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ON MODIFIED SZASZ–MIRAKYAN OPERATORS

Zbigniew Walczak1

Abstract. We consider certain modifications of Szasz-Mirakyan opera-
tors Sn in exponential weighted spaces Cq of continuous functions and
operators Tn in Lp spaces of Lebesgue integrable functions.

We give theorems on approximation properties of these operators.
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1. Introduction

1.1. Let q > 0 be a fixed number,

(1) vp(x) := e−qx, x ∈ R0 := [0,+∞).

and let Cq be the space of all real-valued functions f continuous on R0 for which
fvq is uniformly continuous and bounded on R0 and the norm

(2) ‖f‖q ≡ ‖f (·) ‖q := sup
x∈R0

vq(x) |f(x)| .

Let Lp(R0), with a fixed p ≥ 1, be the space of all real-valued functions f
for which |f |p is Lebesgue integrable on R0 and the norm

(3) ‖f‖Lp :=
{∫ +∞

0

|f(x)|pdu

} 1
p

.

In papers [1] and [2] are concerned with approximation properties of the
Szasz-Mirakyan operators

(4) Sn(f ;x) :=
∞∑

k=0

ϕk(nx)f
(

k

n

)
x ∈ R0, n ∈ N,

(N = {1, 2, ...} for the functions f ∈ Cq, q ≥ 0, where

(5) ϕk(t) := e−t t
k

k!
, t ∈ R0, k ∈ N0 = N ∪ {0}.
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In [2], the authors was proved that Sn is a positive linear operator from the
space Cq into Cr provided that r > q > 0 and n > q (ln (r/q))−1. Also, they
proved the direct and inverse approximation theorems for Sn and f ∈ Cq, q > 0,
but by applying the norm of the space Cr, r > q.

In [3] and [4], the authors examined properties of the Szasz-Mirakyan-Kanto-
rovitch operators

(6) Tn(f ;x) := n

∞∑
k=0

ϕk(nx)
∫ (k+1)/n

k/n

f(t)dt, x ∈ R0, n ∈ N,

for f ∈ Lp(R0), p ≥ 1. Theorems on convergence almost everywhere and
convergence in Lp-norm of the sequence (Tn(f))∞1 were proved in [3], while
some approximation theorems for Tn(f) and f ∈ L1(R0) were given in [4].

1.2. In this paper we modify definitions (4) and (6). Let q ≥ 0 be a fixed
number. For f ∈ Cq we define the operators

(7) Sn[f ; an, bn, q](x) ≡ Sn(f ; an, bn, q, x) :=

:=
∞∑

k=0

ϕk(anx)f
(

k

bn + q

)
, x ∈ R0, n ∈ N,

where (an)∞1 , (bn)∞1 are given increasing and unbounded numerical sequences
such that bn ≥ an ≥ 1, and (an/bn)∞1 is non-decreasing and

(8)
an

bn
= 1 + o

(
1
bn

)
.

We shall prove that Sn[f ; an, bn, q], n ∈ N , is a positive linear operator from
the space Cq into Cq.

In the space Lp(R0) with a fixed p ≥ 1 we define operators

(9) Tn[f ; an, bn](x) ≡ Tn(f ; an, bn, x) :=

:= bn

∞∑
k=0

ϕk(anx)
∫ (k+1)/bn

k/bn

f(t)dt, x ∈ R0, n ∈ N,

where ϕk is given by (5) and (an)∞1 , (bn)∞1 are sequences as in definition
Sn[f ; an, bn, q].

Formulas (7) and (9) for q = 0 and an = bn = n, n ∈ N , yield (4) and (6).
It is obvious that the operators Tn[f ; an, bn], n ∈ N , can be considered in

the spaces Cq, q ≥ 0. In Section 3 of this paper we shall consider these operators
in the spaces Lp(R0).
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Operators Sn defined by (7) we shall consider in Section 2. In particular,
we shall prove theorems on degree of approximation of f ∈ Cq by Sn using the
modulus of continuity of f ,

ω1(f ;Cq; t) := sup
0≤h≤t

‖∆hf(·)‖q, t ≥ 0,

and the modulus of smoothness of f

ω2(f ;Cq; t) := sup
0≤h≤t

‖∆2
hf(·)‖q, t ≥ 0,

where

∆hf(x) := f(x + h) − f(x); ∆2
hf(x) := f(x) − 2f(x + h) + f(x + 2h).

In this paper we shall denote by Mk(α, β), k = 1, 2, ..., suitable positive
constants depending only on indicated parameters α, β.

2. Operators Sn[f ; an, bn, q]

We assume that q ≥ 0 and sequences (an)∞1 , (bn)∞1 are fixed. We shall write
Sn(f ;x) instead of Sn(f ; an, bn, q;x).

2.1. First we shall give some auxiliary results. By elementary calculations we
obtain the following two lemmas.

Lemma 1. Let q ≥ 0 be a fixed number. Then

(10) Sn(1;x) =
∞∑

k=0

ϕk(anx) = 1,

(11) Sn(t − x;x) =
(

an

bn + q
− 1

)
x,

(12) Sn((t − x)2;x) =
(

an

bn + q
− 1

)2

x2 +
anx

(bn + q)2
,

Sn((t − x)4;x) =
(

an

bn + q
− 1

)4

x4 +
(

an

bn + q
− 1

)2 6anx3

(bn + q)2
+

+
(

7an

bn + q
− 4

)
anx2

(bn + q)3
+

anx

(bn + q)4
,

(13) Sn

(
eqt;x

)
= eqnx,
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(14) Sn

(
(t − x)2eqt;x

)
=

{(
an

bn + q
eq/(bn+q) − 1

)2

x2+

+
anx

(bn + q)2
eq/(bn+q)

}
eqnx,

for all x ∈ R0 and n ∈ N , where

(15) qn := an

(
eq/(bn+q) − 1

)
.

Lemma 2. For the operators Sn defined by (7) we have

lim
n→∞ bnSn(t − x;x) = −qx, lim

n→∞ bnSn((t − x)2;x) = x,

lim
n→∞ b2

nSn((t − x)4;x) = 3x2,

at every point x ∈ R0.

Now we shall prove two main lemmas.

Lemma 3. Let q ≥ 0 be a fixed number. Then

(16) ‖Sn [1/vq]‖q ≤ 1 n ∈ N,

and

(17) ‖Sn[f ]‖q ≤ ‖f‖q ,

for every f ∈ Cq and n ∈ N .
Formulas (7) and (5) and the inequality (17) show that Sn, n ∈ N , defined

by (7) is a positive linear operator from the space Cq into Cq.

Proof. First we shall prove (16).
If q = 0,then by (1) and (10) follows (16). If q > 0, then by (1) and (13) and

(15) we get

vq(x)Sn

(
1

vq(t)
;x

)
= e(qn−q)x, x ∈ R0, n ∈ N,

and

eq/(bn+q) − 1 =
∞∑

k=1

1
k!

(
q

bn + q

)k

<

∞∑
k=1

(
q

bn + q

)k

=
q

bn
, n ∈ N,

which by 0 < an/bn ≤ 1 and by (15) implies

0 < qn <
anq

bn
≤ q for n ∈ N.
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Hence

vq(x)Sn

(
1

vq(t)
;x

)
≤ 1 for x ∈ R0, n ∈ N,

which yields (16) for q > 0 and n ∈ N.
The inequality (17) follows by (16) and by the inequality

‖Sn[f ]‖q ≤ ‖f‖q ‖Sn [1/vq]‖q , n ∈ N.
�

Lemma 4. Suppose that q ≥ 0 and (an)∞1 , (bn)∞1 are fixed. Then there exists
a positive constant M1(b1, q) such that

(18) vq(x)Sn

(
(t − x)2

vq(t)
;x

)
≤ M1(b1, q)

(
x2

(bn + q)2
+

x

bn + q

)

for all x ∈ R0 and n ∈ N .

Proof. If q = 0, then by (12) and properties of the sequences (an)∞1 and (bn)∞1
we immediately obtain (18).

If q > 0 then by (1) and (14) we have

(19) vq(x)Sn

(
(t − x)2/vq(t);x

) ≤ e(qn−q)x

{(
an

bn + q
eq/(bn+q) − 1

)2

x2+

+
anx

(bn + q)2
eq/(bn+q)

}
, x ∈ R0, n ∈ N.

In the proof of Lemma 3 it is proved that

(20) e(qn−q)x ≤ 1 for x ∈ R0, n ∈ N.

Applying the inequality et − 1 ≤ tet for t ≥ 0 and (8), we get

(
an

bn + q
eq/(bn+q) − 1

)2

=
{(

an

bn + q
− 1

)
eq/(bn+q)+

+eq/(bn+q) − 1
}2

≤ 2e2q/(bn+q)

{(
an

bn + q
− 1

)2

+
q2

(bn + q)2

}
≤

≤ M2(b1, q)
1

(bn + q)2
, n ∈ N.

From this and by (19), (20) and bn ≥ an ≥ 1, we obtain estimation (18) for
q > 0. �
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2.2. Now we shall prove approximation theorems.

Theorem 1. Suppose that f ∈ C2
q , q ≥ 0. Then there exists a positive constant

M3(b1, q) such that

(21) vq(x) |Sn(f ;x) − f(x)| ≤ M3(b1, q)
{
‖f ′‖q

x

bn + q
+

+‖f ′′‖q

(
x2

(bn + q)2
+

x

bn + q

)}
for all x ∈ R0 and n ∈ N .

Proof. From (7) and (5) we get

(22) Sn(f ; 0) = f(0) for n ∈ N.

For a fixed x > 0 and f ∈ C2
q we have

f(t) = f(x) + f ′(x)(t − x) +
∫ t

x

∫ s

x

f ′′(u)duds, t ∈ R0,

which yields

f(t) = f(x) + f ′(x)(t − x) +
∫ t

x

(t − u)f ′′(u)du, t ∈ R0.

From this and by (10) we deduce that

(23) Sn(f(t);x) = f(x) + f ′(x)Sn(t − x;x) + Sn

(∫ t

x

(t − u)f ′′(u)du;x
)

for n ∈ N . By (1) and (2) we can write∣∣∣∣
∫ t

x

(t − u)f ′′(u)du

∣∣∣∣ ≤ ‖f ′′‖q

(
1

vq(t)
+

1
vq(x)

)
(t − x)2.

Applying the above inequality and (11), (12) and (18), we derive from (23)

vq(x) |Sn(f ;x) − f(x)| ≤ ‖f ′‖q

∣∣∣∣ an

bn + q
− 1

∣∣∣∣ x+

‖f ′′‖q

{
vq(x)Sn

(
(t − x)2

vq(t)
;x

)
+ Sn

(
(t − x)2;x

)} ≤

≤ M3(b1, q)
{
‖f ′‖q

x

bn + q
+ ‖f ′′‖q

(
x2

(bn + q)2
+

x

bn + q

)}
for n ∈ N.

Thus the proof of (21) is completed. �
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Theorem 2. Suppose that f ∈ Cq, with a fixed q ≥ 0. Then there exists a
positive constant M4(b1, q) such that

(24) vq(x) |Sn(f ;x) − f(x)| ≤

≤ M4(b1, q)
{

eqΨn(x)

√
x

bn + q
ω1(f ;Cq; Ψn(x)) + ω2(f ;Cq; Ψn(x))

}
,

for all x ∈ R0 and n ∈ N , where

(25) Ψn(x) =
(

x2

(bn + q)2
+

x

bn + q

) 1
2

.

Proof. Let x > 0. Similarly as in [1] and [2] we apply the Stieklov function of
f ∈ Cq:

(26) fh(x) :=
4
h2

∫ h
2

0

∫ h
2

0

[f(x + s + t) − f(x + 2(s + t))]dsdt

for x ∈ R0, h > 0. From (26) we get

f ′
h(x) =

1
h2

∫ h
2

0

[8∆h/2f(x + s) − 2∆hf(x + 2s)]ds,

f ′′
h (x) =

1
h2

[
8∆2

h/2f(x) − ∆2
hf(x)

]
.

Consequently

(27) ‖fh − f‖q ≤ ω2 (f, Cq;h, ) ,

(28) ‖f ′
h‖q ≤ 5h−1eqhω1 (f, Cq;h) ,

(29) ‖f ′′
h ‖q ≤ 9h−2ω2 (f, Cq;h) ,

for h > 0. We see that fh ∈ C2
q if f ∈ Cq. Hence, for x > 0 and n ∈ N , we can

write

(30) vq(x) |Sn(f ;x) − f(x)| ≤ vq(x) {|Sn (f − fh;x)|+

+ |Sn (fh;x) − fh(x)| + |fh(x) − f(x)|} := A1 + A2 + A3.

By (17) and (27) we have

A1 ≤ ‖f − fh‖q ≤ ω2 (f, Cq;h) , A2 ≤ ω2 (f, Cq;h) .
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Applying Theorem 1 and (28) and (29), we get

A3 ≤ M3(b1, q)
{
‖f ′

h‖q
x

bn + q
+ ‖f ′′

h ‖q (Ψn(x))2
}

≤

≤ M4(b1, q)
{

eqhh−1 x

bn + q
ω1(f ;Cq;h)+

+h−2 (Ψn(x))2 ω2(f ;Cq;h)
}

.

Combining these and setting h = Ψn(x), for fixed x > 0 and n ∈ N , we obtain
(24) for x > 0. The estimation (24) follows for x = 0 by (22). �

Let

(31) λ(x) :=
(
1 + x2

)−1
, x ∈ R0.

Theorem 3. Assuming as in Theorem 1, we obtain

(32) ‖[Sn(f) − f ]λ‖q ≤ M5(b1, q)
1

bn + q
(‖f ′‖q + ‖f ′′‖q) for n ∈ N,

where M5(b1, q) is a suitable positive constant.

Similarly as in Theorem 2 we obtain

Theorem 4. Let f ∈ Cq with a fixed q > 0. Then there exists a positive
constant M6(b1, q) such that

(33) ‖[Sn(f) − f ]λ‖q ≤ M6(b1, q)
{

1√
bn + q

ω1

(
f ;Cq; 1/

√
bn + q

)
+

+ω2

(
f ;Cq; 1/

√
bn + q

)}
for all n ∈ N .

Proof. Arguing as in the proof of Theorem 2 and applying (30), (31) and the
estimations for Ai, i = 1, 2, 3, given above, we obtain

(34) λ(x)vq(x) |Sn(f ;x) − f(x)| ≤ 2ω2 (f ;Cq;h) + λ(x)A2 ≤

≤ 2ω2 (f ;Cq;h) + M7(b1, q)
{

eqh x

h(bn + q)
ω1(f ;Cq;h)

+
1

h2(bn + q)
ω2(f ;Cq;h)+

}

for x ∈ R0, n ∈ N and h > 0. Now, for fixed n ∈ N setting h = 1√
bn+q

, we

derive (33) from (34) and (22). �

From Theorem 2 or Theorem 4 we obtain the following



On modified Szasz–Mirakyan operators 101

Corollary 1. Let f ∈ Cq with a fixed q ≥ 0. Then for the operators Sn defined
by (7) we have

(35) lim
n→∞Sn(f ;x) = f(x), x ∈ R0.

The convergence (35) is uniform on every interval [x1, x2] , x2 > x1 ≥ 0.

2.3. In this section we shall prove the Voronovskaya type theorem for Sn.

Theorem 5. Suppose that f ∈ C2
q with a fixed q > 0. Then for Sn defined by

(7) we have

(36) lim
n→∞ bn {Sn(f ;x) − f(x)} = −qxf ′(x) +

x

2
f ′′(x)

for every x ∈ R0.

Proof. The equality (22) implies (36) for x = 0. Let x > 0 be a fixed point.
Then by the Taylor formula for f ∈ C2

q we have

f(t) = f(x) + f ′(x)(t − x) +
1
2
f ′′(x)(t − x)2 + ε1(t;x)(t − x)2, t ∈ R0,

where ε1(t) ≡ ε1(t;x) is a function such that ε1 ∈ Cq and ε1(0) = 0. From this
and by (10) we get

Sn(f(t);x) = f(x) + f ′(x)Sn(t − x;x) +
1
2
f ′′(x)Sn

(
(t − x)2;x

)
+

+Sn

(
ε1(t)(t − x)2;x

)
, n ∈ N,

and next by Lemma 2

lim
n→∞ bn {Sn(f ;x) − f(x)} = −qxf ′(x)+

+
x

2
f ′′(x) + lim

n→∞ bnSn

(
ε1(t)(t − x)2;x

)
.

Applying Hölder inequality, we have∣∣Sn

(
ε1(t)(t − x)2;x

)∣∣ ≤ {
Sn

(
ε2
1(t);x

)} 1
2

{
Sn

(
(t − x)4;x

)} 1
2 , n ∈ N.

By Theorem 2 and ε2
1 ∈ C2q we have

lim
n→∞Sn

(
ε2
1(t);x

)
= ε2

1(x) = 0.

From the above and from Lemma 2 we deduce that

lim
n→∞ bnSn

(
ε1(t)(t − x)2;x

)
= 0.

Combining these, we obtain (36) for x > 0. �

2.4. Now we shall give some properties of derivatives of operators (7).
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Theorem 6. Suppose that f ∈ Cq with a fixed q ≥ 0. Then for every r ∈ N
and n ∈ N we have

(37)
∥∥∥(Sn[f ])(r)

∥∥∥
q
≤ ar

n

∥∥∥∆r
1/(bn+q)f(·)

∥∥∥
q
,

where

(38) ∆r
hf(x) :=

r∑
k=0

(
r
k

)
(−1)r−k

f(x + kh).

The formula (7) and the inequality (37) show that Sn[f ] ∈ C∞
q , n ∈ N , if f ∈ Cq.

Proof. From (7) we deduce that

d

dx
Sn(f(t);x) = −anSn(f(t);x)+

+anSn(f(t + 1/(bn + q);x) = anSn(∆1/(bn+q)f(t);x)

and next for every r ∈ N

(39)
dr

dxr
= ar

nSn(∆r
1/(bn+q)f(t);x), x ∈ R0, n ∈ N,

where ∆r
hf(·) is defined by (38). Applying Lemma 3, we derive from (39)∥∥∥(Sn[f ])(r)

∥∥∥
q
≤ ar

n

∥∥∥∆r
1/(bn+q)f(·)

∥∥∥
q

for all n ∈ N and r ∈ N . �

Corollary 2. If assumptions of Theorem 6 are satisfed, then∥∥∥(Sn[f ])(r)
∥∥∥

q
≤

(
1 + eq/(bn+q)

)r

ar
n ‖f(·)‖q

for every n ∈ N and r ∈ N .

From formulas (7) and (39) and by classical theorems of mathematical anal-
ysis we obtain

Corollary 3. Let f ∈ Cq a with fixed q ≥ 0. Then:
(i) if f is an increasing (decreasing) function on R0, then Sn[f ; an, bn, q],

n ∈ N , is also increasing (decreasing) function on R0;
(ii) if f is a convex (concave) function on R0, then Sn[f ; an, bn, q], n ∈ N ,

is also a convex (concave) on R0.
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Theorem 7. Suppose that f ∈ Cq with a fixed q ≥ 0 and x0 > 0 is a point
where there exists f ′(x0). Then

(40) lim
n→∞ (Sn[f ])′ (x0) = f ′(x0).

Proof. By assumptions for f we can write

f(t) = f(x0) + f ′(x0)(t − x0) + ε2(t, x0)(t − x0) for t ∈ R0,

where ε2 is function continuous at x0 and ε2 ∈ Cq. From (7) we get

(Sn[f ])′ (x) = −anSn(f(t);x) +
bn + q

x
Sn(tf(t);x) =

= (bn − an + q)Sn(f(t);x) +
bn + q

x
Sn((t − x)f(t);x)

for x > 0 and n ∈ N . Consequently, we obtain

(41) (Sn[f(t)])′ (x0) = f(x0)
{

bn − an + q +
bn + q

x0
Sn(t − x0;x0)

}
+

+f ′(x0)
{

(bn − an + q)Sn(t − x0;x0) +
bn + q

x0
Sn

(
(t − x0)2;x0

)}
+

+(bn − an + q)Sn (ε2(t)(t − x0;x0) +
bn + q

x0
Sn

(
ε2(t)(t − x0)2;x0

)
.

Properties of ε2 and Corollary 1 imply

(42) lim
n→∞Sn (ε2(t)(t − x0);x0) = 0.

Analogously as in the proof of Theorem 5 we obtain

(43) lim
n→∞ bnSn

(
ε2(t)(t − x0)2;x0

)
= 0.

Applying (8),(11), (12), (42) and (43) we immediately obtain (40) from (41).�

3. Operators Tn[f ; an, bn]

We shall assume that the sequences (an)∞1 and (bn)∞1 given in formula (9)
for Tn[f ; an, bn] are fixed. For these operators we shall give analogies of some
results proved in [3].

3.1. First we shall give some elementary properties of Tn. From (9) we get

Tn(1; an, bn;x) = 1 for x ∈ R0, n ∈ N.
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Lemma 5. Let p ≥ 1 be a fixed number. Tn[f ; an, bn], n ∈ N , is a positive
linear operator from the space Lp (R0) into C0, i.e. Cq with q = 0. Moreover

(44) ‖Tn[f ; an, bn]‖0 ≤ b1/p
n ‖f‖Lp n ∈ N.

Proof. We shall prove only (44). From (9) it follows that

|Tn(f ; an, bn;x)| ≤ b1/p
n

∞∑
k=0

ϕk(anx)

{∫ (k+1)/bn

k/bn

|f(t)|pdt

}1/p

≤

≤ ‖f‖Lp b1/p
n

∞∑
k=0

ϕk(anx) =≤ ‖f‖Lp b1/p
n ,

for every f ∈ Lp (R0), p ≥ 1, x ∈ R0 and n ∈ N , which implies (44). �

Lemma 6. Let p ≥ 1 be a fixed number. Tn[f ; an, bn], n ∈ N , is a positive
linear operator from the space Lp (R0) into Lp (R0) . Moreover

(45) ‖Tn[f ; an, bn]‖Lp ≤ bn

an
‖f‖Lp ≤ b1

a1
‖f‖Lp

for every f ∈ Lp (R0) and n ∈ N

Proof. Let p = 1. Then, applying the equality

(46)
∫ +∞

0

ϕk(anx) =
1
an

, k ∈ N0, n ∈ N,

we get

‖Tn[f ; an, bn]‖L1 =
∫ +∞

0

∣∣∣∣∣bn

∞∑
k=0

ϕk(anx)
∫ (k+1)/bn

k/bn

f(t)dt

∣∣∣∣∣ dx ≤

≤ bn

∞∑
k=0

(∫ (k+1)/bn

k/bn

|f(t)|dt

) ∫ +∞

0

ϕk(anx)dx =
bn

an
‖f‖L1 , n ∈ N.

If p > 1, then by (3), (10) and (46) and by Jensen inequalities we get

‖Tn[f ; an, bn]‖p
Lp =

∫ +∞

0

∣∣∣∣∣
∞∑

k=0

ϕk(anx)bn

∫ (k+1)/bn

k/bn

f(t)dt

∣∣∣∣∣
p

dx ≤

∫ +∞

0

∞∑
k=0

(
ϕk(anx)

∣∣∣∣∣bn

∫ (k+1)/bn

k/bn

f(t)dt

∣∣∣∣∣
p)

dx ≤

≤ bn

∞∑
k=0

∫ (k+1)/bn

k/bn

|f(t)|pdt

(∫ +∞

0

ϕk(anx)dx

)
≤ bn

an
‖f‖p

Lp , n ∈ N.

By properties of (bn/an)∞1 the proof of (45) is completed. �
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Lemma 7. Let f ∈ L1 (R0) and let

(47) F (x) :=
∫ x

0

f(t)dt, x ∈ R0.

Then F ∈ C0, i.e. F ∈ Cq with q = 0, and there exist operators
Sn[F ; an, bn; 0], n ∈ N , defined by (7). Moreover

(48) (Sn[F ; an, bn, 0])′ (x) =
an

bn
Tn(f ; an, bn;x)

for every x ∈ R0 and n ∈ N .

Proof. It is well know that F defined by (47) is continuous and bounded function
on R0 if f ∈ L1 (R0), i.e. F ∈ C0 if f ∈ L1 (R0). From this and by Lemma 3
and Theorem 6 we deduce that there exists Sn[F ; an, bn; 0], n ∈ N , defined by
(7) and

d

dx
Sn(F (t); an, bn, 0;x) = anSn

(
∆1/bn

F (t); an, bn, 0;x
)

=

=
an

bn
Tn(f(t); an, bn;x), x ∈ R0, n ∈ N.

�

3.2. In [3] the operator Tn[f ] defined by (6) for f ∈ L1 (R0) was written by the
formula

(49) Tn(f ;x) =
∫ +∞

0

Kn(x; s)f(s)ds, x ∈ R0, n ∈ N,

where

Kn(x; s) = ne−nx (nx)k

k!

for k/n < s ≤ (k + 1)/n, k ∈ N0; Kn(x; 0) = 0, x ≥ 0. For the operators (49) it
was proved in the following [3]:

Lemma 8. If f ∈ L1 (R0), then

sup
n∈N

|Tn(f ;x)| ≤ 3Θ(f ;x), x ∈ R0,

where

(50) Θ(f ;x) := sup
0<s<∞,s �=x

1
s − x

∫ s

x

|f(y)|dy.
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3.3. It is obvious that the operator Tn[f ; an, bn] defined by (9) can be written
as:

(51) Tn(f ; an, bn;x) =
∫ +∞

0

Wn(x; s; an, bn)f(s)ds

for f ∈ L1 (R0), x ∈ R0, n ∈ N , where

Wn(x; s; an, bn) := bne−anx (anx)k

k!

for k/bn < s ≤ (k + 1)/bn, k ∈ N0; Wn(x; 0; an, bn) = 0 for x ∈ R0.
Applying (51) and arguing similarly as in the proof of Lemma 8 (see [3], p.p.

550, 551 - Lemma 4 and Lemma 5) we can prove

Lemma 9. Let f ∈ L1 (R0). Then there exists a positive constant M8(a1, b1)
such that

sup
n∈N

|Tn(f ; an, bn;x)| ≤ M8(a1, b1)Θ(f ;x), x ∈ R0,

where Θ(f ; ·) is defined by (50).

3.4. Now we shall prove the main theorems for Tn[f ; an, bn], which are analogies
of the Butzer theorems given in [3].

Theorem 8. Suppose that f ∈ L1 (R0). Then

(52) lim
n→∞Tn(f ; an, bn;x) = f(x)

at every point x ∈ R0 where

(53) F ′(x) = f(x).

Hence (52) follows almost everywhere on R0.

Proof. The properties of F given in Lemma 7 and by Theorem 7 imply that

lim
n→∞ (Sn(F ; an, bn, 0))′ (x) = F ′(x)

at every x ∈ R0, where F ′(x) there exists. From this and by (48) and (8) we
obtain

lim
n→∞Tn(f ; an, bn;x) = F ′(x) = f(x)

at every x ∈ R0 where (53) follows. Since (53) follows almost everywhere on R0

for f ∈ L1 (R0), we have (52) almost everywhere on R0. �
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Theorem 9. Suppose that f ∈ L1 (R0) and f ∈ Lp (R0) with a fixed p > 1.
Then

(54) lim
n→∞ ‖Tn[f ; an, bn] − f‖Lp = 0.

Proof. It is known ([5], [3]) that if f ∈ Lp (R0), p > 1, then the function Θ(f ; ·)
defined by (50) belongs also to Lp (R0) and

∫ +∞

0

(Θ(f ;x))p
dx ≤ 2

(
p

p − 1

)p ∫ +∞

0

|f(x)|pdx.

From this and by Lemma 6, Lemma 9 and Theorem 8 and by the Lebesgue
theorem on convergence of sequence in Lp -space we immediately derive the
desired assertion (54). �
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