SUM OF LINEAR
OPERATORS IN THE NON–DIFFERENTIAL CASE

Bruno de Malafosse1

Abstract. In this paper we recall some results concerning an application
of the sum of linear operators in the infinite matrix theory. Then, we
give several extensions of these results in order to obtain new properties
of infinite linear systems.
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1. Introduction

The theory of the sum of operators is well known, and has been studied
by many authors such as Da Prato and Grisvard [1,2], Furman [3], R. Labbas
and B. Terreni [7,8]. It can also be found in the work of de Malafosse [15],
giving an application of the sum of operators in the infinite matrix theory in
the commutative case. The aim is to study the equation

A.X + B.X − λX = Y, λ > 0(1)

in a Banach space E, where Y is given in E and A, B are two closed linear
operators with domains D(A), D(B) included in E. This work extends the
results obtained in the paper [6], entitled: ”An application of the sum of linear
operators in infinite matrix theory”, where E is not reflexive. Here, equation
(1) is regarded as an infinite linear system in the space E = l∞. A + B is
considered as the sum of two particular infinite matrices defined respectively on
D(A) = s(1/an)n

and D(B) = s1/β . In our case, it has been proved that the
operators (−A) and (−B) are generators of analytic semigroups. The relative
boundedness with respect A or B being not satisfied, the classical perturbation
theory given by Kato [4] or Pazy [18], cannot be applied. The choice of the
two infinite matrices is motived by the resolution of a class of non-symmetric
linear infinite systems. Note that some results concerning the infinite matrices
of operators are given in Maddox [9].

This work is organized as follows. In Section 2 are recalled the definitions
and properties of some Banach spaces of infinite matrices used in R. Labbas
and B. de Malafosse [5] and de Malafosse [11, 12, 14, 16]. We also give the main
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results of the sum-strategy as in Labbas-Terreni [7] and define the two infinite
matrices A and B regarded as two unbounded linear operators on E = l∞ and
study their sum. In Section 3 are used the regularity property of A in order to
give results on the sum of operators in the non-differential case. Further, we
apply the previous results to new matrices obtained from the matrix A+B+λI.
Then, we deal with the linear infinite system (A + B + λI) .X = Y for λ ≥ 0.
Finally, we study the properties of t (A + B + λI) when the trace of the kernull
of the operator A + B + λI on D (A)

⋂
D (B) is not reduced to {0}.

2. Recall of definitions and properties

2.1. Spaces Sc and sc

For a sequence c = (cn), where cn > 0 for every integer n ≥ 1, we define the
Banach algebra

Sc =

{
M = (anm)n,m≥1 | sup

n≥1

( ∞∑
m=1

|anm| cm

cn

)
< ∞

}
,(2)

normed by

‖M‖Sc
= sup

n≥1

( ∞∑
m=1

|anm| cm

cn

)
,

see [10, 12, 14, 16, 17]. We also define the Banach space sc of one-row matrices
by

sc =
{

X = (xn)n | sup
n

( |xn|
cn

)
< ∞

}
,(3)

normed by

‖X‖sc
= sup

n

( |xn|
cn

)
.(4)

If c = (cn)n, and c′ = (c′n)n are two sequences such that 0 < cn ≤ c′n ∀n, then:

sc ⊂ sc′ .

A very useful particular case is the one when cn = rn, r > 0. We denote
then by Sr and sr the spaces Sc and sc. When r = 1 we obtain the space of the
bounded sequences l∞ = s1.

If ‖I − M‖Sc
< 1 we shall say that A satisfies the condition Γc. If c = (rn),

Γc is replaced by Γr.
Sc being a unital algebra, we have the useful result:
if M satisfies the condition Γc, M is invertible in the space Sc and for every

B ∈ sc the equation MX = B admits one and only one solution in sc given by

X =
∞∑

n=0

(I − M)nB.(5)
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Similarly, we define the Banach algebra Sr with unit element I = (δnm)n,m≥1,
(with δnm = 0 if n �= m, and δnn = 1) by

Sr =

{
M = (anm)n,m≥1 | sup

n

(∑
m

|anm| rm−n

)
< ∞

}
(6)

normed by

‖M‖Sr
= sup

n

(∑
m

|anm| rm−n

)
,(7)

see [10-13]. Let us recall that the product of two matrices of Sr belongs to this
space and

∀M ∈ Sr ∀X ∈ sr : MX ∈ sr

with ‖MX‖sr
≤ ‖M‖Sr

‖X‖sr
.

2.2. Sum of linear operators

We recall here some results given in Da Prato-Grisvard [1] and Labbas-
Terreni [7]. E being a Banach space, we consider two closed linear operators
A and B, whose domains are D (A) and D (B) included in E. For every X ∈
D (A)

⋂
D (B) we then define their sum SX = AX + BX.

The spectral properties of A and B are:

(H1)




∃CA, CB > 0, εA, εB ∈]0, π[ such that
i) ρ (A) ⊃∑A = {z ∈ C/ |Arg (z)| < π − εA}∥∥∥(A − zI)−1

∥∥∥
L(E)

≤ CA

|z| ,∀z ∈∑A −{0} ,

ii) ρ (B) ⊃∑B = {z ∈ C/ |Arg (z)| < π − εB}∥∥∥(B − zI)−1
∥∥∥

L(E)
≤ CB

|z| ,∀z ∈∑B −{0} ,

iii) εA + εB < π

Here, we are not in the commutative case, that is:

(A − zI)−1 (B − z′I)−1−(B − z′I)−1 (A − zI)−1 =
[
(A − zI)−1

, (B − z′I)−1
]
,

is not equal to zero for all z ∈ ρ (A) and z′ ∈ ρ (B). Furthermore, the density
of D (A) and D (B) being not true, we must assume that (see Labbas-Terreni
[7], [8])

(H2)




∃C > 0, k ∈ N, (ξi)1≤i≤k , (ηi)1≤i≤k such that
∀i ≥ 1 : 0 ≤ 1 − ξi < ηi ≤ 2 and∥∥∥µA (A − λI)−1

.
[
A−1; (B + µI)−1

]∥∥∥
L(E)

≤ K (εA, εB)
k∑

i=1

|λ|−ξi |µ|−ηi

for |λ| , |µ| → ∞; λ ∈ ρ (A) , µ ∈ ρ (B) .
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Now introduce the real interpolation space between D (A) and E, defined
for all σ ∈]0, 1[ by

DA (σ,∞) =
{

X ∈ E /sup
Z∈Γ

∥∥∥zσA (A − zI)−1
X
∥∥∥

E
< ∞

}
,(8)

Γ being a simple infinite sectorial curve lying in ρ (A − λI)
⋂

ρ (−B). Here we
have

DA (σ,∞) =
{

X ∈ E /sup
t>0

∥∥∥tσA (A + tI)−1
X
∥∥∥

E
< ∞

}
.

In the same way DB (σ,∞) denotes the interpolation space between D (B) and
E . Now we can express the main result given in [8], where

δ = min
1≤i≤k

(ξi + ηi − 1) > 0.

Theorem 1. Suppose that (H1) and (H2) are satisfied. There exists λ∗ such
that ∀λ ≥ λ∗ and ∀Y ∈ DA (σ,∞) equation [A + B − λI] .X = Y has a unique
solution X0 in the space D (A) ∩ D (B) such that

i) (A − λI)X0 ∈ DA (θ,∞) ∀θ ∈]0,min (σ, δ) [,
ii) BX0 ∈ DA (θ,∞) ∀θ ∈]0,min (σ, δ) [,
iii) (A − λI)X0 ∈ DB (θ,∞) ∀θ ∈]0,min (σ, δ) [.

2.3. Definition of operators A and B

As in [6], we apply the results of the previous subsections to particular
matrices.

Let A be the infinite matrix:


a1 b1 O
. .

O an bn

.


 ,(9)

where (an) and (bn) satisfy{
i) an > 0 ∀n, (an) is strictly increasing, and lim

n→∞an = ∞
ii) ∃MA > 0 such that: |bn| ≤ MA for all n.

(10)

In the same way we denote by B the lower triangular matrix


β1 O
. .

γn βn

O .


 ,(11)
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where (βn)n and (γn)n satisfy:


i) βn > 0 ∀n, and β2n → L,
ii) (β2n+1/a2n+1)n → ∞ ,
iii) ∃MB > 0 such that |γn| ≤ MB for all n.

(12)

A is defined on D (A) = s(1/an)n
and B is defined on D (B) = s(1/βn)n

, these
spaces being included in E = l∞ = s1. We deduce from (12) i), ii) that D (A) is
not included in D (B) and D (B) is not included in D (A). In [6], the following
results are proved:

Proposition 2. In the Banach space E the two linear operators A and B are
closed and satisfy

i) D(A) = s(1/an)n
= {X = (xn) / anxn = O (1) (n → ∞)},

ii) D(B) = s(1/βn)n
,

iii) D(A) �= s1, D(B) �= s1.
iv) There exist numbers εA, εB > 0 (with εA+ εB < π ) such that

∥∥∥(A − λI)−1
∥∥∥

L(s1)
≤ M

|λ| , ∀λ �= 0 and |Arg (λ)| ≥ εA,

∥∥∥(B + µI)−1
∥∥∥

L(s1)
≤ M

|µ| , ∀µ �= 0 and |Arg (µ)| ≤ π − εB .

Now let us consider the following additional assumption on A

sup
n≥1

(
|bn−1|βn

an

)
< ∞.(13)

Then we have [6]

Proposition 3. Under (10), (12), and (13) there exists a constant K(εA, εB)
> 0 such that

∥∥∥µA (A − λI)−1
.
[
A−1; (B + µI)−1

]∥∥∥
L(s1)

≤ K (εA, εB)

[
1

|λ| |µ| +
1

|µ|2
]

,

∀λ �= 0 such that |Arg (λ)| ≥ εA and ∀µ �= 0 such that |Arg (µ)| ≤ π − εB.

As we deal with the non-commutative case, we must use the interpolation
space defined in (8). It has been proved in [6] that for all θ ∈]0, 1[

DA (θ,∞) = s(1/aθ
n) =

{
X = (xn) /sup

t>0

∥∥∥tθA (A + tI)−1
X
∥∥∥

s1

< ∞
}

.

Then we can assert the following result:
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Theorem 4. A and B satisfy the hypotheses (10), (12), (13). For any θ ∈]0, 1[
there exists λ∗ such that ∀λ ≥ λ∗ and ∀Y ∈ s(1/aθ

n), the linear infinite system
(−A − B − λI) .X = Y has a unique solution X0 in the space D (A) ∩D (B) =
s(1/an) ∩ s(1/βn) such that

i) (A + λI)X0 ∈ s(1/aθ
n)n

,
ii) BX0 ∈ s(1/aθ

n)
n
.

Remark 1. It is easy to see that s(1/an)n
∩ s(1/βn)n

= sd, where d = (dn)n is
defined by

dn =




1
a2k

if n = 2k,
1

β2k+1
otherwise.

Corollary 5. Conditions i) and ii) in Theorem 4 are equivalent to the condition
AX0 ∈ s(1/aθ

n)
n
.

Proof. First we see that for every θ ∈]0, 1[, sd ⊂ s(1/aθ
n)

n
. In fact, take X =

(xn)n ∈ sd. Since we have (10) i), x2n = O (1/a2n) implies x2n = O
(
1/aθ

2n

)
as

n → ∞. And from (12) ii), x2n+1 = O (1/β2n+1) implies x2n+1 = O
(
1/aθ

2n+1

)
as n → ∞. Then X ∈ s(1/aθ

n). We deduce that Z0 = (A + λI)X0 ∈ s(1/aθ
n) is

equivalent to
AX0 = Z0 − λX0 ∈ s(1/aθ

n).

Elsewhere i)⇔ii), since BX0 = (A + B + λI) .X0 − Z0 ∈ s(1/aθ
n). �

3. New properties of the operator A + B, in the
non–differential case

3.1. Consequence of the regularity property

More precisely, from i) in Theorem 4 we have:

Corollary 6. The unique solution X0 =
(
x0

n

)
satisfies the following property

∀σ ∈]0, θ[ x0
n =

o (1)
aσ+1

n

(n → ∞) .

Proof. From Corollary 5 we deduce that AX0 ∈ s(1/aθ
n) implies that there exists

a real K > 0 such that ∀σ ∈]0, θ[, ∀n

aσ
n

∣∣anx0
n + bnx0

n+1

∣∣ ≤ K

aθ−σ
n

.

Then
aσ

n

(
anx0

n + bnx0
n+1

)
= o (1) (n → ∞) .(14)



Some properties of the sum of linear operators . . . 81

On the other hand, (10) i) implies that there exists K > 0 such that

∣∣bnaσ
nx0

n+1

∣∣ ≤



Kaσ
2k

β2k+1
if n = 2k,

Kaσ
2k+1

a2k+2
if n = 2k + 1.

(15)

Using (10) i) and (12) ii) we deduce that bnaσ
nx0

n+1 = o (1) (n → ∞), and from
(15) we conclude that aσ+1

n x0
n = o (1) as n tends to infinity. �

3.1.1. Numerical application

Assume here that an = αn with α > 1 and consider the matrix Mλ (t1) =
(A + B + λI) (t1) obtained from A + B + λI, by adding the supplementary row
t1 =

(
0, α2ω, 0, α4ω, .....

)
with 1 ≤ ω < 2. Y (u) is the matrix obtained from Y

by adding the number u. From the regularity property we get

∀σ ∈]0, θ[ x0
2n =

o (1)
α2n(σ+1)

(n → ∞) ,

for any θ ∈]0, 1[. We deduce that ∃C > 0 such that α2ωm
∣∣x0

2m

∣∣ ≤ C/α2m(σ+1−ω).
Thus, the series

∑
m α2ωm

∣∣x0
2m

∣∣ is convergent, since for a given ω ∈ [1, 2[ one
can associate θ ∈]0, 1[ and σ ∈]0, θ[, such that σ + 1 − ω > 0. Then the
product Mλ (t1) X0 exists and belongs to the space s(1/αnθ). The equation
Mλ (t1) X = Y (u), where Y ∈ s(1/αnθ) admits a unique solution in sd if and
only if u =

∑
m α2ωmx0

2m. Notice that the property: X0 ∈ D (A) ∩ D (B) = sd

is not sufficient to assure the convergence of the series
∑

m α2ωmx0
2m.

3.2. Expression of the solution in the Banach space sd

In this section, we use only the hypotheses (10), (12) and the following
supplementary condition (

a2n

a2n−1

)
∈ s1.(16)

Then we obtain the expression of the solution X0 in Theorem 4 for any second
member Y ∈ s1. So we shall see that there exists Y ∈ s1 − s(1/aθ

n) such that
the equation (A + B + λI)X = Y admits a solution in the space D (A)∩D (B)
satisfying the property AX0 /∈ s(1/aθ

n). In the case we shall study, this means
that (A + B + λI) is a bijection from D (A) ∩ D (B) into l∞.

For the following results we shall put νn = an + βn for short.

Proposition 7. There exists λ∗ > 0 such that λ ≥ λ∗ implies that for every
Y ∈ s1 equation

(A + B + λI)X = Y(17)
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admits in D (A) ∩ D (B) = sd a unique solution which can be written in the
form

X0 =
∞∑

n=0

[I − Dλ (A + B + λI)]n DλY,(18)

where Dλ =
(

δnm

νn+λ

)
n,m≥1

.

Proof. (17) is equivalent to

Dλ [(A + B + λI)X] = DλY

itself equivalent to
[Dλ (A + B + λI)] X = DλY.(19)

We see that

Dλ (A + B + λI) =




1 b1
ν1+λ

γ2
ν2+λ 1 b2

ν2+λ O

. . .

O γn

νn+λ 1 bn

νn+λ

. .


 .

We get

‖Dλ (A + B + λI) − I‖Sδ
= sup

(
sup
n≥1

(µn) , sup
n≥1

(µ′
n)
)

,

where

µn =
∣∣∣∣ γ2n

ν2n + λ

∣∣∣∣ a2n

β2n−1
+
∣∣∣∣ b2n

ν2n + λ

∣∣∣∣ a2n

β2n+1
,(20)

and

µ′
n =

∣∣∣∣ γ2n+1

ν2n+1 + λ

∣∣∣∣ β2n+1

a2n
+
∣∣∣∣ b2n+1

ν2n+1 + λ

∣∣∣∣ β2n+1

a2n+2
.(21)

We see that the sequence defined by

ρn = |γ2n| a2n

β2n−1
+ |b2n| a2n

β2n+1
,

is bounded. Indeed, from (12) and (16) ii) the sequence defined by
a2n

β2n−1
=

a2n

a2n−1

a2n−1

β2n−1

is bounded. It is the same for the sequence
(

a2n

β2n+1

)
, since (an) is strictly

increasing. Taking λ > ξ = supn≥1 (ρn), we have supn≥1 (µn) < 1. Further, we
deduce from (10) and (12) that there exists an integer N such that

sup
n≥N+1

( |γ2n+1|
a2n

+
|b2n+1|
a2n+2

)
< 1,
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which implies that supn≥N+1 (µ′
n) < 1. Let now

ξ′N = MB sup
n≤N

(
β2n+1

a2n

)
+ MA sup

n≤N

(
β2n+1

a2n+2

)
.

If λ ≥ ξ′N we have supn≤N (µ′
n) < 1 and

sup
n

(µ′
n) = sup

(
sup
n≤N

(µ′
n) , sup

n≥N+1
(µ′

n)
)

< 1.

Put now λ∗ = sup (ξ, ξ′N ). If λ > λ∗

sup
(

sup
n≥1

(µn) , sup
n≥1

(µ′
n)
)

< 1

and the matrix Dλ (A + B + λI) satisfies the condition Γd. So, (17) admits a
unique solution X0 in D (A) ∩ D (B) = sd for every Y such that

DλY =
(

yn

νn + λ

)
∈ sd.

The previous property is also satisfieded for all Y ∈ s1, since

a2n

∣∣∣∣ y2n

ν2n+1 + λ

∣∣∣∣ = O (1) , β2n+1

∣∣∣∣ y2n+1

ν2n+1 + λ

∣∣∣∣ = O (1) ,

as n tends to infinity. Then we can write X0 in the form (18). �

3.3. Resolution of systems obtained from the preceding

In this subsection we suppose that A and B satisfied (10), (12) and (13). We
are going to generalize the results of Theorem 4, in which A + B + λI was an
infinite tridiagonal matrix. So, we shall use an infinite upper triangular matrix
P = (pnm)n,m≥1 ∈ S1 such that pnn = 1 ∀n, and consider the infinite matrix
C = (cnm)n,m≥1 defined by

cnm =




ν1 + λ + p12γ2 if m = n = 1 ,
p1m−1bm−1 + p1m (νm + λ) + p1m+1γm+1 if n = 1 ,m ≥ 2 ,
pnn−1γn−1 if n ≥ 3 ,m = n − 2 ,
pnn−1 (νn−1 + λ) + γn if n ≥ 2 ,m = n − 1 ,
pnn−1bn−1 + νn + λ + pnn+1γn+1 if n ≥ 2 ,m = n ,
pnmbm + pnm+1 (νm+1 + λ) + pnm+2γm+2 if n ≥ 2 ,m ≥ n + 1 ,

the other elements corresponding to 1 ≤ m ≤ n − 2 with n ≥ 3 being equal to
zero.
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Proposition 8. Let θ ∈]0, 1[, and assume that the sequence (pnm)n,m≥1 satis-
fies

sup
n

[ ∞∑
m=n+1

|pnm|
(

an

am

)θ
]

< 1.(22)

There exists λ∗ > 0 such that for every λ ≥ λ∗ and Y ∈ s(1/aθ
n)

n
the system

defined by ∑
m≥1

cnmxm = yn (n = 1, 2, ...)

admits a unique solution X0 in sd such that AX0 ∈ s(1/aθ
n)

n
.

Proof. We deduce from (22) that P satisfies the condition Γ(1/aθ
n), i.e.

‖I − P‖S(1/aθ
n)

< 1.(23)

We have C = P (A + B + λI). And since P ∈ S1 the series of general terms
pnmγm−1xm−1, pnm (am + βm) xm and pnmbm+1xm+1, are absolutely conver-
gent. We deduce that the matrix equation CX = Y is equivalent to

P [(A + B + λI)X] = Y

and to
(A + B + λI)X = P−1Y.

Using (23), we have P−1 ∈ S(1/aθ
n)

n
, then P−1Y ∈ s(1/aθ

n)
n

and Theorem 4 can
be applied. �

This method allows us to consider systems having a zero on the main diago-
nal. In this case, there exists no sequence c = (cn), (cn > 0, ∀n), such that the
matrix of the coefficients satisfies the condition Γc. Taking λ0 > λ∗, we deduce
from the preceding, the following result:

Corollary 9. Let (αn)n≥2 be any sequence and θ ∈]0, 1[. Consider the system

(S1)




(b1γ2 − ν′
1ν

′
2) x2 − ν′

1b2x3 = y1,

γnxn−1 + (ν′
n + αnγn+1) xn +

(
bn + αnν′

n+1

)
xn+1 + αnbn+1xn+2 = yn,

n ≥ 2,

where ν′
n = νn + λ0, and γ2 �= 0. Assume that

ν′
1

|γ2|
(

a1

a2

)θ

< 1 and sup
n≥2

(
|αn|

(
an

an+1

)θ
)

< 1.(24)

Then for all Y ∈ s(1/aθ
n)n

, the system (S1) admits a unique solution X0 =
(
x0

n

)
n

in sd such that
sup
n≥1

(
aθ

n

∣∣anx0
n + bnx0

n+1

∣∣) < ∞.
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Proof. Define here the infinite matrix P = (pnm)n,m by pnm = 0 for every n, m

such that m �= n, n+1; pnn = 1 for all n ≥ 1; p12 = − ν′
1

γ2
, and pnn+1 = αn ∀n ≥

2. (24) implies that ‖I − P‖S(1/aθ
n)

< 1. Doing the product P (A + B + λ0I)

we get the matrix:


0 b1 − ν′
1ν′

2
γ2

− ν′
1

γ2
b2 0

γ2 ν′
2 + α2γ3 b2 + α2ν

′
3 α2b3 O .

. . . . . .
γn ν′

n + αnγn+1 bn + αnν′
n+1 αnbn+1

. . .
O . . .




.

We conclude reasoning as above. �

3.4. Study of equation (A + B + λI) X = Y , for λ ≥ 0

In this subsection we suppose that (10), (12) and (16) hold. Let κ be an

integer and denote here t1 =
(

1,
b1

ν1 + λ
, 0, ...

)
and

tn =
(

0, ...,
γn

νn + λ
, 1,

bn

νn + λ
, 0, ...

)
,

where 2 ≤ n ≤ κ. t1,...,tκ are the κ first rows of Dλ (A + B + λI). Let Qκ

be the matrix obtained from Dλ (A + B + λI) by replacing its κ first rows t1,
t2,...tκ, by e1, e2,...eκ, where en = (...0, 1, 0, ...), (1 being in the nth position).
We have Qκ = (qnm)n,m≥1 with qnn = 1 for all n and for every n > κ qnn−1 =

γn

νn + λ
and qnn+1 =

bn

νn + λ
, the other terms being equal to zero. Consider now

the determinant

∆ (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
b1

ν1 + λ
0 . . t1Xκ

γ2

ν2 + λ
1

b2

ν2 + λ
0 . t2Xκ

0
γ3

ν3 + λ
1

b3

ν3 + λ
0 .

. . .
. 1 tκ−1Xκ

O
γκ

νκ + λ
tκXκ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and recall some definitions and results given in [16, 12, 13]. Let M be an infinite
matrix. M(t1, t2, ...tk), where k is an integer, is the infinite matrix obtained from
M by addition of the following rows

t1 = (t1,m)m≥1 , t2 = (t2,m)m≥1 , ... tk = (tk,m)m≥1 , tii �= 0 (i = 1, 2, ...k),
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where tij is any scalar. In the same way, set

tY (u1, u2, ...uk) = (u1, ...uk, b1, b2, ...),

and let D(k) be the diagonal matrix whose elements are the inverses of the
diagonal elements of M(t1, t2, ...tk) = (a′

nm), that is, D(k) = (a′−1
nn δnm). Then

we have the following result:

Proposition 10. Let c = (cn) with cn > 0 for all n be a sequence such that

‖ I − D(k)M(t1, t2, ...tk) ‖Sc
< 1,(25)

and
D(k)Y (u1, u2, ..., uk) ∈ sc,(26)

then
i) solutions of MX = Y in the space sc are

X = [D(k)M(t1, t2, ...tk)]−1D(k)Y (u1, u2, ...uk) u1, u2, ....uk ∈ C.

ii) The linear space KerM ∩ sc of the solutions of MX = 0 in the space sc

is of dimension k and is given by

(KerM) ∩ sc = span(X1,X2, .....Xk)

where
Xi = [M(t1, t2, ...tk)]−1.tei, i = 1, 2, ....k.

Remark 2. The solutions given in i) can be also written as X = X0 +
k∑

i=1

uiXi

where X0 = [D(k)M(t1, t2, ...tk)]−1D(k)Y (0, 0, .., 0) is a particular solution of
MX = Y .

From the preceding we can deduce the following result:

Proposition 11. i) For all λ ≥ 0 such that ∆ (λ) �= 0,(17) admits a unique
solution in sd for all Y ∈ s1.

ii) If ∆ (λ) = 0, equation (17) where Y ∈ s1, either does not admit any
solution in sd, or admits infinitely many solutions in sd.

Proof. From (20) and (21) we see that µn tends to 0 as n tends to infinity and
it is the same for µ′

n, since

0 ≤ µ′
n ≤ MB

a2n
+

MA

a2n+2
.

We deduce that there exists κ such that ‖I − Qκ‖Sd
< 1. Denote now by P ∗

κ,λ

the matrix obtained from Qκ by deleting its κ first rows and by Y ′
κ ∈ s1 the one
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column matrix tY ′
κ =

(
y′

κ+1, y
′
κ+2, ...

)
with y′

n = yn/ (νn + λ). Applying Propo-
sition 10 we see that equation P ∗

κ,λX = Y ′
κ admits infinitely many solutions

defined for all scalars u1, u2,...,uκ by

X = (Qκ)−1
.t
(
u1, u2, ...uκ, y′

κ+1, y
′
κ+2, ...

)
.(27)

Let now
X0 = (Qκ)−1

.t
(
0, 0, ...0, y′

κ+1, y
′
κ+2, ...

)
.(28)

It is easy to see that the κ − 1 first rows of (Qκ)−1 are e1, e2,...eκ−1, and if we
denote by Xκ its κ−th column we deduce, using (27) and (28), that

X = X0 +
κ−1∑
i=1

uiei + uκXκ.(29)

Replacing now these solutions in the κ first equations of the system

Dλ [(A + B + λI)X] = DλY,

(Dλ defined in Proposition 7), we obtain the finite linear system tnX = y′
n,

n = 1, 2, ...κ. This one is equivalent to

(S)
κ−1∑
i=1

uitnei + uκtnXν = y′
n − tnX0 n = 1, 2, ..., κ,

where u1, u2,...uκ are the unknowns. Doing the calculations of tnei, (1 ≤ n ≤ κ,
1 ≤ i ≤ κ − 1) we deduce that ∆ (λ) is the determinant of the coefficients of
(S). One can apply the well-known results on finite linear systems and conclude,
considering the cases where ∆ (λ) is equal to 0 or not. This completes the proof.
�

In the case when ∆ (λ) = 0, we have the following property: if bn �= 0, ∀n, the
rank of the system (S) is equal to κ−1. In fact, it suffices to adapt Proposition
10 and apply this one to the matrix triangle obtained from Dλ (A + B + λI),
by adding the row e1. Thus,

dim [KerDλ (A + B + λI)]
⋂

sd = 1.

Then we can suppose for instance that the determinant ∆′
κ (λ), obtained from

∆ (λ) by striking out the κth row and the κth column, is not equal to 0. Con-
sidering then the determinant ∆′

Y (λ) obtained from ∆ (λ) by replacing the κth
column by y′′

1 ,...y′′
κ with y′′

n = y′
n − tnX0, (1 ≤ n ≤ κ) we have

Corollary 12. Assume that ∆ (λ) = 0.
i) If Y ∈ s1 satisfies ∆′

Y (λ) �= 0, equation (17) does not admit any solution.
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ii) If ∆′
Y (λ) = 0, there exist scalars α1, α2,...,ακ−1, µ1, µ2, ...µκ−1, uκ

and a vector Xκ ∈ sd such that ∀Y ∈ s1 equation (17) admits infinitely many
solutions in sd which can be written

X = X0 +

(
Xκ +

κ−1∑
i=1

αiei

)
uκ +

κ−1∑
i=1

µiei.(30)

Proof. i) is obvious. Assertion ii). (17) being equivalent to (S), uκ is the
variable and there exist α1, α2,...,ακ−1, µ1, µ2, ...µκ−1 such that

ui = αiuκ + µi i = 1, 2, ..., κ − 1.

Then using (29), the solutions can be written as

X = X0 +
κ−1∑
i=1

(αiuκ + µi) ei + uκXκ,

which permits us to make the conclusion. �

Remark 3. Let tY ′
κ =

(
y′

κ+1, y
′
κ+2, ...

)
. Then we see that for every Y ′

κ ∈ s1,
one can associate a unique X0 ∈ sd and a subspace V of Cκ, such that if
(y′

1, ...y
′
κ) ∈ V equation (17) admits in sd the solutions X = X0 + xW1 + W2,

where W1 = XN +
κ−1∑
i=1

αiei, W2 =
κ−1∑
i=1

µiei for all scalars x.

Remark 4. If we assume that (10), (12) and (13) hold, then Proposition 11
and Corollary 12 remain true if we replace the condition Y ∈ s1 by Y ∈ s(1/aθ

n)
n
.

Note that we do not have necessarily the property of regularity.

3.5. Property of the operator t (A + B + λI), for λ ≥ 0

In this part A and B satisfy (10) and (12). Denote A+B+λI = (anm)n,m≥1

for short and recall that l1 = {X = (xn) /
∑

n |xn| < ∞} , then we have

Proposition 12. Assume that for a real λ ≥ 0

[Ker (A + B + λI)]
⋂

D (A)
⋂

D (B) �= {0} ,(31)

there exists a non-empty set I ⊂ N∗ such that ∀b �= 0, the equation

t (A + B + λI)X = bten0 n0 ∈ I,(32)

does not admit any solution in l1.
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Proof. Let Z = (zn) be a non-zero element of [Ker(A+B+λI)]
⋂

D(A)
⋂

D(B)
and denote I = {n ∈ N∗/ zn �= 0}. Then for all χ = (χn) ∈ l1 we have

∞∑
n=1

χn

( ∞∑
m=1

anmzm

)
= 0,

and using the fact that Z ∈ sd we deduce that there exists K > 0 such that for
every n ≥ 2

∞∑
m=1

|anm| |zm| |χn| ≤ K (|γn| dn−1 + νndn + |bn| dn+1) |χn| ;

and, since the series
∞∑

n=2
|γn| dn−1 |χn|,

∞∑
n=2

νndn |χn|,
∞∑

n=2
|bn| dn+1 |χn| are con-

vergent we deduce that

∞∑
n=1

∞∑
m=1

|anm| |zm| |χn| < ∞.

Thus ∞∑
n=1

χn

( ∞∑
m=1

anmzm

)
=

∞∑
m=1

zm

( ∞∑
n=1

anmχn

)
= 0.

Now let (τn) be a sequence such that for an integer n0 ∈ I, τn0 �= 0, the other
terms being equal to 0. If the system

∞∑
n=1

anmχn = τm m = 1, 2, ...

would admit a solution χ = (χn) in the space l1 we should have

∞∑
m=1

zm

( ∞∑
n=1

anmχn

)
= zn0τn0 �= 0,

which is contradictory. This completes the proof. �

Remark 5. We see applying the proposition that if equation

t (A + B + λI)X = Y, (∀Y ∈ s1),

admits a solution in l1 it has not a solution any more when the n − th term
of Y , n ∈ I, is modified. Indeed, let n0 ∈ I and denote by Y ′ the ma-
trix obtained from Y by replacing the n0 − th coefficient by another one. If
the equation t (A + B + λI)X = Y ′ admitted a solution in l1 the equation
t (A + B + λI)X = Y would not admit any solution, since Y ′ − Y is of the
form bten0 , b �= 0.
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Remark 6. An important case is the one when A + B + λI is symmetric (see
[17]).

Remark 7. Let us give an example of matrices A and B satisfying (31). Put
an = 2n and β2n = 1 for all n ≥ 1; β2n+1 = (2n + 1)! for all n ≥ 0; b1 = 3,
γ2 = 5, b2 = 0 and bn = γn = 0 for all n ≥ 3. Then we see that for λ =
0, ∆ (λ) = 0 and [Ker (A + B)]

⋂
D (A)

⋂
D (B) is the space of all sequences

defined by tX = (x,−x, 0, ...) for all scalars x.
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des Sciences de l’Université d’Ankara, Series Al Mathematics and Statistics, 48
(1999), 53–71.

[14] de Malafosse, B., Malkowsky, E., Sequence spaces and inverse of an infinite ma-
trix. Rend. del Circ. Mat. di Palermo. Serie II, Vol 51 (2002), 277–294.



Some properties of the sum of linear operators . . . 91

[15] de Malafosse, B., Application of the sum of operators in the commutative case
to the infinite matrix theory. Soochow Journal of Mathematics, 27(4) (2001),
405–421.
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