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Abstract. In this paper we recall some results concerning an application
of the sum of linear operators in the infinite matrix theory. Then, we
give several extensions of these results in order to obtain new properties
of infinite linear systems.
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1. Introduction

The theory of the sum of operators is well known, and has been studied
by many authors such as Da Prato and Grisvard [1,2], Furman [3], R. Labbas
and B. Terreni [7,8]. It can also be found in the work of de Malafosse [15],
giving an application of the sum of operators in the infinite matrix theory in
the commutative case. The aim is to study the equation

(1) AX+BX-XX=Y, A>0

in a Banach space F, where Y is given in E and A, B are two closed linear
operators with domains D(A), D(B) included in E. This work extends the
results obtained in the paper [6], entitled: ” An application of the sum of linear
operators in infinite matrix theory”, where E is not reflexive. Here, equation
(1) is regarded as an infinite linear system in the space E = [*°. A+ B is
considered as the sum of two particular infinite matrices defined respectively on
D(A) = 5(1/a,), and D(B) = s1/3. In our case, it has been proved that the
operators (—A) and (—B) are generators of analytic semigroups. The relative
boundedness with respect A or B being not satisfied, the classical perturbation
theory given by Kato [4] or Pazy [18], cannot be applied. The choice of the
two infinite matrices is motived by the resolution of a class of non-symmetric
linear infinite systems. Note that some results concerning the infinite matrices
of operators are given in Maddox [9].

This work is organized as follows. In Section 2 are recalled the definitions
and properties of some Banach spaces of infinite matrices used in R. Labbas
and B. de Malafosse [5] and de Malafosse [11, 12, 14, 16]. We also give the main
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results of the sum-strategy as in Labbas-Terreni [7] and define the two infinite
matrices A and B regarded as two unbounded linear operators on E = [*° and
study their sum. In Section 3 are used the regularity property of A in order to
give results on the sum of operators in the non-differential case. Further, we
apply the previous results to new matrices obtained from the matrix A+ B+ \I.
Then, we deal with the linear infinite system (A+ B+ A[).X =Y for A > 0.
Finally, we study the properties of ! (A + B + AI) when the trace of the kernull
of the operator A+ B+ Al on D (A) (D (B) is not reduced to {0}.

2. Recall of definitions and properties

2.1. Spaces S. and s.

For a sequence ¢ = (¢,), where ¢,, > 0 for every integer n > 1, we define the
Banach algebra

o0 cm
(2) S, = {M = (@pm)n,m>1 | sup <Z |G| c> < oo} ,
nzl m=1 n
normed by
> c
M = su | — |,
I, = s (3 o 2

see [10, 12, 14, 16, 17]. We also define the Banach space s. of one-row matrices
by

(3) o= {x = 1 sw (121) <o},

normed by

() 11, s (221)).

n

If ¢ = (cn)n, and ¢ = (c},)n are two sequences such that 0 < ¢, < ¢, Vn, then:
Se C S¢r.

A very useful particular case is the one when ¢, = ", r > 0. We denote
then by S, and s, the spaces S. and s.. When r = 1 we obtain the space of the
bounded sequences [*° = s;.

If [T — Mg <1 we shall say that A satisfies the condition I'c. If ¢ = (r"),
I'. is replaced by T',..

S, being a unital algebra, we have the useful result:

if M satisfies the condition I';, M is invertible in the space S. and for every
B € s, the equation M X = B admits one and only one solution in s, given by

(5) X = i([ — M)"B.
n=0
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Similarly, we define the Banach algebra S, with unit element I = (,,,,)
(with 6y = 0 if n # m, and d,,, = 1) by

(6) Sy = {M = (anm)n,m>1 | 8171Lp (Z |G| ,rmn> < oo}

m

n,m>1

normed by

(7) [M]|g, = sup (Z |G| T‘m”> ;

m

see [10-13]. Let us recall that the product of two matrices of S, belongs to this
space and
VM eS, VXe€s.:MX € s,

with [|MXI[, < [|M][g, [IX1,, -

2.2. Sum of linear operators

We recall here some results given in Da Prato-Grisvard [1] and Labbas-
Terreni [7]. E being a Banach space, we consider two closed linear operators
A and B, whose domains are D (A) and D (B) included in E. For every X €
D (A)(N D (B) we then define their sum SX = AX + BX.

The spectral properties of A and B are:

3C4,Cp > 0, €4,ep €]0, 7| such that

i) p(A) D34 ={2€C/|Arg(2)| <m —ca}
1 Ca

Jca==n7,,, < i ¥e €S-0},

ii)p(B)DZB={zeC/\Arg()|<7r—6B}
(B—zI)" || Vze > p—{0},

s, <
1) eatep < T

Here, we are not in the commutative case, that is:

1

(A—z)"(B—2D) (B2 (A—2D) ' = [(A )7 (B z’I)‘l} ,

is not equal to zero for all z € p(A) and 2’ € p(B). Furthermore, the density
of D(A) and D (B) being not true, we must assume that (see Labbas-Terreni

(7], [8])

3C >0, k€N, (&)1<icp» (Mi)1<icy, such that
Vi>1:0<1-¢ <n <2and

(H>) lpaca-an™ a7 (B + ur)” ]H <K( €A753)Z|)‘| ¢
for |A|, |p| — oo AEp(A) pep(B).

‘u| i
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Now introduce the real interpolation space between D (A) and FE, defined
for all o €]0, 1] by

(8) Dy (o,00) = {X ek /;1?12

2A(A—2D)7" XHE < oo} :

I" being a simple infinite sectorial curve lying in p (A — AI)()p(—B). Here we
have

Dy (0,00) = {X € E /sup

t>0

t"A (A+tI)*1XHE < oo}.

In the same way Dp (0, 00) denotes the interpolation space between D (B) and
E . Now we can express the main result given in [8], where

6= 1I%1i1<k (& +mn—1)>0.

Theorem 1. Suppose that (Hy) and (Hs) are satisfied. There exists A* such
that VA > X* and VY € D4 (0,00) equation [A+ B — M|.X =Y has a unique
solution Xg in the space D (A) N D (B) such that

i) (A= X)) Xo € Dy (0,00) VO €]0,min (0,0) |,

i) BXo € Dy (6,00) V6 €]0, min (o,0) |,

iii) (A— M) Xo € Dg (0,00) V0 €]0,min (0,0) [.

2.3. Definition of operators A and B

As in [6], we apply the results of the previous subsections to particular
matrices.
Let A be the infinite matrix:

(9) o

where (a,,) and (b,,) satisfy

(10)

n—oo

i) an, > 0VYn, (a,) is strictly increasing, and lim a, = oo
ii) IM 4 > 0 such that: |b,| < My for all n.

In the same way we denote by B the lower triangular matrix

2 0
) o B |
(0]
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where (3,),, and (vy,),, satisfy:

i) B, >0 Vn, and B2, — L,

(12) i) (Bant1/azn1), — 00,
iii) 3IMp > 0 such that |vy,| < Mp for all n.

Ais defined on D (A) = 5(1/4,), and B is defined on D (B) = s(1/3,) , these
spaces being included in E = [*° = s;. We deduce from (12) i), ii) that D (A) is
not included in D (B) and D (B) is not included in D (A). In [6], the following

results are proved:

Proposition 2. In the Banach space E the two linear operators A and B are
closed and satisfy

i) D(A) = 5(1/a,, = {X = (22) / ann = O(1) (n— o0},

@) D(B) = 51/8n),.>

i) There exist numbers e, eg > 0 (with e+ e < m ) such that

M

H(A— AI)*HL( (S VA# 0 and |Arg (V)] 2 4,
s1
_ M
H(B—i—,u[) 1H < —, Vu#0 and |Arg(p)| <m—ep.
L(s)) — |yl

Now let us consider the following additional assumption on A

bTL* n
(13) sup <¢> < oo
n>1 Qn,

Then we have [6]

Proposition 3. Under (10), (12), and (13) there exists a constant K(ca,cp)
> 0 such that

Jpaca—an [am@ | <K (WB)[ Tt T ]

VA #£ 0 such that |[Arg (N\)| > ea and VY # 0 such that |Arg (p)] <7 —cp.

As we deal with the non-commutative case, we must use the interpolation
space defined in (8). It has been proved in [6] that for all 6 €]0, 1]

<oo}.
S1

DA (9,00) = 5(1/‘12) = {X = (l'n) /il;%) HteA (A + tI)_l X

Then we can assert the following result:
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Theorem 4. A and B satisfy the hypotheses (10), (12), (13). For any 0 €]0, 1]
there exists A* such that VA > X* and VY € s(1/40), the linear infinite system
(=A—B—XI).X =Y has a unique solution Xy in the space D (A)N D (B) =
S(1/an) N S(1/8,) such that

i) (A+ M) Xo € S(1/a0), »

’LZ) BXy € S(1/af), -

Remark 1. It is easy to see that s(1/a,) 0 S(1/p,), = Sa, where d = (dy),, is
defined by
1
— if n=2k,
d, =< %
otherwise.

Bok+1

Corollary 5. Conditions i) and ii) in Theorem 4 are equivalent to the condition
AXy € S(1/a8), -

Proof. First we see that for every 6 €]0,1[, s4 C S(1/ag),- In fact, take X =
(zn), € sa. Since we have (10) i), 2, = O (1/az,) implies z2, = O (1/a},) as
n — oo. And from (12) ii), 22n41 = O (1/B2n+1) implies 2,41 = O (1/ad,,4)
as n — 00. Then X € s(1/,0). We deduce that Zy = (A+ X)X,y € S(1/a®) 18
equivalent to

AXog=2y—AXp € S(1/a8)-

Elsewhere i)&ii), since BXo = (A + B+ Al) .Xo — Zo € 5(1/a9)- a
3. New properties of the operator A+ B, in the
non—differential case

3.1. Consequence of the regularity property

More precisely, from i) in Theorem 4 we have:

Corollary 6. The unique solution Xy = (a:?l) satisfies the following property
1
vodool =20 (.

Proof. From Corollary 5 we deduce that AXo € s(1/4¢) implies that there exists
areal K > 0 such that Vo €]0,6[, Vn

K

al=

ay ‘anxg + bnx?LH‘ <

Then
(14) a? (anzd +b,20 1) =0(1) (n— o).
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On the other hand, (10) i) implies that there exists K > 0 such that

Kag, if n = 2k
19 A ¢
— =T if n=2k+1.
A2k 42

Using (10) i) and (12) ii) we deduce that b,agazh ;= o0(1) (n — c0), and from
(15) we conclude that ag+12% = 0(1) as n tends to infinity. O

3.1.1. Numerical application

Assume here that a, = o™ with @ > 1 and consider the matrix M), (1) =
(A+ B+ M) (t1) obtained from A+ B + AI, by adding the supplementary row
ty = (O,aQ“,O,a‘l“, ..... ) with 1 <w < 2. Y (u) is the matrix obtained from Y
by adding the number u. From the regularity property we get
1
Yo €]0,0] 9, = % (n — 00),

for any 6 €]0, 1[. We deduce that 3C > 0 such that a®*™ |29, | < C/a?me+1=w),
Thus, the series Y}, a®™ |29, | is convergent, since for a given w € [1,2[ one
can associate 6 €]0,1[ and o €]0,6[, such that ¢ + 1 —w > 0. Then the
product M) (t1) Xo exists and belongs to the space s(;/4n6). The equation
My (t1) X =Y (u), where Y € 5(1/4n0) admits a unique solution in s4 if and
only if u =3 «a*™zJ . Notice that the property: Xy € D (A) N D (B) = sq

is not sufficient to assure the convergence of the series Y. ~a?™z9 .

3.2. Expression of the solution in the Banach space sy

In this section, we use only the hypotheses (10), (12) and the following
supplementary condition

(16) <ﬂ> € S1.
a2n—1

Then we obtain the expression of the solution X in Theorem 4 for any second
member Y € s1. So we shall see that there exists Y € s1 — s(1/40) such that
the equation (A + B + AI) X =Y admits a solution in the space D (A)ND (B)
satisfying the property AXo ¢ s Ja¢)- In the case we shall study, this means
that (A 4+ B+ M) is a bijection from D (A) N D (B) into [*°.

For the following results we shall put v, = a,, + 3, for short.

Proposition 7. There exists \* > 0 such that X\ > X* implies that for every
Y € s1 equation
(17) (A+ B+ X =Y
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admits in D (A) N D (B) = sq a unique solution which can be written in the

form
o0

(18) Xo= Y [I=Dx(A+B+ )" DyY,

n=0

where Dy = (Vi"r ) o
n,m>

Proof. (17) is equivalent to
Dy[(A+ B+ M) X]=D,Y

itself equivalent to

(19) [Dy(A+ B+ X)X = D,Y.
We see that
b
1 Vli‘)\ b
2 2
vo+A 1 vo+A O
Dy(A+B+ )= . . .
n b’Vl

0 VZJr)\ 1 Un+

We get
[Dx (A+ B+ M) —I||g, = sup (sglf; (1n) » sup (u%)) ,
where b
Yon A2n 2n a2n
20 n = + ,
(20) a Vop + A‘ Ban—1 Von + | Bant1
and ;
(21> /’L;’L _ Y2n+1 ‘ Bany1 2n+1 ﬂ2n+l'
Vontl + A| azn Vont+1 + A| G2n2
We see that the sequence defined by
a2n a2n
n — n| 57— + b n y
r |72 | 62n—1 ‘ 2 | ﬂ2n+1
is bounded. Indeed, from (12) and (16) ii) the sequence defined by
aonp, a2n  G2n—1

ﬁanl B a2n—1 527171

a
2n ), since (ay) is strictly
ﬂZn-‘,—l

Increasing. lakin > ¢ =su n ), W€ have su n) < 1. rther, we
i ing. Taking A > ¢ Pp>1 (Pn) h Pp>1 (fn) < 1. Furth

deduce from (10) and (12) that there exists an integer N such that

b
sup <’72n+1| 4 | 2n+1> <1,
n>N+1 Qaz2n a2n+42

is bounded. It is the same for the sequence (
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which implies that sup,,> 1 (17,) < 1. Let now

§§V = Mpsup (—52"“) + M 4 sup (—ﬂznﬂ) .

n<N a2n n<N \ Q2n+42

If X > &y we have sup,, <y (¢;,) < 1 and

sup () = sup (sgg (1) sup (u&)) <1

Put now \* =sup (§,&). If A > X*

sup (sup (11n) , s <u;>) <1
n>1 n>1

and the matrix Dy (A4 B + M) satisfies the condition I'y. So, (17) admits a
unique solution Xy in D (A) N D (B) = sq for every Y such that

Yn
D,\Y = € 54.
\ (VM) 5

The previous property is also satisfieded for all Y € s, since

Yon Yon+1
agp | ———— | =0(1), =0(1),
o Van41 Jr)\‘ W) Fanis Vant1 + A‘ @
as n tends to infinity. Then we can write X in the form (18). ad

3.3. Resolution of systems obtained from the preceding

In this subsection we suppose that A and B satisfied (10), (12) and (13). We
are going to generalize the results of Theorem 4, in which A + B + A\l was an
infinite tridiagonal matrix. So, we shall use an infinite upper triangular matrix
P = (pnm)n,m>1 € Sy such that p,, = 1 Vn, and consider the infinite matrix
C = (Cam)p,m>1 defined by

v+ A+ praye ifm=n=1,
Pim—1bm—1 + P1m (Vm + A) + Plm+1¥m+1 ifn=1,m2>2,
c _ Pnn—1Tn—1 ifnZS,m:n—?,
e pnn—l(Vn—1+>\)+'Yn ifn22,m:n71,
pnnflbnfl +Vn+>\+pnn+1’yn+1 ifn> 2am:na

pnmbm +pnm+1 (l/m+1 + >\) +pnm+2'7m+2 1f n Z 27m Z n+ 1 )

the other elements corresponding to 1 < m < n — 2 with n > 3 being equal to
Z€ro.
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Proposition 8. Let 0 €]0,1], and assume that the sequence (Ppm)
fies

(22) sup[ i [Prml (Z—Z)j <L

n m=n-+1

nom>1 satis-

There exists A* > 0 such that for every A > X\* and Y € 5(1/at), the system
defined by

Z ComTm =Yn (M=1,2,..)

m>1

admits a unique solution Xo in sq such that AXo € s(1/49) -
Proof. We deduce from (22) that P satisfies the condition I'(; 40/, i.e.

2 I-P 1.
(23) I~ Plsg,0) <
We have C = P(A+ B+ A). And since P € S; the series of general terms

DrnmYm—1Zm—1, Pnm (@m + Bm) Tm and Dpmbmy1Zm41, are absolutely conver-
gent. We deduce that the matrix equation CX =Y is equivalent to

P[(A+B+ M) X]|=Y
and to
(A+ B+ X)X =P 'Y,

Using (23), we have P~! € S(l/ai,)n’ then P7'Y € 5(1/a8). and Theorem 4 can
be applied. O

This method allows us to consider systems having a zero on the main diago-
nal. In this case, there exists no sequence ¢ = (¢,), (¢, > 0, ¥n), such that the
matrix of the coefficients satisfies the condition I'.. Taking Ag > A*, we deduce
from the preceding, the following result:

Corollary 9. Let (v,),~o be any sequence and 0 €]0,1[. Consider the system
(b1ye — viv5) 2 — vibaxs = y1,

(Sl) YnTn—1 + (V:AL + an7n+1) Tn + (bn + OénV;H_l) Tn+1 + O‘nbn+1zn+2 = Un,
n>2,

where V), = vp + Ao, and 2 # 0. Assume that

’ 0 0
(24) A <E> <1l and sup | |an] ( n ) < 1.
12| \az n>2 Gn+1

Then for allY € 5(1/a8) , the system (S1) admits a unique solution Xo = (xg)n
i sq such that '

sup (ai ’anmg + b2l ‘) < 00.
n>1
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Proof. Define here the infinite matrix P = (pnm),, ,, PY Pnm = 0 for every n, m

such that m #n, n+1; ppp, =1 foralln > 1; p1o = —:—i, and pppt+1 = ap Vn >

2. (24) implies that || — P||S( ‘) < 1. Doing the product P (A + B+ A\ol)
1/a8

we get the matrix:

’ ’ !
_ s _h
0 b% 2 72b2/ 0
Y2 Vs + Q273 bQ + QolVg Oégbg O
! + b + / b
Tn Vy T OnYn+1 n T OnlVy11  Opbnid
0]
We conclude reasoning as above. |

3.4. Study of equation (A+ B+ )X =Y, for A >0
In this subsection we suppose that (10), (12) and (16) hold. Let s be an

b1
—0,... d
’Vl ¥ )\707 ) an

Tn bn
tn=1(0,..., 1, 0, ),
< Un+ A Tup+ A >

where 2 < n < k. t1,...,t; are the & first rows of Dy (A + B+ AI). Let Q
be the matrix obtained from Dy (A + B + AI) by replacing its & first rows ¢y,
ta,...ts, Dy €1, ea,...e, where e, = (...0,1,0,...), (1 being in the nth position).
We have Q,, = (q"m)n,’m>1 with g, = 1 for all n and for every n > Kk gnn_1 =

Tn

integer and denote here t; = <1

DY and gnpt1 = Vn—j_)\, the other terms being equal to zero. Consider now
the determinant
1 % 0 : . hX,
% 1 % 0 L X,
b
AN = 0 ﬁ 1 TjA 0 ,
1 tnf.an
o) ﬁ te X,

and recall some definitions and results given in [16, 12, 13]. Let M be an infinite
matrix. M(t1,ts,...tx), where k is an integer, is the infinite matrix obtained from
M by addition of the following rows

tl == (tl,’m)m21 ) t2 = (tQ,HL)le 9 e tk = (tk,m)m21a tii 7é 0 (Z = 1a2a k)a
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where t;; is any scalar. In the same way, set
tY(Ul, Uz, uk) = (ul, UE, bl, bQ, ),

and let D(k) be the diagonal matrix whose elements are the inverses of the
diagonal elements of M (ty,ta,...tx) = (a’,,), that is, D(k) = (a/;,}6,m). Then
we have the following result:

Proposition 10. Let ¢ = (¢,,) with ¢, > 0 for all n be a sequence such that

(25) | T = D(k)M(t1, ta,..tx) [|5.< 1,
and

(26) D(k)Y (uy,us, ..., ug) € Sc,
then

i) solutions of MX =Y in the space s. are
X = [D(k)M (t1,ta, ..ty)] " D(E)Y (uy, uz, ..up) u1,us,....u; € C.

i1) The linear space KerM N s. of the solutions of MX = 0 in the space s,
is of dimension k and is given by

(KerM) N s, = span(X1, Xa, ... X})

where
Xi = [M(thtg, ...tk)]_l.tei, 1= 1,2, k.

k
Remark 2. The solutions given in i) can be also written as X = Xo+ > u; X;
i=1
where Xo = [D(k)M (t1,t2,...tx)] "1 D(k)Y (0,0, ..,0) is a particular solution of
MX =Y.

From the preceding we can deduce the following result:

Proposition 11. i) For all A > 0 such that A(X) # 0,(17) admits a unique
solution in sq for allY € s1.

it) If A(X) = 0, equation (17) where Y € s1, either does not admit any
solution in sq, or admits infinitely many solutions in sq.

Proof. From (20) and (21) we see that p, tends to 0 as n tends to infinity and
it is the same for u/,, since

M M
0<p, < —2 4 =4
a2n 2142

We deduce that there exists x such that ||/ — Qxllg, < 1. Denote now by P
the matrix obtained from @, by deleting its & first rows and by Y, € s; the one
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column matrix 'Y = (Y}, 1, Yk io, ) With 4, = 4,/ (v + A). Applying Propo-
sition 10 we see that equation P7 X = Y! admits infinitely many solutions
defined for all scalars uy, us,...,u, by

(27) X = (QH)_1 K (ul,u2,...uﬂ,y;+1,y;+2,...) )
Let now
(28) Xo = (Qn)il ! (0>07 '~0»yll~e+17y;+2a ) .

It is easy to see that the x — 1 first rows of (QN)*1 are eq, €s,...6,_1, and if we
denote by X, its kK—th column we deduce, using (27) and (28), that

r—1

(29) X :Xo-I-ZUiei +UKXK.

i=1
Replacing now these solutions in the « first equations of the system
Dy [(A+ B+ ) X] = D,Y,

(D), defined in Proposition 7), we obtain the finite linear system t,X = y/,
n =1, 2, ...x. This one is equivalent to

rk—1
(S) Y uitnei + uptn X, =y, — t, Xo n=12, ..k,
i=1

where uq, us,...u,; are the unknowns. Doing the calculations of ¢,,¢;, (1 < n < k,
1 <i < k—1) we deduce that A ()) is the determinant of the coefficients of
(S). One can apply the well-known results on finite linear systems and conclude,
considering the cases where A () is equal to 0 or not. This completes the proof.
O

In the case when A (\) = 0, we have the following property: if b,, # 0, Vn, the
rank of the system (.9) is equal to x — 1. In fact, it suffices to adapt Proposition
10 and apply this one to the matrix triangle obtained from Dy (A + B + A\I),
by adding the row e;. Thus,

dim [KerDy (A+ B+ AI)|[)sa = L.

Then we can suppose for instance that the determinant A/, (\), obtained from
A (M) by striking out the xth row and the kth column, is not equal to 0. Con-
sidering then the determinant A} () obtained from A (\) by replacing the xth
column by yY,...y! with y! =y, — t, X0, (1 <n < k) we have
Corollary 12. Assume that A (X) = 0.

i) If Y € s1 satisfies Ay (N) # 0, equation (17) does not admit any solution.



88 B. de Malafosse

ii) If AL (N) = 0, there exist scalars oy, Qo,...,0—1, U1, P2, ---Pr—1, Usk
and a vector X, € sq such that VY € sy equation (17) admits infinitely many
solutions in sq which can be written

k—1 k—1
(30) X =Xo+ (Xn +>° aieZ-) we Y e
=1 =1

Proof. 1) is obvious. Assertion ii). (17) being equivalent to (S), w, is the
variable and there exist oy, ag,...,a5—1, f1, ft2, -..fix—1 such that

U; = QiU + g 1=1,2,..,k— 1.

Then using (29), the solutions can be written as

Kk—1
X = Xo+ Y (ot + i) €5 + un X,
i=1
which permits us to make the conclusion. O

Remark 3. Let 'Y! = (y,’€+1,y,’§+2, ) Then we see that for every Y, € s,
one can associate a unique Xog € sq and a subspace V of C*, such that if
(Y1, ..y.,) €V equation (17) admits in sq the solutions X = Xo + Wi + W,

k—1 r—1
where Wy = Xn + > aze;, Wa = > pse; for all scalars x.
i=1 i=1

Remark 4. If we assume that (10), (12) and (13) hold, then Proposition 11
and Corollary 12 remain true if we replace the condition Y € s1 by Y € s(1/49) -
Note that we do not have necessarily the property of regularity.

3.5. Property of the operator ! (A+ B+ \I), for A >0

In this part A and B satisfy (10) and (12). Denote A+ B+ = (apm)
for short and recall that I' = {X = (z,,) / 3, |zn| < 0o}, then we have

n,m>1

Proposition 12. Assume that for a real A > 0

(31) [Ker (A+ B+ M) D(A) (D (B) # {0},
there exists a non-empty set I C N* such that Vb # 0, the equation
(32) A+ B+ X)X =be,, noel,

does not admit any solution in ['.
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Proof. Let Z = (z,,) be a non-zero element of [Ker(A+B+AI)|(D(A)(D(B)
and denote I = {n € N*/ z, # 0}. Then for all x = (x,) € [* we have

Z Xn <Z anm2m> =0,
n=1 m=1

and using the fact that Z € sq4 we deduce that there exists K > 0 such that for
every n > 2

oo
Z |@nm| |2m] [Xn| < K ([7n| dn-1 + vadn + [bn| dny1) [Xal 5
m=1

&) o0 o0
and, since the series > |Ynldn-1|Xnls D Yndn|Xnl, D [bnldnt1 |xn| are con-
n=2 n=2

n=
vergent we deduce that

&S] e’}
DD lanm| 2m] xnl < oo
n=1m=1
Thus
oo [e'e) o o
ZXn (Z anmzm> = Z Zm (Z anmxn> =0.
n=1 m=1 m—1 ot

Now let (7,) be a sequence such that for an integer ng € I, 7,, # 0, the other
terms being equal to 0. If the system

oo
g ApmXn =Tm m=1,2 ...
n=1

would admit a solution y = () in the space I! we should have

oo 0o
Z Zm <Z anan) = ZnoTng 7é 07
m=1 n=1

which is contradictory. This completes the proof. O
Remark 5. We see applying the proposition that if equation
FA+B+A)X =Y, (VY € 59),

admits a solution in I' it has not a solution any more when the n — th term
of Y, n € I, is modified. Indeed, let ng € I and denote by Y’ the ma-
trix obtained from Y by replacing the ng — th coefficient by another one. If
the equation * (A+ B+ X)X = Y' admitted a solution in ' the equation
YA+ B+ X)X =Y would not admit any solution, since Y' —Y s of the
form bte,,, b# 0.
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Remark 6. An important case is the one when A+ B + A is symmetric (see

[17]).

Remark 7. Let us give an example of matrices A and B satisfying (31). Put
an = 2" and Bo, = 1 for alln > 1; Bopy1 = (2n+1)! for alln > 0; by = 3,
Yo =5, b =0 and b, = v, = 0 for all n > 3. Then we see that for A =
0, A(AN) =0 and [Ker (A+ B)][\D (A) (D (B) is the space of all sequences
defined by X = (x,—x,0,...) for all scalars x.
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