ON MODIFIED SZASZ-MIRAKYAN OPERATORS

Zbigniew Walczak ${ }^{1}$

Abstract

We consider certain modifications of Szasz-Mirakyan operators S_{n} in exponential weighted spaces C_{q} of continuous functions and operators T_{n} in L^{p} spaces of Lebesgue integrable functions.

We give theorems on approximation properties of these operators. AMS Mathematics Subject Classification (2000): 41A36 Key words and phrases: Szasz-Mirakyan operator, degree of approximation, exponential weighted space.

1. Introduction

1.1. Let $q>0$ be a fixed number,

$$
\begin{equation*}
v_{p}(x):=e^{-q x}, \quad x \in R_{0}:=[0,+\infty) . \tag{1}
\end{equation*}
$$

and let C_{q} be the space of all real-valued functions f continuous on R_{0} for which $f v_{q}$ is uniformly continuous and bounded on R_{0} and the norm

$$
\begin{equation*}
\|f\|_{q} \equiv\|f(\cdot)\|_{q}:=\sup _{x \in R_{0}} v_{q}(x)|f(x)| . \tag{2}
\end{equation*}
$$

Let $L^{p}\left(R_{0}\right)$, with a fixed $p \geq 1$, be the space of all real-valued functions f for which $|f|^{p}$ is Lebesgue integrable on R_{0} and the norm

$$
\begin{equation*}
\|f\|_{L^{p}}:=\left\{\int_{0}^{+\infty}|f(x)|^{p} d u\right\}^{\frac{1}{p}} \tag{3}
\end{equation*}
$$

In papers [1] and [2] are concerned with approximation properties of the Szasz-Mirakyan operators

$$
\begin{equation*}
S_{n}(f ; x):=\sum_{k=0}^{\infty} \varphi_{k}(n x) f\left(\frac{k}{n}\right) \quad x \in R_{0}, \quad n \in N \tag{4}
\end{equation*}
$$

$\left(N=\{1,2, \ldots\}\right.$ for the functions $f \in C_{q}, q \geq 0$, where

$$
\begin{equation*}
\varphi_{k}(t):=e^{-t} \frac{t^{k}}{k!}, \quad t \in R_{0}, \quad k \in N_{0}=N \cup\{0\} \tag{5}
\end{equation*}
$$

[^0]In [2], the authors was proved that S_{n} is a positive linear operator from the space C_{q} into C_{r} provided that $r>q>0$ and $n>q(\ln (r / q))^{-1}$. Also, they proved the direct and inverse approximation theorems for S_{n} and $f \in C_{q}, q>0$, but by applying the norm of the space $C_{r}, r>q$.

In [3] and [4], the authors examined properties of the Szasz-Mirakyan-Kantorovitch operators

$$
\begin{equation*}
T_{n}(f ; x):=n \sum_{k=0}^{\infty} \varphi_{k}(n x) \int_{k / n}^{(k+1) / n} f(t) d t, \quad x \in R_{0}, \quad n \in N \tag{6}
\end{equation*}
$$

for $f \in L^{p}\left(R_{0}\right), p \geq 1$. Theorems on convergence almost everywhere and convergence in L^{p}-norm of the sequence $\left(T_{n}(f)\right)_{1}^{\infty}$ were proved in [3], while some approximation theorems for $T_{n}(f)$ and $f \in L^{1}\left(R_{0}\right)$ were given in [4].
1.2. In this paper we modify definitions (4) and (6). Let $q \geq 0$ be a fixed number. For $f \in C_{q}$ we define the operators

$$
\begin{align*}
S_{n}\left[f ; a_{n}, b_{n}, q\right](x) \equiv & S_{n}\left(f ; a_{n}, b_{n}, q, x\right):= \tag{7}\\
& :=\sum_{k=0}^{\infty} \varphi_{k}\left(a_{n} x\right) f\left(\frac{k}{b_{n}+q}\right), \quad x \in R_{0}, \quad n \in N
\end{align*}
$$

where $\left(a_{n}\right)_{1}^{\infty},\left(b_{n}\right)_{1}^{\infty}$ are given increasing and unbounded numerical sequences such that $b_{n} \geq a_{n} \geq 1$, and $\left(a_{n} / b_{n}\right)_{1}^{\infty}$ is non-decreasing and

$$
\begin{equation*}
\frac{a_{n}}{b_{n}}=1+o\left(\frac{1}{b_{n}}\right) \tag{8}
\end{equation*}
$$

We shall prove that $S_{n}\left[f ; a_{n}, b_{n}, q\right], n \in N$, is a positive linear operator from the space C_{q} into C_{q}.

In the space $L^{p}\left(R_{0}\right)$ with a fixed $p \geq 1$ we define operators

$$
\begin{align*}
& T_{n}\left[f ; a_{n}, b_{n}\right](x) \equiv T_{n}\left(f ; a_{n}, b_{n}, x\right):= \tag{9}\\
& \quad:=b_{n} \sum_{k=0}^{\infty} \varphi_{k}\left(a_{n} x\right) \int_{k / b_{n}}^{(k+1) / b_{n}} f(t) d t, \quad x \in R_{0}, \quad n \in N,
\end{align*}
$$

where φ_{k} is given by (5) and $\left(a_{n}\right)_{1}^{\infty},\left(b_{n}\right)_{1}^{\infty}$ are sequences as in definition $S_{n}\left[f ; a_{n}, b_{n}, q\right]$.

Formulas (7) and (9) for $q=0$ and $a_{n}=b_{n}=n, n \in N$, yield (4) and (6).
It is obvious that the operators $T_{n}\left[f ; a_{n}, b_{n}\right], n \in N$, can be considered in the spaces $C_{q}, q \geq 0$. In Section 3 of this paper we shall consider these operators in the spaces $L^{p}\left(R_{0}\right)$.

Operators S_{n} defined by (7) we shall consider in Section 2. In particular, we shall prove theorems on degree of approximation of $f \in C_{q}$ by S_{n} using the modulus of continuity of f,

$$
\omega_{1}\left(f ; C_{q} ; t\right):=\sup _{0 \leq h \leq t}\left\|\Delta_{h} f(\cdot)\right\|_{q}, \quad t \geq 0
$$

and the modulus of smoothness of f

$$
\omega_{2}\left(f ; C_{q} ; t\right):=\sup _{0 \leq h \leq t}\left\|\Delta_{h}^{2} f(\cdot)\right\|_{q}, \quad t \geq 0
$$

where

$$
\Delta_{h} f(x):=f(x+h)-f(x) ; \quad \quad \Delta_{h}^{2} f(x):=f(x)-2 f(x+h)+f(x+2 h)
$$

In this paper we shall denote by $M_{k}(\alpha, \beta), k=1,2, \ldots$, suitable positive constants depending only on indicated parameters α, β.

2. Operators $S_{n}\left[f ; a_{n}, b_{n}, q\right]$

We assume that $q \geq 0$ and sequences $\left(a_{n}\right)_{1}^{\infty},\left(b_{n}\right)_{1}^{\infty}$ are fixed. We shall write $S_{n}(f ; x)$ instead of $S_{n}\left(f ; a_{n}, b_{n}, q ; x\right)$.
2.1. First we shall give some auxiliary results. By elementary calculations we obtain the following two lemmas.

Lemma 1. Let $q \geq 0$ be a fixed number. Then

$$
\begin{align*}
& S_{n}\left((t-x)^{2} ; x\right)=\left(\frac{a_{n}}{b_{n}+q}-1\right)^{2} x^{2}+\frac{a_{n} x}{\left(b_{n}+q\right)^{2}}, \tag{12}\\
& S_{n}\left((t-x)^{4} ; x\right)=\left(\frac{a_{n}}{b_{n}+q}-1\right)^{4} x^{4}+\left(\frac{a_{n}}{b_{n}+q}-1\right)^{2} \frac{6 a_{n} x^{3}}{\left(b_{n}+q\right)^{2}}+ \\
&+\left(\frac{7 a_{n}}{b_{n}+q}-4\right) \frac{a_{n} x^{2}}{\left(b_{n}+q\right)^{3}}+\frac{a_{n} x}{\left(b_{n}+q\right)^{4}},
\end{align*}
$$

$$
\begin{equation*}
S_{n}\left(e^{q t} ; x\right)=e^{q_{n} x}, \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& S_{n}\left((t-x)^{2} e^{q t} ; x\right)=\left\{\left(\frac{a_{n}}{b_{n}+q} e^{q /\left(b_{n}+q\right)}-1\right)^{2} x^{2}+\right. \tag{14}\\
&\left.+\frac{a_{n} x}{\left(b_{n}+q\right)^{2}} e^{q /\left(b_{n}+q\right)}\right\} e^{q_{n} x}
\end{align*}
$$

for all $x \in R_{0}$ and $n \in N$, where

$$
\begin{equation*}
q_{n}:=a_{n}\left(e^{q /\left(b_{n}+q\right)}-1\right) . \tag{15}
\end{equation*}
$$

Lemma 2. For the operators S_{n} defined by (7) we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} b_{n} S_{n}(t-x ; x)=-q x, \quad \lim _{n \rightarrow \infty} b_{n} S_{n}\left((t-x)^{2} ; x\right)=x, \\
\lim _{n \rightarrow \infty} b_{n}^{2} S_{n}\left((t-x)^{4} ; x\right)=3 x^{2}
\end{gathered}
$$

at every point $x \in R_{0}$.
Now we shall prove two main lemmas.
Lemma 3. Let $q \geq 0$ be a fixed number. Then

$$
\begin{equation*}
\left\|S_{n}\left[1 / v_{q}\right]\right\|_{q} \leq 1 \quad n \in N \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{n}[f]\right\|_{q} \leq\|f\|_{q} \tag{17}
\end{equation*}
$$

for every $f \in C_{q}$ and $n \in N$.
Formulas (7) and (5) and the inequality (17) show that $S_{n}, n \in N$, defined by (7) is a positive linear operator from the space C_{q} into C_{q}.

Proof. First we shall prove (16).
If $q=0$, then by (1) and (10) follows (16). If $q>0$, then by (1) and (13) and (15) we get

$$
v_{q}(x) S_{n}\left(\frac{1}{v_{q}(t)} ; x\right)=e^{\left(q_{n}-q\right) x}, \quad x \in R_{0}, \quad n \in N
$$

and

$$
e^{q /\left(b_{n}+q\right)}-1=\sum_{k=1}^{\infty} \frac{1}{k!}\left(\frac{q}{b_{n}+q}\right)^{k}<\sum_{k=1}^{\infty}\left(\frac{q}{b_{n}+q}\right)^{k}=\frac{q}{b_{n}}, \quad n \in N
$$

which by $0<a_{n} / b_{n} \leq 1$ and by (15) implies

$$
0<q_{n}<\frac{a_{n} q}{b_{n}} \leq q \quad \text { for } n \in N
$$

Hence

$$
v_{q}(x) S_{n}\left(\frac{1}{v_{q}(t)} ; x\right) \leq 1 \quad \text { for } \quad x \in R_{0}, \quad n \in N
$$

which yields (16) for $q>0$ and $n \in N$.
The inequality (17) follows by (16) and by the inequality

$$
\left\|S_{n}[f]\right\|_{q} \leq\|f\|_{q}\left\|S_{n}\left[1 / v_{q}\right]\right\|_{q}, \quad n \in N .
$$

Lemma 4. Suppose that $q \geq 0$ and $\left(a_{n}\right)_{1}^{\infty},\left(b_{n}\right)_{1}^{\infty}$ are fixed. Then there exists a positive constant $M_{1}\left(b_{1}, q\right)$ such that

$$
\begin{equation*}
v_{q}(x) S_{n}\left(\frac{(t-x)^{2}}{v_{q}(t)} ; x\right) \leq M_{1}\left(b_{1}, q\right)\left(\frac{x^{2}}{\left(b_{n}+q\right)^{2}}+\frac{x}{b_{n}+q}\right) \tag{18}
\end{equation*}
$$

for all $x \in R_{0}$ and $n \in N$.
Proof. If $q=0$, then by (12) and properties of the sequences $\left(a_{n}\right)_{1}^{\infty}$ and $\left(b_{n}\right)_{1}^{\infty}$ we immediately obtain (18).

If $q>0$ then by (1) and (14) we have

$$
\begin{gather*}
v_{q}(x) S_{n}\left((t-x)^{2} / v_{q}(t) ; x\right) \leq e^{\left(q_{n}-q\right) x}\left\{\left(\frac{a_{n}}{b_{n}+q} e^{q /\left(b_{n}+q\right)}-1\right)^{2} x^{2}+\right. \tag{19}\\
\left.+\frac{a_{n} x}{\left(b_{n}+q\right)^{2}} e^{q /\left(b_{n}+q\right)}\right\}, \quad x \in R_{0}, \quad n \in N .
\end{gather*}
$$

In the proof of Lemma 3 it is proved that

$$
\begin{equation*}
e^{\left(q_{n}-q\right) x} \leq 1 \quad \text { for } \quad x \in R_{0}, \quad n \in N \tag{20}
\end{equation*}
$$

Applying the inequality $e^{t}-1 \leq t e^{t}$ for $t \geq 0$ and (8), we get

$$
\begin{aligned}
&\left(\frac{a_{n}}{b_{n}+q} e^{q /\left(b_{n}+q\right)}-1\right)^{2}=\left\{\left(\frac{a_{n}}{b_{n}+q}-1\right) e^{q /\left(b_{n}+q\right)}+\right. \\
&\left.+e^{q /\left(b_{n}+q\right)}-1\right\}^{2} \leq 2 e^{2 q /\left(b_{n}+q\right)}\left\{\left(\frac{a_{n}}{b_{n}+q}-1\right)^{2}+\frac{q^{2}}{\left(b_{n}+q\right)^{2}}\right\} \leq \\
& \leq M_{2}\left(b_{1}, q\right) \frac{1}{\left(b_{n}+q\right)^{2}}, \quad n \in N
\end{aligned}
$$

From this and by (19), (20) and $b_{n} \geq a_{n} \geq 1$, we obtain estimation (18) for $q>0$.
2.2. Now we shall prove approximation theorems.

Theorem 1. Suppose that $f \in C_{q}^{2}, q \geq 0$. Then there exists a positive constant $M_{3}\left(b_{1}, q\right)$ such that

$$
\begin{array}{r}
v_{q}(x)\left|S_{n}(f ; x)-f(x)\right| \leq M_{3}\left(b_{1}, q\right)\left\{\left\|f^{\prime}\right\|_{q} \frac{x}{b_{n}+q}+\right. \tag{21}\\
\left.+\left\|f^{\prime \prime}\right\|_{q}\left(\frac{x^{2}}{\left(b_{n}+q\right)^{2}}+\frac{x}{b_{n}+q}\right)\right\}
\end{array}
$$

for all $x \in R_{0}$ and $n \in N$.
Proof. From (7) and (5) we get

$$
\begin{equation*}
S_{n}(f ; 0)=f(0) \quad \text { for } \quad n \in N \tag{22}
\end{equation*}
$$

For a fixed $x>0$ and $f \in C_{q}^{2}$ we have

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\int_{x}^{t} \int_{x}^{s} f^{\prime \prime}(u) d u d s, \quad t \in R_{0}
$$

which yields

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u, \quad t \in R_{0}
$$

From this and by (10) we deduce that

$$
\begin{equation*}
S_{n}(f(t) ; x)=f(x)+f^{\prime}(x) S_{n}(t-x ; x)+S_{n}\left(\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u ; x\right) \tag{23}
\end{equation*}
$$

for $n \in N$. By (1) and (2) we can write

$$
\left|\int_{x}^{t}(t-u) f^{\prime \prime}(u) d u\right| \leq\left\|f^{\prime \prime}\right\|_{q}\left(\frac{1}{v_{q}(t)}+\frac{1}{v_{q}(x)}\right)(t-x)^{2}
$$

Applying the above inequality and (11), (12) and (18), we derive from (23)

$$
\begin{aligned}
& \quad v_{q}(x)\left|S_{n}(f ; x)-f(x)\right| \leq\left\|f^{\prime}\right\|_{q}\left|\frac{a_{n}}{b_{n}+q}-1\right| x+ \\
& \left\|f^{\prime \prime}\right\|_{q}\left\{v_{q}(x) S_{n}\left(\frac{(t-x)^{2}}{v_{q}(t)} ; x\right)+S_{n}\left((t-x)^{2} ; x\right)\right\} \leq \\
& \leq M_{3}\left(b_{1}, q\right)\left\{\left\|f^{\prime}\right\|_{q} \frac{x}{b_{n}+q}+\left\|f^{\prime \prime}\right\|_{q}\left(\frac{x^{2}}{\left(b_{n}+q\right)^{2}}+\frac{x}{b_{n}+q}\right)\right\} \text { for } n \in N .
\end{aligned}
$$

Thus the proof of (21) is completed.

Theorem 2. Suppose that $f \in C_{q}$, with a fixed $q \geq 0$. Then there exists a positive constant $M_{4}\left(b_{1}, q\right)$ such that

$$
\begin{gather*}
v_{q}(x)\left|S_{n}(f ; x)-f(x)\right| \leq \tag{24}\\
\leq M_{4}\left(b_{1}, q\right)\left\{e^{q \Psi_{n}(x)} \sqrt{\frac{x}{b_{n}+q}} \omega_{1}\left(f ; C_{q} ; \Psi_{n}(x)\right)+\omega_{2}\left(f ; C_{q} ; \Psi_{n}(x)\right)\right\}
\end{gather*}
$$

for all $x \in R_{0}$ and $n \in N$, where

$$
\begin{equation*}
\Psi_{n}(x)=\left(\frac{x^{2}}{\left(b_{n}+q\right)^{2}}+\frac{x}{b_{n}+q}\right)^{\frac{1}{2}} \tag{25}
\end{equation*}
$$

Proof. Let $x>0$. Similarly as in [1] and [2] we apply the Stieklov function of $f \in C_{q}$:

$$
\begin{equation*}
f_{h}(x):=\frac{4}{h^{2}} \int_{0}^{\frac{h}{2}} \int_{0}^{\frac{h}{2}}[f(x+s+t)-f(x+2(s+t))] d s d t \tag{26}
\end{equation*}
$$

for $x \in R_{0}, h>0$. From (26) we get

$$
\begin{gathered}
f_{h}^{\prime}(x)=\frac{1}{h^{2}} \int_{0}^{\frac{h}{2}}\left[8 \Delta_{h / 2} f(x+s)-2 \Delta_{h} f(x+2 s)\right] d s \\
f_{h}^{\prime \prime}(x)=\frac{1}{h^{2}}\left[8 \Delta_{h / 2}^{2} f(x)-\Delta_{h}^{2} f(x)\right]
\end{gathered}
$$

Consequently

$$
\begin{equation*}
\left\|f_{h}-f\right\|_{q} \leq \omega_{2}\left(f, C_{q} ; h,\right) \tag{27}
\end{equation*}
$$

for $h>0$. We see that $f_{h} \in C_{q}^{2}$ if $f \in C_{q}$. Hence, for $x>0$ and $n \in N$, we can write

$$
\begin{align*}
& v_{q}(x)\left|S_{n}(f ; x)-f(x)\right| \leq v_{q}(x)\left\{\left|S_{n}\left(f-f_{h} ; x\right)\right|+\right. \tag{30}\\
&\left.\quad+\left|S_{n}\left(f_{h} ; x\right)-f_{h}(x)\right|+\left|f_{h}(x)-f(x)\right|\right\}:=A_{1}+A_{2}+A_{3}
\end{align*}
$$

By (17) and (27) we have

$$
A_{1} \leq\left\|f-f_{h}\right\|_{q} \leq \omega_{2}\left(f, C_{q} ; h\right), \quad A_{2} \leq \omega_{2}\left(f, C_{q} ; h\right)
$$

Applying Theorem 1 and (28) and (29), we get

$$
\begin{aligned}
& A_{3} \leq M_{3}\left(b_{1}, q\right)\left\{\left\|f_{h}^{\prime}\right\|_{q} \frac{x}{b_{n}+q}+\left\|f_{h}^{\prime \prime}\right\|_{q}\left(\Psi_{n}(x)\right)^{2}\right\} \leq \\
& \leq M_{4}\left(b_{1}, q\right)\left\{e^{q h} h^{-1} \frac{x}{b_{n}+q} \omega_{1}\left(f ; C_{q} ; h\right)+\right. \\
&\left.+h^{-2}\left(\Psi_{n}(x)\right)^{2} \omega_{2}\left(f ; C_{q} ; h\right)\right\}
\end{aligned}
$$

Combining these and setting $h=\Psi_{n}(x)$, for fixed $x>0$ and $n \in N$, we obtain (24) for $x>0$. The estimation (24) follows for $x=0$ by (22).

Let

$$
\begin{equation*}
\lambda(x):=\left(1+x^{2}\right)^{-1}, \quad x \in R_{0} \tag{31}
\end{equation*}
$$

Theorem 3. Assuming as in Theorem 1, we obtain

$$
\begin{equation*}
\left\|\left[S_{n}(f)-f\right] \lambda\right\|_{q} \leq M_{5}\left(b_{1}, q\right) \frac{1}{b_{n}+q}\left(\left\|f^{\prime}\right\|_{q}+\left\|f^{\prime \prime}\right\|_{q}\right) \quad \text { for } \quad n \in N \tag{32}
\end{equation*}
$$

where $M_{5}\left(b_{1}, q\right)$ is a suitable positive constant.
Similarly as in Theorem 2 we obtain
Theorem 4. Let $f \in C_{q}$ with a fixed $q>0$. Then there exists a positive constant $M_{6}\left(b_{1}, q\right)$ such that

$$
\begin{gather*}
\left\|\left[S_{n}(f)-f\right] \lambda\right\|_{q} \leq M_{6}\left(b_{1}, q\right)\left\{\frac{1}{\sqrt{b_{n}+q}} \omega_{1}\left(f ; C_{q} ; 1 / \sqrt{b_{n}+q}\right)+\right. \tag{33}\\
\left.+\omega_{2}\left(f ; C_{q} ; 1 / \sqrt{b_{n}+q}\right)\right\}
\end{gather*}
$$

for all $n \in N$.
Proof. Arguing as in the proof of Theorem 2 and applying (30), (31) and the estimations for $A_{i}, \quad i=1,2,3$, given above, we obtain

$$
\begin{gather*}
\lambda(x) v_{q}(x)\left|S_{n}(f ; x)-f(x)\right| \leq 2 \omega_{2}\left(f ; C_{q} ; h\right)+\lambda(x) A_{2} \leq \tag{34}\\
\leq 2 \omega_{2}\left(f ; C_{q} ; h\right)+M_{7}\left(b_{1}, q\right)\left\{e^{q h} \frac{x}{h\left(b_{n}+q\right)} \omega_{1}\left(f ; C_{q} ; h\right)\right. \\
\left.+\frac{1}{h^{2}\left(b_{n}+q\right)} \omega_{2}\left(f ; C_{q} ; h\right)+\right\}
\end{gather*}
$$

for $x \in R_{0}, n \in N$ and $h>0$. Now, for fixed $n \in N$ setting $h=\frac{1}{\sqrt{b_{n}+q}}$, we derive (33) from (34) and (22).

From Theorem 2 or Theorem 4 we obtain the following

Corollary 1. Let $f \in C_{q}$ with a fixed $q \geq 0$. Then for the operators S_{n} defined by (7) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n}(f ; x)=f(x), \quad x \in R_{0} \tag{35}
\end{equation*}
$$

The convergence (35) is uniform on every interval $\left[x_{1}, x_{2}\right], \quad x_{2}>x_{1} \geq 0$.
2.3. In this section we shall prove the Voronovskaya type theorem for S_{n}.

Theorem 5. Suppose that $f \in C_{q}^{2}$ with a fixed $q>0$. Then for S_{n} defined by (7) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}\left\{S_{n}(f ; x)-f(x)\right\}=-q x f^{\prime}(x)+\frac{x}{2} f^{\prime \prime}(x) \tag{36}
\end{equation*}
$$

for every $x \in R_{0}$.
Proof. The equality (22) implies (36) for $x=0$. Let $x>0$ be a fixed point. Then by the Taylor formula for $f \in C_{q}^{2}$ we have

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\frac{1}{2} f^{\prime \prime}(x)(t-x)^{2}+\varepsilon_{1}(t ; x)(t-x)^{2}, \quad t \in R_{0}
$$

where $\varepsilon_{1}(t) \equiv \varepsilon_{1}(t ; x)$ is a function such that $\varepsilon_{1} \in C_{q}$ and $\varepsilon_{1}(0)=0$. From this and by (10) we get

$$
\begin{aligned}
S_{n}(f(t) ; x)=f(x)+f^{\prime}(x) S_{n}(& t-x ; x)+\frac{1}{2} f^{\prime \prime}(x) S_{n}\left((t-x)^{2} ; x\right)+ \\
+ & S_{n}\left(\varepsilon_{1}(t)(t-x)^{2} ; x\right), \quad n \in N
\end{aligned}
$$

and next by Lemma 2

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n}\{ & \left.S_{n}(f ; x)-f(x)\right\}=-q x f^{\prime}(x)+ \\
& +\frac{x}{2} f^{\prime \prime}(x)+\lim _{n \rightarrow \infty} b_{n} S_{n}\left(\varepsilon_{1}(t)(t-x)^{2} ; x\right)
\end{aligned}
$$

Applying Hölder inequality, we have

$$
\left|S_{n}\left(\varepsilon_{1}(t)(t-x)^{2} ; x\right)\right| \leq\left\{S_{n}\left(\varepsilon_{1}^{2}(t) ; x\right)\right\}^{\frac{1}{2}}\left\{S_{n}\left((t-x)^{4} ; x\right)\right\}^{\frac{1}{2}}, \quad n \in N
$$

By Theorem 2 and $\varepsilon_{1}^{2} \in C_{2 q}$ we have

$$
\lim _{n \rightarrow \infty} S_{n}\left(\varepsilon_{1}^{2}(t) ; x\right)=\varepsilon_{1}^{2}(x)=0
$$

From the above and from Lemma 2 we deduce that

$$
\lim _{n \rightarrow \infty} b_{n} S_{n}\left(\varepsilon_{1}(t)(t-x)^{2} ; x\right)=0
$$

Combining these, we obtain (36) for $x>0$.
2.4. Now we shall give some properties of derivatives of operators (7).

Theorem 6. Suppose that $f \in C_{q}$ with a fixed $q \geq 0$. Then for every $r \in N$ and $n \in N$ we have

$$
\begin{equation*}
\left\|\left(S_{n}[f]\right)^{(r)}\right\|_{q} \leq a_{n}^{r}\left\|\Delta_{1 /\left(b_{n}+q\right)}^{r} f(\cdot)\right\|_{q} \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{h}^{r} f(x):=\sum_{k=0}^{r}\binom{r}{k}(-1)^{r-k} f(x+k h) \tag{38}
\end{equation*}
$$

The formula (7) and the inequality (37) show that $S_{n}[f] \in C_{q}^{\infty}, n \in N$, if $f \in C_{q}$.
Proof. From (7) we deduce that

$$
\begin{aligned}
& \frac{d}{d x} S_{n}(f(t) ; x)=-a_{n} S_{n}(f(t) ; x)+ \\
& +a_{n} S_{n}\left(f\left(t+1 /\left(b_{n}+q\right) ; x\right)=a_{n} S_{n}\left(\Delta_{1 /\left(b_{n}+q\right)} f(t) ; x\right)\right.
\end{aligned}
$$

and next for every $r \in N$

$$
\begin{equation*}
\frac{d^{r}}{d x^{r}}=a_{n}^{r} S_{n}\left(\Delta_{1 /\left(b_{n}+q\right)}^{r} f(t) ; x\right), \quad x \in R_{0}, \quad n \in N \tag{39}
\end{equation*}
$$

where $\Delta_{h}^{r} f(\cdot)$ is defined by (38). Applying Lemma 3, we derive from (39)

$$
\left\|\left(S_{n}[f]\right)^{(r)}\right\|_{q} \leq a_{n}^{r}\left\|\Delta_{1 /\left(b_{n}+q\right)}^{r} f(\cdot)\right\|_{q}
$$

for all $n \in N$ and $r \in N$.
Corollary 2. If assumptions of Theorem 6 are satisfed, then

$$
\left\|\left(S_{n}[f]\right)^{(r)}\right\|_{q} \leq\left(1+e^{q /\left(b_{n}+q\right)}\right)^{r} a_{n}^{r}\|f(\cdot)\|_{q}
$$

for every $n \in N$ and $r \in N$.
From formulas (7) and (39) and by classical theorems of mathematical analysis we obtain

Corollary 3. Let $f \in C_{q}$ a with fixed $q \geq 0$. Then:
(i) if f is an increasing (decreasing) function on R_{0}, then $S_{n}\left[f ; a_{n}, b_{n}, q\right]$, $n \in N$, is also increasing (decreasing) function on R_{0};
(ii) if f is a convex (concave) function on R_{0}, then $S_{n}\left[f ; a_{n}, b_{n}, q\right], n \in N$, is also a convex (concave) on R_{0}.

Theorem 7. Suppose that $f \in C_{q}$ with a fixed $q \geq 0$ and $x_{0}>0$ is a point where there exists $f^{\prime}\left(x_{0}\right)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(S_{n}[f]\right)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \tag{40}
\end{equation*}
$$

Proof. By assumptions for f we can write

$$
f(t)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(t-x_{0}\right)+\varepsilon_{2}\left(t, x_{0}\right)\left(t-x_{0}\right) \quad \text { for } \quad t \in R_{0}
$$

where ε_{2} is function continuous at x_{0} and $\varepsilon_{2} \in C_{q}$. From (7) we get

$$
\begin{aligned}
& \left(S_{n}[f]\right)^{\prime}(x)=-a_{n} S_{n}(f(t) ; x)+\frac{b_{n}+q}{x} S_{n}(t f(t) ; x)= \\
& =\left(b_{n}-a_{n}+q\right) S_{n}(f(t) ; x)+\frac{b_{n}+q}{x} S_{n}((t-x) f(t) ; x)
\end{aligned}
$$

for $x>0$ and $n \in N$. Consequently, we obtain

$$
\begin{align*}
& \quad\left(S_{n}[f(t)]\right)^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)\left\{b_{n}-a_{n}+q+\frac{b_{n}+q}{x_{0}} S_{n}\left(t-x_{0} ; x_{0}\right)\right\}+ \tag{41}\\
& + \\
& +f^{\prime}\left(x_{0}\right)\left\{\left(b_{n}-a_{n}+q\right) S_{n}\left(t-x_{0} ; x_{0}\right)+\frac{b_{n}+q}{x_{0}} S_{n}\left(\left(t-x_{0}\right)^{2} ; x_{0}\right)\right\}+ \\
& +\left(b_{n}-a_{n}+q\right) S_{n}\left(\varepsilon_{2}(t)\left(t-x_{0} ; x_{0}\right)+\frac{b_{n}+q}{x_{0}} S_{n}\left(\varepsilon_{2}(t)\left(t-x_{0}\right)^{2} ; x_{0}\right) .\right.
\end{align*}
$$

Properties of ε_{2} and Corollary 1 imply

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S_{n}\left(\varepsilon_{2}(t)\left(t-x_{0}\right) ; x_{0}\right)=0 \tag{42}
\end{equation*}
$$

Analogously as in the proof of Theorem 5 we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n} S_{n}\left(\varepsilon_{2}(t)\left(t-x_{0}\right)^{2} ; x_{0}\right)=0 \tag{43}
\end{equation*}
$$

Applying (8),(11), (12), (42) and (43) we immediately obtain (40) from (41).

3. Operators $T_{n}\left[f ; a_{n}, b_{n}\right]$

We shall assume that the sequences $\left(a_{n}\right)_{1}^{\infty}$ and $\left(b_{n}\right)_{1}^{\infty}$ given in formula (9) for $T_{n}\left[f ; a_{n}, b_{n}\right]$ are fixed. For these operators we shall give analogies of some results proved in [3].
3.1. First we shall give some elementary properties of T_{n}. From (9) we get

$$
T_{n}\left(1 ; a_{n}, b_{n} ; x\right)=1 \quad \text { for } \quad x \in R_{0}, n \in N
$$

Lemma 5. Let $p \geq 1$ be a fixed number. $T_{n}\left[f ; a_{n}, b_{n}\right], n \in N$, is a positive linear operator from the space $L^{p}\left(R_{0}\right)$ into C_{0}, i.e. C_{q} with $q=0$. Moreover

$$
\begin{equation*}
\left\|T_{n}\left[f ; a_{n}, b_{n}\right]\right\|_{0} \leq b_{n}^{1 / p}\|f\|_{L^{p}} \quad n \in N . \tag{44}
\end{equation*}
$$

Proof. We shall prove only (44). From (9) it follows that

$$
\begin{gathered}
\left|T_{n}\left(f ; a_{n}, b_{n} ; x\right)\right| \leq b_{n}^{1 / p} \sum_{k=0}^{\infty} \varphi_{k}\left(a_{n} x\right)\left\{\int_{k / b_{n}}^{(k+1) / b_{n}}|f(t)|^{p} d t\right\}^{1 / p} \leq \\
\leq\|f\|_{L^{p}} b_{n}^{1 / p} \sum_{k=0}^{\infty} \varphi_{k}\left(a_{n} x\right)=\leq\|f\|_{L^{p}} b_{n}^{1 / p}
\end{gathered}
$$

for every $f \in L^{p}\left(R_{0}\right), p \geq 1, x \in R_{0}$ and $n \in N$, which implies (44).
Lemma 6. Let $p \geq 1$ be a fixed number. $T_{n}\left[f ; a_{n}, b_{n}\right], n \in N$, is a positive linear operator from the space $L^{p}\left(R_{0}\right)$ into $L^{p}\left(R_{0}\right)$. Moreover

$$
\begin{equation*}
\left\|T_{n}\left[f ; a_{n}, b_{n}\right]\right\|_{L^{p}} \leq \frac{b_{n}}{a_{n}}\|f\|_{L^{p}} \leq \frac{b_{1}}{a_{1}}\|f\|_{L^{p}} \tag{45}
\end{equation*}
$$

for every $f \in L^{p}\left(R_{0}\right)$ and $n \in N$
Proof. Let $p=1$. Then, applying the equality

$$
\begin{equation*}
\int_{0}^{+\infty} \varphi_{k}\left(a_{n} x\right)=\frac{1}{a_{n}}, \quad k \in N_{0}, \quad n \in N \tag{46}
\end{equation*}
$$

we get

$$
\begin{gathered}
\left\|T_{n}\left[f ; a_{n}, b_{n}\right]\right\|_{L^{1}}=\int_{0}^{+\infty}\left|b_{n} \sum_{k=0}^{\infty} \varphi_{k}\left(a_{n} x\right) \int_{k / b_{n}}^{(k+1) / b_{n}} f(t) d t\right| d x \leq \\
\leq b_{n} \sum_{k=0}^{\infty}\left(\int_{k / b_{n}}^{(k+1) / b_{n}}|f(t)| d t\right) \int_{0}^{+\infty} \varphi_{k}\left(a_{n} x\right) d x=\frac{b_{n}}{a_{n}}\|f\|_{L^{1}}, \quad n \in N .
\end{gathered}
$$

If $p>1$, then by (3), (10) and (46) and by Jensen inequalities we get

$$
\begin{gathered}
\left\|T_{n}\left[f ; a_{n}, b_{n}\right]\right\|_{L^{p}}^{p}=\int_{0}^{+\infty}\left|\sum_{k=0}^{\infty} \varphi_{k}\left(a_{n} x\right) b_{n} \int_{k / b_{n}}^{(k+1) / b_{n}} f(t) d t\right|^{p} d x \leq \\
\int_{0}^{+\infty} \sum_{k=0}^{\infty}\left(\varphi_{k}\left(a_{n} x\right)\left|b_{n} \int_{k / b_{n}}^{(k+1) / b_{n}} f(t) d t\right|^{p}\right) d x \leq \\
\leq b_{n} \sum_{k=0}^{\infty} \int_{k / b_{n}}^{(k+1) / b_{n}}|f(t)|^{p} d t\left(\int_{0}^{+\infty} \varphi_{k}\left(a_{n} x\right) d x\right) \leq \frac{b_{n}}{a_{n}}\|f\|_{L^{p}}^{p}, \quad n \in N .
\end{gathered}
$$

By properties of $\left(b_{n} / a_{n}\right)_{1}^{\infty}$ the proof of (45) is completed.

Lemma 7. Let $f \in L^{1}\left(R_{0}\right)$ and let

$$
\begin{equation*}
F(x):=\int_{0}^{x} f(t) d t, \quad x \in R_{0} \tag{47}
\end{equation*}
$$

Then $F \in C_{0}$, i.e. $F \in C_{q}$ with $q=0$, and there exist operators $S_{n}\left[F ; a_{n}, b_{n} ; 0\right], n \in N$, defined by (7). Moreover

$$
\begin{equation*}
\left(S_{n}\left[F ; a_{n}, b_{n}, 0\right]\right)^{\prime}(x)=\frac{a_{n}}{b_{n}} T_{n}\left(f ; a_{n}, b_{n} ; x\right) \tag{48}
\end{equation*}
$$

for every $x \in R_{0}$ and $n \in N$.
Proof. It is well know that F defined by (47) is continuous and bounded function on R_{0} if $f \in L^{1}\left(R_{0}\right)$, i.e. $F \in C_{0}$ if $f \in L^{1}\left(R_{0}\right)$. From this and by Lemma 3 and Theorem 6 we deduce that there exists $S_{n}\left[F ; a_{n}, b_{n} ; 0\right], n \in N$, defined by (7) and

$$
\begin{gathered}
\frac{d}{d x} S_{n}\left(F(t) ; a_{n}, b_{n}, 0 ; x\right)=a_{n} S_{n}\left(\Delta_{1 / b_{n}} F(t) ; a_{n}, b_{n}, 0 ; x\right)= \\
=\frac{a_{n}}{b_{n}} T_{n}\left(f(t) ; a_{n}, b_{n} ; x\right), \quad x \in R_{0}, n \in N
\end{gathered}
$$

3.2. In [3] the operator $T_{n}[f]$ defined by (6) for $f \in L^{1}\left(R_{0}\right)$ was written by the formula

$$
\begin{equation*}
T_{n}(f ; x)=\int_{0}^{+\infty} K_{n}(x ; s) f(s) d s, \quad x \in R_{0}, n \in N \tag{49}
\end{equation*}
$$

where

$$
K_{n}(x ; s)=n e^{-n x} \frac{(n x)^{k}}{k!}
$$

for $k / n<s \leq(k+1) / n, k \in N_{0} ; K_{n}(x ; 0)=0, x \geq 0$. For the operators (49) it was proved in the following [3]:

Lemma 8. If $f \in L^{1}\left(R_{0}\right)$, then

$$
\sup _{n \in N}\left|T_{n}(f ; x)\right| \leq 3 \Theta(f ; x), \quad x \in R_{0}
$$

where

$$
\begin{equation*}
\Theta(f ; x):=\sup _{0<s<\infty, s \neq x} \frac{1}{s-x} \int_{x}^{s}|f(y)| d y . \tag{50}
\end{equation*}
$$

3.3. It is obvious that the operator $T_{n}\left[f ; a_{n}, b_{n}\right]$ defined by (9) can be written as:

$$
\begin{equation*}
T_{n}\left(f ; a_{n}, b_{n} ; x\right)=\int_{0}^{+\infty} W_{n}\left(x ; s ; a_{n}, b_{n}\right) f(s) d s \tag{51}
\end{equation*}
$$

for $f \in L^{1}\left(R_{0}\right), x \in R_{0}, n \in N$, where

$$
W_{n}\left(x ; s ; a_{n}, b_{n}\right):=b_{n} e^{-a_{n} x} \frac{\left(a_{n} x\right)^{k}}{k!}
$$

for $k / b_{n}<s \leq(k+1) / b_{n}, k \in N_{0} ; W_{n}\left(x ; 0 ; a_{n}, b_{n}\right)=0$ for $x \in R_{0}$.
Applying (51) and arguing similarly as in the proof of Lemma 8 (see [3], p.p. 550, 551 - Lemma 4 and Lemma 5) we can prove

Lemma 9. Let $f \in L^{1}\left(R_{0}\right)$. Then there exists a positive constant $M_{8}\left(a_{1}, b_{1}\right)$ such that

$$
\sup _{n \in N}\left|T_{n}\left(f ; a_{n}, b_{n} ; x\right)\right| \leq M_{8}\left(a_{1}, b_{1}\right) \Theta(f ; x), \quad x \in R_{0}
$$

where $\Theta(f ; \cdot)$ is defined by (50).
3.4. Now we shall prove the main theorems for $T_{n}\left[f ; a_{n}, b_{n}\right]$, which are analogies of the Butzer theorems given in [3].

Theorem 8. Suppose that $f \in L^{1}\left(R_{0}\right)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{n}\left(f ; a_{n}, b_{n} ; x\right)=f(x) \tag{52}
\end{equation*}
$$

at every point $x \in R_{0}$ where

$$
\begin{equation*}
F^{\prime}(x)=f(x) \tag{53}
\end{equation*}
$$

Hence (52) follows almost everywhere on R_{0}.
Proof. The properties of F given in Lemma 7 and by Theorem 7 imply that

$$
\lim _{n \rightarrow \infty}\left(S_{n}\left(F ; a_{n}, b_{n}, 0\right)\right)^{\prime}(x)=F^{\prime}(x)
$$

at every $x \in R_{0}$, where $F^{\prime}(x)$ there exists. From this and by (48) and (8) we obtain

$$
\lim _{n \rightarrow \infty} T_{n}\left(f ; a_{n}, b_{n} ; x\right)=F^{\prime}(x)=f(x)
$$

at every $x \in R_{0}$ where (53) follows. Since (53) follows almost everywhere on R_{0} for $f \in L^{1}\left(R_{0}\right)$, we have (52) almost everywhere on R_{0}.

Theorem 9. Suppose that $f \in L^{1}\left(R_{0}\right)$ and $f \in L^{p}\left(R_{0}\right)$ with a fixed $p>1$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{n}\left[f ; a_{n}, b_{n}\right]-f\right\|_{L^{p}}=0 \tag{54}
\end{equation*}
$$

Proof. It is known ([5], [3]) that if $f \in L^{p}\left(R_{0}\right), p>1$, then the function $\Theta(f ; \cdot)$ defined by (50) belongs also to $L^{p}\left(R_{0}\right)$ and

$$
\int_{0}^{+\infty}(\Theta(f ; x))^{p} d x \leq 2\left(\frac{p}{p-1}\right)^{p} \int_{0}^{+\infty}|f(x)|^{p} d x
$$

From this and by Lemma 6, Lemma 9 and Theorem 8 and by the Lebesgue theorem on convergence of sequence in L^{p}-space we immediately derive the desired assertion (54).

References

[1] Becker, M., Global approximation theorems for Szász - Mirakyan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J., 27(1) (1978), 127142.
[2] Becker, M., Kucharski, D., Nessel, R. J., Global approximation theorems for the Szasz-Mirakyan operators in exponential weight spaces. In: Linear Spaces and Approximation Proc. Conf. Oberwolfach, 1977, Birkhuser Verlag, Basel ISNM, 40(1978), 319-333.
[3] Butzer, P. L., On the extensions of Bernstein polynomials to the infinite interval. Proc. Amer. Math. Soc., 5 (1954), 547-553.
[4] Herman, T., On the Szasz - Mirakyan operator, Acta. Math. Acad. Sci. Hung., 32(1-2) (1978), 163-173.
[5] Zygmund, A., Trigonomertic series, Vol. I, Moscow, 1965.

Received by the editors September 30, 2002

[^0]: ${ }^{1}$ Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland

