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MATRIX METHOD APPROACH TO CAFIERO
THEOREM

Paolo de Lucia1, Endre Pap2

Abstract. We give a simple proof of the Cafiero theorem based on a
matrix method approach in the form of Lemma 2.4 in the σ-additive
context. Based on a version of Drewnowski lemma for an SCP-ring we
obtain an extension of Cafiero theorem for exhaustive finitely additive
set functions defined on an SCP-ring. As consequences, the well-known
Nikodým and Brooks-Jewett convergence theorems are obtained.
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1. Introduction

In a paper of 1952 F. Cafiero [3] has characterized σ-additive set functions
defined on a σ-ring that are uniformly additive, see Cafiero [3, 4]. The notion
of the uniform additiveness was introduced by R. Caccioppoli [2] and indepen-
dently by Dubrovskii [15], and it was utilized by many authors to obtain a
Lebesgue type theorem for the convergence of integrals. Since the time when R.
Rickart [22] introduced the notion of exhaustivity or s-boundedness for additive
set functions defined on a ring it has been clear that for σ-additive set functions
the uniform additivity of Caccioppoli and Dubrovskii is equivalent to the uni-
form exhaustivity. Therefore the Cafiero lemma was reformulated for the case
of the uniform exhaustivity (see d’Andrea, de Lucia [7], H. Weber [25]).

In this paper we give a simple proof of the Cafiero theorem based on a matrix
method approach (diagonal theorems), as a further extension of sliding hump
method, and which was initiated by Mikusiński [18]. Many results in measure
theory and functional analysis can be found in Antosik and Swartz [1], Pap
[19, 20, 21], Swartz [23] (see also Diestel and Uhl Jr [13], Weber [26]), where
the matrix method is used instead of the Baire Category Theorem, which is
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unsuitable for obtaining more general results. We start with a matrix method
lemma, Lemma 2.4, which we use in the proof of Cafiero theorem 2.5 in the
σ-additive context. After that, by a version of Drewnowski lemma 3.3 for an
SCP-ring, we arrive at an extension of the Cafiero theorem 3.4 for exhaustive
finitely additive set functions defined on a SCP-ring. Finally, in section 4 we
obtain immediately, by the Cafiero theorem 3.4, the well known Nikodým and
Brooks-Jewett convergence theorems.

For more information on Cafiero theorem see d’Andrea, de Lucia [8], de
Lucia [9], de Lucia, Salvati [11], de Lucia, Traynor [12], Traynor [24], Weber
[25].

2. Cafiero uniform exhaustivity theorem

Let R be a ring and M a family of finitely additive set functions defined on
R. A finitely additive set function m : R → R is exhaustive (strongly additive or
strongly bounded) if limj→∞ m(Ej) = 0 for every sequence {Ej}j∈N of pairwise
disjoint elements from R. A family M of additive set functions is uniformly ex-
haustive if limj→∞ m(Ej) = 0 uniformly in m ∈ M for every sequence {Ej}j∈N

of pairwise disjoint elements from R. It is obvious that a finite measure on a
σ-ring is exhaustive.

The following propositions are well known (see de Lucia, Pap [10]).

Proposition 2.1. Let M be a family of finite additive exhaustive set functions
on R. The following statements are equivalent

(i) M is uniformly exhaustive,

(ii) for every increasing sequence {Ei}i∈N the sequence {m(Ei)}i∈N is a con-
vergent sequence, uniformly for m ∈ M

(iii) for every disjoint sequence {Ei}i∈N of R the series
∑

i m(Ei) is convergent
uniformly for m ∈ M.

Proposition 2.2. Let M be a family of finite additive exhaustive set functions
on R. Then

(i) M is uniformly exhaustive,

implies

(ii) for every decreasing sequence {Ei}i∈N the sequence {m(Ei)}i∈N is a con-
vergent sequence uniformly for m ∈ M.

If R is an algebra then (i) and (ii) are equivalent.
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Let Σ be a σ-algebra and M family of σ-additive set functions defined on Σ.
A family M of countable additive measures µ : Σ → R is uniformly countable
additive if

lim
n→∞

∞∑
j=n

µ(Ej) = 0

uniformly in µ ∈ M for every sequence {Ej}j∈N of pairwise disjoint elements
from Σ. We have by Propositions 2.1 and 2.2

Proposition 2.3. Let Σ be a σ-algebra and M family of σ-additive set func-
tions defined on Σ. The following statements are equivalent

(i) M is uniformly exhaustive,

(ii) M is uniformly countable additive,

(iii) for every decreasing sequence {Ei}i∈N of Σ the sequence {µ(Ei)}i∈N is a
convergent sequence uniformly for µ ∈ M.

First we shall give an elementary matrix type lemma.

Lemma 2.4. Let [xni]n,i∈N be an infinite matrix of real numbers such that

1) for every n ∈ N and every subset I of N there exists
∑

i∈I xni;

2) for every sequence {Ik}k∈N of pairwise disjoint subsets of N and for every
ε > 0 there exists k̄ ∈ N and n0 ∈ N such that∣∣∣∣∣∣

∑
i∈Ik̄

xni

∣∣∣∣∣∣ < ε for every n > n0.

Then
lim

i→∞
xni = 0 uniformly in n ∈ N.

Proof. We note that if the matrix [xni]n,i∈N has the properties 1) and 2) then
also every its submatrix has the same properties. By 1) we have

lim
i→∞

xni = 0 (n ∈ N).(1)

Then we need to prove that: for every ε > 0 there exist k,m ∈ N such that
| xni |< ε for every i > k and every n > m. Suppose that this is not true.
Then there exists σ > 0 such that for every k,m ∈ N there exist i > k and n >
m such that | xni |≥ σ. By induction we can then construct two strictly increas-
ing sequences {ik}k∈N and {nk}k∈N of natural numbers such that | xnkik

|≥ σ
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for every k ∈ N. Therefore there exists a submatrix of the starting matrix, which
we denote by the same symbol [xni]n,i∈N, such that it satisfies 1), 2) and for
some σ > 0

3) | xkk |≥ σ for every k ∈ N.

Let {σr}r∈N be a decreasing sequence of real numbers such that
∑
r∈N

σr <
σ

2
,

from 2) we have that for every r ∈ N there exist ir and mr such that

| xnir
|< σr

for every n ≥ mr. We can suppose that the sequences {ir} and {mr} are strictly
increasing and so to construct a new submatrix of [xni], which we denote by the
same symbol [xni]n,i∈N, such that it satisfies 1), 2), 3) and

for every i ∈ N, | xni |< σi for all n ≥ mi.(2)

Now we construct by induction two strictly increasing sequences {ρn}n∈N and
{rn}n∈N of natural numbers with the property

ρn > rn > max{ρn−1,mrn−1} for every n ∈ N,

where ρ0 = m0 = 0, such that we have for every n ∈ N,

| xrki |< σrn
for every i > ρn and k = 1, . . . , n.(3)

Suppose that r1, . . . , rn−1, ; ρ1, . . . , ρn−1 are determined and let be rn an element
of N such that

rn > max{ρn−1,mrn−1},
by (1) we can find ρn such that ρn > rn and (3) is true.

Consider now the submatrix [xrnri
]n,i∈N, for n ∈ N and i = 1, . . . , n − 1, we

have rn > mri
and then, by (2)

| xrnri
|< σri

,

and for i ≥ n + 1 it results

ri > ρi−1, n ≤ i − 1

and then, by (3)
| xrnri

|< σri−1 .
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Hence for an infinite subset I of N and n ∈ I we have by 3)∣∣∣∣∣
∑
i∈I

xrnri

∣∣∣∣∣ ≥ | xrnrn
| −

∑
i∈I,i �=n

| xrnri
|

≥ σ −
∑
i∈N

σi

=
σ

2
.

If {Ik}k∈N is a disjoint sequence of infinite subsets of N we have for every k ∈ N∣∣∣∣∣
∑
i∈Ik

xrnri

∣∣∣∣∣ >
σ

2
for all n ∈ Ik

and this contradicts 2). �

Theorem 2.5. [Cafiero] Let Σ be a σ-algebra. A sequence {µn}n∈N of countable
additive real measures defined on Σ is uniformly exhaustive if and only if the
following condition holds
α) for every sequence {En}n∈N of pairwise disjoint elements of Σ and every
ε > 0 there exist k̄, n0 ∈ N such that

|µn(Ek̄)| < ε for every n ≥ n0.

Proof. Let {En}n∈N be a sequence of pairwise disjoint elements of Σ. Then
(µn(Ei))n,i∈N is an infinite matrix of real numbers. By countable additivity of
every µn we have that for every n ∈ N and I ⊂ N there exists

∑
i∈I µn(Ei). If

{Ik}k∈N is a sequence of pairwise disjoint subsets of N, then {∪i∈Ik
Ei}k∈N is a

sequence of pairwise disjoint elements of Σ and then by α) for every ε > 0 there
exist k̄, n0 ∈ N such that∣∣∣∣∣∣µn


 ⋃

i∈Ik̄

Ei




∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈Ik̄

µn(Ei)

∣∣∣∣∣∣ < ε for every n ≥ n0.

Therefore the conditions 1) and 2) of Lemma 2.4 are satisfied and we have that

lim
i→∞

µn(Ei) = 0 uniformly in n ∈ N.

�

3. Cafiero theorem for additive set functions and SCP

To extend the previous results to the finitely additive case we will prove
a generalization of a very useful lemma obtained by Drewnowski [14] for a σ-
ring, now for the case of an SCP-ring. We have the following definition by
Constantinescu [5, 6] and Haydon [17], see also Freniche [16] and H. Weber [25].
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Definition 3.1. A ring R has the Sequential Completeness Property, and will
be called SCP-ring, if each disjoint sequence {En}n∈N from R has a subsequence
{Enj

}j∈N, whose union is in R.

Lemma 3.2. [Drewnowski lemma with SCP] Let R be an SCP-ring. If m :
R → R is an exhaustive monotone set function with m(∅) = 0 and {En}n∈N

is a sequence of pairwise disjoint sets from R, then there exist a subsequence
{Ekn

}n∈N of {En}n∈N and a SCP-ring R′ with SCP such that R′ ⊆ R, Ekn
∈

R′ for every n ∈ N, and m is order continuous on the ring R′.

Proof. Let {Ji}i∈N be a sequence of pairwise disjoint infinite subsets of N. Then
for every i ∈ N there exists an infinite subset J ′

i of Ji such that {∪k∈J′
i
Ek}i∈N

is a sequence of pairwise disjoint subsets of R. By the exhaustivity of m it is
possible to find an infinite subset N1 of N such that

m

( ⋃
k∈N1

Ek

)
<

1
2
.

In the same way, if {Ji}i∈N is a sequence of pairwise disjoint infinite subsets of
N1 \ {min N1}, it is possible to find an infinite subset N2 of N1 \ {min N1} such
that

m

( ⋃
k∈N2

Ek

)
<

1
22

.

In this way, we construct, by induction, a decreasing sequence {Ni}i∈N of infinite
subsets of N such that

Ni+1 ⊆ Ni \ {min Ni}, m

( ⋃
k∈Ni

Ek

)
<

1
2i

for every i ∈ N.

Let ki = min Ni and let R′ be the set{
X ∈ R : there exists I ⊆ N such that X =

⋃
i∈I

Eki

}
.(4)

We claim that R′ is a ring with the SCP. It is clear that the supremum of
two elements of R′ belongs to R′. Let X1,X2 be two elements of R′ such that
X2 ⊆ X2. Then there exist I1 and I2 subsets of N such that

Xp =
⋃

j∈Ip

Ekj
for every p ∈ N.

Then we have
X1 \ X2 =

⋃
j∈I1\I2

Ekj
∈ R,
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i.e., X1 \ X2 ∈ R′. Therefore R′ is a ring. Let {Xp}p∈N be a disjoint sequence
of elements of R′, then there exists a disjoint sequence {Ip}p∈N of subsets of N

such that
Xp =

⋃
j∈Ip

Ekj
.

By the property of SCP of R there exists a subsequence {Xpr
}r∈N of {Xp}p∈N

such that ⋃
r∈N

Xpr
=

⋃
j∈∪r∈NIpr

Ekj

belongs to R and then also to R′ that the restriction of m to R′ is order
continuous is proved in the same way as it was proved in the case of the σ-ring,
see de Lucia, Pap (2002). �

We shall call the ring R′ defined by (4) the SCP-ring generated by {Ekn
}.

Lemma 3.3. [Drewnowski lemma for additive set functions] Let R be a SCP-
ring. If µi : R → R is a sequence of exhaustive additive set functions and {En}
is a sequence of pairwise disjoint sets from R, then there exists a subsequence
{Ekn

}n∈N of {En}n∈N such that µi is countable additive on the SCP-ring R′

generated by {Ekn
}n∈N.

Proof. Let for every n ∈ N denote by |µn| the total variation of µn. We introduce
the set function m : R → R by

m =
∑
n∈N

1
2n

|µn|
1 + Mn

,

where Mn = sup{|µn|(A) : A ∈ R}. Since the function m satisfies the conditions
of Drewnowski lemma 3.2 there exists a SCP-ring R′ generated by a subsequence
{Ekn

}n∈N of {En}n∈N such that the restriction of m to R′ is order continuous.
Then it easily follows that the restrictions of |µn| to R′ are order continuous
and therefore every µn is countable additive on R′. �

We will generalize Theorem 2.5 to the additive case.

Theorem 3.4. [Cafiero theorem for additive set functions] Let R be an SCP-
ring. A sequence {µn}n∈N of finite additive bounded set functions defined on R
is uniformly exhaustive if and only if the following condition holds
α) for every sequence {En}n∈N of pairwise disjoint elements of R and every
ε > 0 there exist k̄, n0 ∈ N such that

|µn(Ek̄)| < ε for every n ≥ n0.

Proof. Suppose that the {µn}n∈N are not uniformly exhaustive. Then there
exists a disjoint sequence {Ei}i∈N of R such that limn→∞ µn(Ei) = 0 but not
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uniformly in n. Then there exists ε > 0 such that we can construct a subsequence
of {Ei}i∈N and a subsequence of {µn}n∈N, that for simplicity, we will denote
yet by the same symbols so that

| µn(En) |> ε for every n ∈ N.(5)

By Drewnowski lemma 3.3 there exists a subsequence {Eik
}k∈N of {Ei}i∈N such

that if R′ is a SCP-ring generated by {Eik
}k∈N the restriction of µn to R′ are

σ-additive. From Theorem 3.4 it follows that these restrictions are uniformly
exhaustive but by (5) we have

| µik
(Eik

) |> ε for every k ∈ N.

A contradiction. �

4. Applications

4.1. Nikodým convergence theorem

Theorem 4.1. [Nikodým convergence theorem] Let R be an SCP-ring. Let
{µn}n∈N be a pointwise convergent sequence of countable additive measures de-
fined on R, i.e.,

lim
n→∞µn(E) = µ(E), E ∈ Σ,(6)

then

(i) {µn}n∈N converges to a countable additive measure µ,

(ii) {µn}n∈N is uniformly σ-additive.

Proof. We consider first a special case. If {µn}n∈N is pointwise convergent to
zero then condition α) in Theorem 2.5 is satisfied. Then {µn}n∈N is uniformly
exhaustive and, by Proposition 2.3, it is uniformly σ-additive.

The general case for (ii), i.e., under the condition (6), it easily follows by
the fact that by (6) {µn(E)}n∈N is a Cauchy sequence. Namely, suppose that
(ii) does not hold for {µn}n∈N, i.e., that there is a sequence of pairwise disjoint
sets {En}n∈N from Σ, a subsequence {µkn

}n∈N of {µn}n∈N and ε > 0 such that
| µkn

(Ekn
) |≥ 2ε. By exhaustivity of µkn

there exists a subsequence {pn}n∈N

of {kn}n∈N such that | µpn
(Epn+1) |≤ ε. Taking mn = µpn+1 − µpn

we ob-
tain a sequence {mn}n∈N of countable additive set functions which is pointwise
convergent to zero and therefore by the previously proved part it is uniformly
countable additive, but this is in contradiction with

| mn(Epn+1) | ≥ | µpn+1(Epn+1) | − | µpn
(Epn+1) | ≥ ε



Matrix method approach to Cafiero theorem 125

for all n ∈ N.

To prove (i), we have to use (ii). Namely, by (ii) we have

µ


 ∞⋃

j=1

Ej


 = lim

i→∞
µi


 ∞⋃

j=1

Ej




= lim
i→∞

lim
n→∞

n∑
j=1

µi(Ej)

= lim
n→∞µ


 n⋃

j=1

Ej




=
∞∑

j=1

µ(Ej).

�

4.2. Brooks-Jewett theorem and related results

A generalization of the Nikodým convergence theorem was obtained by
Brooks and Jewett.

Theorem 4.2. [Brooks-Jewett] Let R be an SCP-ring. A pointwise conver-
gent sequence {mn}n∈N of finitely additive scalar and exhaustive set functions
(strongly additive) defined on an R, i.e., limn→∞ mn(E) = m(E), E ∈ R,

(i) converges to an additive and exhaustive set function m,

(ii) {mn}n∈N is uniformly exhaustive.

Proof. If {mn}n∈N is pointwise convergent to 0 then the condition α) of Theorem
3.4 is verified and so in this special case (ii) is true. The general case for (ii)
follows in the same manner as in the proof of Nikodým theorem.

Then (i) follows by (ii)

lim
j→∞

m(Ej) = lim
j→∞

lim
i→∞

mi(Ej)

= lim
i→∞

lim
j→∞

mi(Ej)

= 0. �

Theorem 4.3. [Nikodým boundedness theorem for additive case] Let R be an
SCP-ring. A family M of finitely additive bounded set functions m, defined on
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an R, which is pointwise bounded, i.e., for each E ∈ R there exists ME > 0
such that

|m(E)| < ME (m ∈ M),

is uniformly bounded, i.e., there exist M > 0 such that

|m(E)| < M (m ∈ M, E ∈ R)

The proof is the same as the proof of Nikodým boundedness theorem, only
using Brooks-Jewett theorem 4.2 instead of Nikodým convergence theorem (see
de Lucia, Pap [10]). �
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