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VOLTERRA INTEGRAL EQUATIONS
WITH ITERATIONS OF LINEAR MODIFICATION

OF THE ARGUMENT

Viorica Mureşan1

Abstract. We consider some integral equations with iterations of lin-
ear modification of the argument which provide us Picard operators and
weakly Picard operators. We study the existence, existence and unique-
ness, and data dependence for the solutions of these equations.
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1. Introduction

In the last thirty years there has been a great deal of work in the field
of differential equations with modified argument. These equations arise in a
wide variety of scientific and technical applications, including the modelling of
problems from the natural and social sciences such as physics, biological sciences
and economics.

A special class is represented by the differential equations with affine modi-
fication of the argument which can be delay differential equations or differential
equations with linear modification of the argument. Many results concerning
these equations are given in the papers [2]–[7], [18].

Another class of differential equations with modified arguments are the dif-
ferential equations with iteration such as equation x′(t) = x(x(t)), considered
by Petukhov in [8]. In [1], results concerning the existence, uniqueness and data
dependence for the solutions of some Cauchy problems for nonlinear equation
with iteration x′(t) = f(t, x(x(t))), are given.

The Cauchy problem for an equation with iterations of linear modification
of the argument:

x′(t) = f(t, x(t), x(λt), x(λx(λt))), t ∈ [0, b], b > 0, 0 < λ < 1
x(0) = u0,

where f ∈ C([0, b]4), u0 ∈ R, is equivalent to the following integral equation

x(t) = u0+
∫ t

0

f(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], b > 0, 0 < λ < 1.(1)
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In this paper, by using the Picard and weakly Picard operators’ technique,
due to I. A. Rus (see [11]–[15]), we obtain the existence, existence and unique-
ness, and data dependence results for the solution of equation (1). Our results
generalize those obtained in [1] and [7].

2. Preliminaries

Let (X, d) be a metric space and A : X → X an operator. We shall use the
following notations:

P (X) := {Y ⊆ X| Y �= ∅};
Pb,cl(X) := {Y ∈ P (X)| Y is bounded and closed};
FA := {x ∈ X| A(x) = x} – the fixed point set of A;
I(A) := {Y ∈ P (X)| A(Y ) ⊆ Y };
OA(x) := {x,A(x), A2(x), . . . , An(x), . . .} – the A-orbit of x ∈ X;
δ(Y ) := sup{d(a, b)| a, b ∈ Y } – the diameter of Y ∈ P (X);
H : P (X) × P (X) → R+ ∪ {∞};
H(Y,Z) = max

(
sup
a∈Y

inf
b∈Z

d(a, b), sup
b∈Z

inf
a∈Y

d(a, b)
)

– the Pompeiu–Hausdorff

functional on P (X).

Definition 2.1. [11] Let (X, d) be a metric space. An operator A : X → X is
a Picard operator if there exists x∗ ∈ X such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 2.2. [12] Let (X, d) be a metric space. An operator A : X → X is
a weakly Picard operator if the sequence (An(x0))n∈N converges for all x0 ∈ X
and its limit (which may depend on x0) is a fixed point of A.

If A is a weakly Picard operator then we consider the following operator

A∞ : X → X, A∞(x) := lim
n→∞An(x).

The following results will be useful in what follows:

Theorem 2.1. [10] Let (X, d) be a complete metric space and A,B : X → X
two operators. We suppose that:

(i) A is a contraction with the constant α and FA = {x∗
A};

(ii) B has fixed points and x∗
B ∈ FB ;

(iii) there exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ X.
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Then
d(x∗

A, x∗
B) ≤ η

1 − α
.

Theorem 2.2. [14] Let (X, d) be a metric space and A : X → X an operator.
The operator A is a weakly Picard operator if and only if there exists a partition
of X,

X =
⋃
λ∈Λ

Xλ, where Λ is the indices’ set of partition,

such that

(a) Xλ ∈ I(A), for all λ ∈ Λ;

(b) A|Xλ
: Xλ → Xλ is a Picard operator for all λ ∈ Λ.

Theorem 2.3. [15] Let (X, d) be a complete metric space and A,B : X → X
two orbitally continuous operators. We suppose that:

(i) there exists α ∈ [0, 1[ such that

d(A2(x), A(x)) ≤ αd(x,A(x)), for all x ∈ X

and
d(B2(x), B(x)) ≤ αd(x,B(x)), for all x ∈ X;

(ii) there exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ X.

Then
H(FA, FB) ≤ η

1 − α
.

3. A Volterra integral equation with iterations of linear
modification of the argument

We consider the integral equation (1).
We need the following sets:

CL[0, b] := {x ∈ C([0, b], [0, b])| |x(t1)−x(t2)| ≤ L|t1 − t2|, for all t1, t2 ∈ [0, b]},
and

CL,θ[0, b] := {x ∈ CL[0, b]| x(t) ≤ θt, for all t ∈ [0, b]},
where L, θ ∈ R

∗
+. Here R

∗
+ = {a ∈ R| a > 0}.

Let ‖ · ‖B : C[0, b] → R+ be the Bielecki norm, defined by

‖x‖B = max
t∈[0,b]

|x(t)|e−τt, where τ > 0,

and let ‖ · ‖C be the Chebyshev norm on C[0, b], defined by ‖x‖C = max
t∈[0,b]

|x(t)|.
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We denote by dB , respectively by dC , their corresponding metrics.
We remark that (see [1]):
If d ∈ {dC , dB} then (C([0, b], [0, b]), d), (CL[0, b], d) and (CL,θ[0, b], d) are

complete metric spaces.
If ‖ · ‖ ∈ {‖ · ‖B , ‖ · ‖C} then CL[0, b] and CL,θ[0, b] are convex, compact

subsets of the Banach space (C([0, b], [0, b]), ‖ · ‖).
The main results of this paper are the following

Theorem 3.1. Suppose that:

(i) f ∈ C([0, b]4) and max
s,u,v,w∈[0,b]

|f(s, u, v, w)| ≤ M , where M ∈ R
∗
+;

(ii) M ≤ L.

Then the equation (1) has solutions in CL[0, b].

Proof. Let A : CL[0, b] → CL[0, b] be defined by

A(x)(t) := u0 +
∫ t

0

f(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1,

that is a continuous operator.
We have

|A(x)(t1) − A(x)(t2)| =
∣∣∣∣
∫ t1

t2

f(s, x(s), x(λs), x(λx(λs)))ds

∣∣∣∣
≤ M |t1 − t2| ≤ L|t1 − t2|, for all t1, t2 ∈ [0, b].

So, A is a continuous operator which applies the compact, convex set CL[0, b]
into itself. By using Schauder’s fixed point theorem we obtain that FA �= ∅. �

Theorem 3.2. Suppose that:

(i) there exists T > 0 such that

|f(s, u1, v1, w1) − f(s, u2, v2, w2)| ≤ T (|u1 − u2| + |v1 − v2| + |w1 − w2|),

for all s, ui, vi, wi ∈ [0, b], i = 1, 2;

(ii) M ≤ L;

(iii) λ2θ < 1;

(iv) u0 ∈ R is such that |u0| + Mt ≤ θt, for all t ∈ [0, b].

Then equation (1) has a unique solution x∗ in CL,θ[0, b] and this solution can be
obtained by successive approximation method, starting from any x0 ∈ CL,θ[0, b].
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Proof. We consider A : CL,θ[0, b] → CL,θ[0, b], defined by

A(x)(t) := u0 +
∫ t

0

f(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1.

Because of (ii) and (iv) we have that CL,θ[0, b] ∈ I(A).
Let x, z ∈ CL,θ[0, b]. By using (i) and (iii) we obtain

|A(x)(t) − A(z)(t)|

≤
∫ t

0

|f(s, x(s), x(λs), x(λx(λs))) − f(s, z(s), z(λs), z(λz(λs)))|ds

≤ T

∫ t

0

[|x(s) − z(s)| + |x(λs) − z(λs)| + |x(λx(λs)) − z(λz(λs))|]ds

≤ T

[∫ t

0

|x(s) − z(s)|e−τseτsds +
∫ t

0

|x(λs) − z(λs)|e−τλseτλsds

+
∫ t

0

|x(λx(λs)) − z(λx(λs))|e−τλx(λs)eτλx(λs)ds

+
∫ t

0

|z(λx(λs)) − z(λz(λs))|ds

]

≤ T

[∫ t

0

‖x − z‖Beτsds +
∫ t

0

‖x − z‖Beτλsds

+
∫ t

0

‖x − z‖Beτλθλsds + Lλ

∫ t

0

|x(λs) − z(λs)|e−τλseτλsds

]

≤ T‖x − z‖B

(
eτt − 1

τ
+

eτλt − 1
τλ

+
eτλ2θt − 1

τλ2θ
+ Lλ

eτλt − 1
τλ

)

≤ eτt T

τ

(
1 +

1
λ

+
1

λ2θ
+ L

)
‖x − z‖B , for all t ∈ [0, b].

It follows that

|A(x)(t) − A(z)(t)|e−τt ≤ T

τ

(
1 +

1
λ

+
1

λ2θ
+ L

)
‖x − z‖B,

for all t ∈ [0, b].
Therefore,

‖A(x) − A(z)‖B ≤ T

τ

(
1 +

1
λ

+
1

λ2θ
+ L

)
‖x − z‖B ,

for all x, z ∈ CL,θ[0, b]. So, A is a Lipschitz operator with the Lipschitz constant
T

τ

(
1 +

1
λ

+
1

λ2θ
+ L

)
.
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Choosing τ = T

(
1 +

1
λ

+
1

λ2θ
+ L

)
+ 1 we have that A is a contraction.

We denote

LA =
T

(
1 +

1
λ

+
1

λ2θ
+ L

)

T

(
1 +

1
λ

+
1

λ2θ
+ L

)
+ 1

.

So 0 < LA < 1.
By applying Contraction principle we obtain that A is a Picard operator. �
Now, we consider both (1) and

x(t) = v0 +
∫ t

0

g(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1,(2)

where g ∈ C([0, b]4) and v0 ∈ R.
Let M1 > 0 be such that max

s,u,v,w∈[0,b]
|g(s, u, v, w)| ≤ M1.

We have

Theorem 3.3. We suppose that:

(i) the conditions of Theorem 3.2 are satisfied and x∗ ∈ CL,θ is the unique
solution of equation (1);

(ii) there exists T1 > 0 such that

|g(s, u1, v1, w1) − g(s, u2, v2, w2)| ≤ T1(|u1 − u2| + |v1 − v2| + |w1 − w2|),

for all s, ui, vi, wi ∈ [0, b], i = 1, 2;

(iii) M1 ≤ L;

(iv) there exists η > 0 such that

|f(s, u, v, w) − g(s, u, v, w)| ≤ η, for all s, u, v, w ∈ [0, b].

If z∗ is a solution of equation (2), then

‖x∗ − z∗‖B ≤ ηb + |u0 − v0|
1 − LA

,

where

LA =
T

(
1 +

1
λ

+
1

λ2θ
+ L

)

T

(
1 +

1
λ

+
1

λ2θ
+ L

)
+ 1

.
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Proof. We consider the operators A,B : CL[0, b] → CL[0, b] defined by

A(x)(t) := u0 +
∫ t

0

f(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1,

B(x)(t) := v0 +
∫ t

0

g(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1

in which λ is the same.
We have |A(x)(t) − B(x)(t)| ≤ |u0 − v0| + ηb, for all t ∈ [0, b].
It follows that

‖A(x) − B(x)‖B ≤ |u0 − v0| + ηb.

So, we apply Theorem 2.1. �

Remark 3.1. Our results given above are more general than those obtained by
A. Buică in [1].

4. Another integral equation with iterations of linear
modification of the argument

Now, we consider the following integral equation:

x(t) = x(0) +
∫ t

0

f(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1,(3)

where f ∈ C([0, b]4).
Let M > 0 be such that max

s,u,v,w∈[0,b]
|f(s, u, v, w)| ≤ M.

We can write C([0, b], [0, b]) =
⋃

α∈[0,b]

Xα, where

Xα := {ϕ ∈ C([0, b], [0, b])| ϕ(0) = α}.
We consider the operator A∗ : CL,θ[0, b] → CL,θ[0, b] defined by

A∗(x)(t) := x(0) +
∫ t

0

f(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1,

that is a continuous operator but it is not a Lipschitz operator.
We have that Xα ∈ I(A∗) and A∗|Xα

is a Picard operator. But A∗|Xα
is

the operator which appears in the proof of Theorem 3.1. By applying Theorem
2.2 we obtain that if the conditions of Theorem 3.1 are satisfied then A∗ is a
weakly Picard operator.

We denote A∞
∗ (x) = lim

n→∞An
∗ (x).

From An+1
∗ (x) = A∗(An

∗ (x)) and the continuity of A∗ we have that A∞
∗ (x) ∈

FA∗ , that is FA∗ �= ∅. So, we have



8 V. Mureşan

Theorem 4.1. If the conditions of Theorem 3.1 are satisfied then equation (3)
has solutions in CL,θ[0, b], that is FA∗ �= ∅ and cardFA∗ = card[0, b].

In order to examine the data dependence of the solutions set for the equation
(3), we consider the equation:

x(t) = x(0) +
∫ t

0

g(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b],

in which λ is the same as in (3), and g ∈ C([0, b]4).
Let M1 > 0 be such that max

s,u,v,w∈[0,b]
|g(s, u, v, w)| ≤ M1.

We consider the operators

A∗, B∗ : (CL,θ[0, b], ‖ · ‖C) → (CL,θ[0, b], ‖ · ‖C)

defined by

A∗(x)(t) := x(0) +
∫ t

0

f(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1,

B∗(x)(t) := x(0) +
∫ t

0

g(s, x(s), x(λs), x(λx(λs)))ds, t ∈ [0, b], 0 < λ < 1,

in which λ is the same.
We have

Theorem 4.2. Suppose that

(i) there exists T > 0 such that

|f(s, u1, v1, w1) − f(s, u2, v2, w2)| ≤ T (|u1 − u2| + |v1 − v2| + |w1 − w2|),
and

|g(s, u1, v1, w1) − g(s, u2, v2, w2)| ≤ T (|u1 − u2| + |v1 − v2| + |w1 − w2|),
for all s, ui, vi, wi ∈ [0, b], i = 1, 2;

(ii) M ≤ L and M1 ≤ L;

(iii) |x(0)| + Mt ≤ θt and |x(0)| + M1t ≤ θt, for all x ∈ CL,θ[0, b] and all
t ∈ [0, b];

(iv) there exists η1 > 0 such that

|f(s, u, v, w) − g(s, u, v, w)| ≤ η1, for all s, u, v, w ∈ [0, b],

(v) 3Tb < 1.
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Then

(a) FA∗ �= ∅ and FB∗ �= ∅;

(b) H‖·‖C
(FA∗ , FB∗) ≤ η1b

1 − 3Tb
, where by H‖·‖C

we denote the Pompeiu–

Hausdorff metric with respect to ‖ · ‖C on CL,θ[0, b].

Proof. (a) By using the results of Theorem 4.1 we have that FA∗ �= ∅ and
FB∗ �= ∅ and cardFA∗ = cardFB∗ = card[0, b].

(b) We have

A2
∗(x)(t) = A∗(A∗(x))(t)

:= A∗(x)(0) +
∫ t

0

f(s,A∗(x)(s), A∗(x)(λs), A∗(x)(λx(λs)))ds

= x(0) +
∫ t

0

f(s,A∗(x)(s), A∗(x)(λs), A∗(x)(λx(λs)))ds.

Because of (i) we obtain

|A2
∗(x)(t) − A∗(x)(t)| ≤ T

∫ t

0

(|A∗(x)(s) − x(s)| + |A∗(x)(λs) − x(λs)|
+ |A∗(x)(λx(λs)) − x(λx(λs))|) ds

≤ 3T

∫ t

0

(
max

u∈[0,b]
|A∗(x)(u) − x(u)|

)
ds

≤ 3Tb‖A∗(x) − x‖C , for all t ∈ [0, b].

So,

‖A2
∗(x) − A∗(x)‖C ≤ 3Tb‖A∗(x) − x‖C , for all x ∈ CL,θ[0, b].

Similarly,

‖B2
∗(x) − B∗(x)‖C ≤ 3Tb‖B∗(x) − x‖C , for all x ∈ CL,θ[0, b].

From (iv) we obtain that

‖A∗(x) − B∗(x)‖C ≤ η1b, for all x ∈ CL,θ[0, b].

By applying Theorem 2.3 we have that

H‖·‖C
(FA∗ , FB∗) ≤

η1b

1 − 3Tb
.

�

Remark 4.1. The previous results generalized those obtained in [7].
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