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NONLINEAR CONNECTIONS AND SEMISPRAYS
ON TANGENT MANIFOLDS

Mircea Crâşmăreanu1

Abstract. The well–known notions from tangent bundle geometry, like
nonlinear connections and semisprays, are extended to bundle–type tan-
gent manifolds. Also, new objects interesting from a dynamical point of
view, like symmetries of nonlinear connections, are introduced.
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1. Introduction

Almost tangent structures, introduced by Clark and Bruckheimer, [3], and
Eliopoulos, [6], around 1960, have been investigated by several authors, see [1],
[4], [5], [11]. As is well–known, the tangent bundle of a manifold carries a canoni-
cal integrable almost tangent structure, hence the name. This almost tangent
structure plays an important role in the Lagrangian description of analytical
mechanics ([5], [7], [8]).

The aim of the present paper is to extend two natural objects, namely nonli-
near connections and semisprays, from the tangent bundles to tangent manifolds
geometry. The former geometrical object is studied by means of vertical projec-
tors and the latter implies the existence of a global vector field of the Liouville
type.

The paper is structured as follows. In the second section nonlinear connec-
tions are introduced and interpreted as kernels of vertical projectors and the
equivalence with other two types of vector 1–forms is proved. In the third sec-
tion the notion of second order differential system (semispray in short) is defined
and the relationship between semisprays and nonlinear connections is discussed
in detail. As a particular case, the notion of spray corresponds to a homogene-
ity condition. In the last section, a completely new notion (to the best of our
knowledge!), namely symmetry of a vertical projector(=nonlinear connection),
is considered and studied. The paper ends with types of curves associated in a
natural manner to nonlinear connections and semisprays.

1Faculty of Mathematics, University “Al. I. Cuza”, Iaşi, 6600, Romania, e–mail:
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As methods, both global and local expressions are used in order to obtain
several characterizations. Since vector 1–forms are used throughout the paper
the Frölicher-Nijenhuis formalism has a main role in the global descriptions.

2. Nonlinear connections on tangent manifolds

Let M be a smooth, m-dimensional real manifold for which we denote:
C∞ (M) – the real algebra of smooth real functions on M , X (M) – the Lie
algebra of vector fields on M , T r

s (M) – the C∞ (M)–module of tensor fields of
(r, s)–type on M . An element of T 1

1 (M) is usually called vector 1–form, [9, p.
176].

The framework of our paper is fixed by:

Definition 2.1. J ∈ T 1
1 (M) is called almost tangent structure on M if

(2.1) imJ = ker J.

The pair (M,J) is an almost tangent manifold.

The name is motivated by the fact that (2.1) implies the nilpotence J2 = 0
exactly as the natural tangent structure of tangent bundles, [8].

Denoting rankJ = n it results m = 2n. In addition, we suppose that J is
integrable, i.e.

(2.2) NJ (X,Y ) := [JX, JY ] − J [JX, Y ] − J [X,JY ] + J2 [X,Y ] = 0

and in this case J is called tangent structure and (M,J) is called tangent mani-
fold.

In the following we shall work only on tangent manifolds. From [10, p. 6–7]
we get:

(i) the distribution imJ (= ker J) defines a foliation denoted V (M) and
called the vertical distribution

Example 2.1. M = R
2, J (x, y) = (0, x) is a tangent structure with ker J the

y–axis, hence the name.

(ii) there exists an atlas on M with local coordinates (x, y) =
(
xi, yi

)
1≤i≤n

such that J = ∂
∂yi ⊗ dxi, i.e.

(2.3) J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0.

We call canonical coordinates the above (x, y) and the change of canonical co-
ordinates (x, y) → (x̃, ỹ) is given by, [10, p. 7],

(2.4)


x̃i = x̃i (x)

ỹi =
∂x̃i

∂xa
ya + Bi (x)

.
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It results in an alternative description in terms of G–structures. Namely, a
tangent structure is a G–structure with

G = {C =
(

A On

B A

)
∈ GL(2n, R);A ∈ GL(n, R)}

and G is the invariance group of the matrix J =
(

On On

In On

)
, i.e. C ∈ G if

and only if C · J = J · C.
Inspired by Definition 1.1 of [2, p. 71] we give a first main notion:

Definition 2.2. A vector 1–form v : X (M) → X (M) satisfying

(2.5)

{
J ◦ v = 0

v ◦ J = J

is called vertical projector.

From (2.51) imv ⊆ ker J = V (M) and from (2.52) v|imJ = 1V (M). In
conclusion imv = V (M) and v2 = v; these facts explain the name of v.

Another well–known notion in tangent bundles geometry extends to:

Definition 2.3. ([10, p. 19]) A supplementary distribution N to the vertical
distribution V (M):

(2.6) X (M) = N ⊕ V (M)

is called normalization or horizontal distribution or nonlinear connection. A
vector field belonging to N is called horizontal and one belonging to V (M) is
called vertical.

Because a vertical projector v is C∞ (M)–linear with imv = V (M) we have
a first important result:

Proposition 2.1. A vertical projector v yields a nonlinear connection denoted
N (v) through relation N (v) = ker v.

This relation is a generalization of remarks from [2, p. 71] where the tan-
gent bundles case is treated. An important remark is that last result admits a
converse. Namely, if N is a nonlinear connection let hN , vN the horizontal and
vertical projection with respect to the decomposition (2.6).

Proposition 2.2. vN is a vertical projector with N (vN ) = N .

Proof. From imvN = V (M) = kerJ it follows (2.51). vN being projector satisfy
vN (V (M)) = V (M) = imJ and then we have (2.52). The second fact comes
immediately from the definition of N (vN ). �
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With respect to the identification nonlinear connection=vertical projector
let us point other two equivalent choices:

I) Following [7] we get:

Definition 2.4. A vector 1–form Γ is called nonlinear connection of almost
product type if

(2.7)

{
Γ ◦ J = −J

J ◦ Γ = J
.

Proposition 2.3. If Γ is a nonlinear connection of almost product type then

(i) vΓ = 1
2

(
1X (M) − Γ

)
is a vertical projector,

(ii) V (M) is the (−1)–eigenspace of Γ,

(iii) N (vΓ) is the (+1)–eigenspace of Γ.

It comes out that every vertical projector v yields a nonlinear connection of
almost product type: Γ = 1X (M) − 2v. From this last relation it results that
Γ2 = 1X(M), i.e. Γ is an almost product structure on M (hence the name).

Proof.

(i) J ◦ vΓ = 1
2 (J − J ◦ Γ)

(2.72)= 1
2 (J − J) = 0 and vΓ ◦ J = 1

2 (J − Γ ◦ J)
(2.71)= 1

2 (J + J) = J.

(ii) V (M) = imvΓ = {X ∈ X (M) ; Γ (X) = −X}.
(iii) N (vΓ) = ker vΓ = {X ∈ X (M) ; Γ (X) = X}. �

II) Inspired by [9, p. 180] we define:

Definition 2.5. A vector 1–form h is called horizontal projector if

(2.8)
{

h2 = h
ker h = V (M) .

Proposition 2.4. If h is a horizontal projector then

(i) vh = 1X (M) − h is a vertical projector,

(ii) N (vh) is the (+1)–eigenspace of h.

It follows that every vertical projector v yields a horizontal projector h =
1X (M) − v.

Proof. (i) From h
(
1X (M) − h

)
= 0 we have im

(
1X (M) − h

) ⊆ ker h = V (M) =
ker J , then J ◦vh = 0. Also, imJ = V (M) = kerh imply vh ◦J = J −h◦J = J.

(ii) N (vh) = ker vh = {X ∈ X (M) ;h (X) = X}. �
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In canonical coordinates a vertical projector reads

(2.9) v = N i
j

∂

∂yi
⊗ dxj +

∂

∂yi
⊗ dyi =

∂

∂yi
⊗ (

N i
jdxj + dyi

)
and the functions

(
N i

j (x, y)
)
1≤i,j≤n

are called the coefficients of v, respectively
N (v). A basis of X (M) adapted to the decomposition (1.6) is{

δ

δxi
:=

∂

∂xi
− N j

i

∂

∂yj
,

∂

∂yi

}
1≤i≤n

and it is called the Berwald basis. Then

v =
∂

∂yi
⊗ δyi, h =

δ

δxi
⊗ dxi,

where {dxi, δyi = dyi + N i
jdxj} is the dual of the Berwald basis.

3. Semisprays on bundle-type tangent manifolds

In the following we suppose that V (M) admits a global section E = yi ∂
∂yi

called Euler vector field after [10, p. 4] (on tangent bundles E is called Liouville
vector field , cf. [2, p. 70]). Again after [10, p. 7] the triple (M,J,E) will be
called bundle–type tangent manifold and in this case

(
Bi

)
from (2.42) are zero,

cf. [10, p. 7]. For examples of bundle–type tangent manifolds see [10].
As in the tangent bundle case, [2, p. 70], we give a second main notion:

Definition 3.1. If (M,J,E) is a bundle–type tangent manifold then S ∈ X (M)
is called semispray or second order differential equation (sode in short) if

(3.1) J (S) = E.

In canonical coordinates

(3.2) S = yi ∂

∂xi
− 2Gi (x, y)

∂

∂yi

and the functions
(
Gi (x, y)

)
are the coefficients of S.

Another important result is:

Proposition 3.1. A vertical projector v yields an unique horizontal semispray
denoted S (v).

Proof. This proposition is a generalization of a similar result (without proof)
from [2, p. 71]. The formula

(3.3) Gi =
1
2
N i

jy
j

gives the conclusion. �
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In other words

(3.3′) S (v) = yi δ

δxi
.

The converse of last result is:

Proposition 3.2. If S is a semispray, then vS : X (M) → X (M) given by

(3.4) vS (X) =
1
2

(X + [S, JX] + J [X,S])

is a vertical projector.

Proof. Because

J ◦ vS (X) =
1
2

(JX − J [JX, S]) , vS ◦ J (X) =
1
2

(JX + J [JX, S])

it must prove that

(3.5) J [JX, S] = JX

for every X ∈ X (M).
But from (2.2) with Y = S we have

(3.6) [JX,E] − J [JX, S] − J [X,E] = 0

and then (3.5) is equivalent with

(3.7) [JX,E] = J ([X,E] + X) .

Case 1) X = ∂
∂xi ⇒

[
∂

∂yi , y
a ∂

∂ya

]
= ∂

∂yi = J
(

∂
∂xi

)
, i.e. (3.7) is true for this

case.
Case 2) X = ∂

∂yi ⇒ [0, E] = 0 = J
(

∂
∂yi + ∂

∂yi

)
, i.e. (3.7) is true for this

case. �
If S is given by (3.2) then the coefficients of vS are

(3.8) N i
j =

∂Gi

∂yj
.

A first natural question is: given the vertical projector v
(
= N i

j

)
, does a

semispray S such that v = vS exist? Looking at (3.8) it results that
(
N i

j

)
must

be a gradient with respect to
(
yi

)
. Then if we define: tkij = ∂Nk

i

∂yj − ∂Nk
j

∂yi it results
in:

Corollary 3.1. There exists a semispray S such that v = vS if and only if
tkij = 0, 1 ≤ i, j, k ≤ n.
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A second natural question is related to the sequence

S → vS → S (vS)

Gi (3.8)→ ∂Gi

∂yj

(3.3)→ 1
2

∂Gi

∂yj
yj ;

when S = S (vS)?

Corollary 3.2. Let S be a semispray and vS the associated vertical projector.
Then S is exactly S (vS) given by Proposition 3.1 if and only if

(3.9) [E,S] = S.

Proof. vS (S) = 0
(3.4)⇔ S + [S,E] = 0. �

Definition 3.2. A semispray satisfying (3.9) is called spray.

Locally (3.9) means

(3.10) 2Gi = yj ∂Gi

∂yj

i.e. the functions
(
Gi

)
are homogeneous of degree 2 with respect to variables(

yi
)
. In terms of associated vertical projector vS =

(
N i

j

)
, using (3.8), it results

that
(
N i

j

)
are homogeneous of degree 1 with respect to

(
yi

)
(3.11) N i

j = ya
∂N i

j

∂ya
.

The above formulae can be put in a compact form using the Frölicher–
Nijenhuis formalism. Recall that for a vector 1–form K and Z ∈ X (M) we
have the bracket [K,Z]FN : X (M) → X (M) given by, [9, p. 177],

(3.12) [K,Z]FN (X) = [K (X) , Z] − K [X,Z]

where in the R.H.S. we have the usual Lie bracket of vector fields. Then (3.4)
becomes

(3.4′) vS =
1
2

(
1X(M) − [J, S]FN

)
and looking to Proposition 2.3 it comes out that [J, S]FN is exactly the nonlinear
connection of almost product type Γ associated to vS .

Corollary 3.3. A semispray S is a spray if and only if

(3.9′) [vS , E]FN = 0.
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Proof. Let X ∈ X (M). The above relation means [vS (X) , E] = vS ([X,E]).

I) If X = ∂
∂yi , then [

∂

∂yi
, E

]
= vS

([
∂

∂yi
, E

])
,

which is true because
[

∂
∂yi , E

]
= E ∈ V (M),

II) If X = δ
δxi , then

0= vS

([
δ

δxi
, E

])
= vS

((
ya ∂N j

i

∂ya
− N j

i

)
∂

∂yj

)
=

(
ya ∂N j

i

∂ya
− N j

i

)
∂

∂yj

which is equivalent with characterization (3.11). �

A third natural question is related to the sequence

v → S (v) → vS(v)

N i
j

(3.3)→ Gi =
1
2
N i

kyk (3.8)→ ∂Gi

∂yj
;

when v = vS(v)? We must have N i
j = 1

2
∂

∂yj

(
N i

kyk
)

= 1
2N i

j + 1
2yk ∂Ni

k

∂yj and then:

Corollary 3.4. Let v
(
= N i

j

)
be a vertical projector and S (v) the associated

semispray. Then v is exactly vS(v) given by Proposition 3.2 if and only if

(3.13) N i
j = yk ∂N i

k

∂yj
.

If v = vS(v), then S (v) is a spray, tkij = 0 and (2.11) holds.

A last question is: given the semispray S
(
= Gi

)
does a vertical projector v

such that S = S (v) exist? So, we have to solve the system Gi = N i
jy

j in the
unknowns

(
N i

j

)
. We do not know the general answer but is obvious that if S is

spray then the answer is positive with v = vS .

4. Symmetries and paths of nonlinear connections

Let N be a nonlinear connection with associated vertical projector v =(
N i

j

)
1≤i,j≤n

. With respect to the Berwald basis { δ
δxi ,

∂
∂yi }1≤i≤n we have

(4.1)



[
δ

δxi
,

δ

δxj

]
= Ra

ij

∂

∂ya[
δ

δxi
,

∂

∂yj

]
=

∂Na
i

∂yj

∂

∂ya[
∂

∂yi
,

∂

∂yj

]
= 0
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where

Ra
ij =

δNa
i

δxj
− δNa

j

δxi
. (4.2)

Then the horizontal distribution N is integrable if and only if Rk
ij = 0, 1 ≤

i, j, k ≤ n.
A notion which does not appear in tangent bundle geometry (to our knowl-

edge!) but is inspired by (3.9′) and in general is important from a dynamical
point of view is:

Definition 4.1. X ∈ X (M) is a symmetry of v (or N) if [v,X]FN = 0.

A characterization of symmetries is given by:

Proposition 4.1. The vector field X = Xa δ
δxa + Xn+a ∂

∂ya is a symmetry of v
if and only if

(4.3)


∂Xa

∂yi
= 0 (then Xa depends only of x!)

δXn+a

δxi
+ Ra

ijX
j + Xn+j ∂Na

i

∂yj
= 0

.

Proof. I)

0 = [v,X]FN

(
∂

∂yi

)
=

[
v

(
∂

∂yi

)
,X

]
− v

[
∂

∂yi
,X

]
= h

[
∂

∂yi
,X

]

= h

(
∂Xa

∂yi

δ

δxa
+

(
∂Xn+a

∂yi
− Xj

∂Na
j

∂yi

)
∂

∂ya

)
=

∂Xa

∂yi

δ

δxa

which gives (4.31);
II)

0 = [v,X]FN

(
δ

δxi

)

= −v

(
δXa

δxi

δ

δxa
+

(
δXn+a

δxi
+ Ra

ijX
j + Xn+j ∂Na

i

∂yj

)
∂

∂ya

)

= −
(

δXn+a

δxi
+ Ra

ijX
j + Xn+j ∂Na

i

∂yj

)
∂

∂ya

which gives (4.32). �

Corollary 4.1. (i) An horizontal vector field X = Xa δ
δxa is a symmetry of v

if and only if the coefficients (Xa) depend only of x and Ra
ijX

j = 0, 1 ≤ a,



20 M. Crâşmăreanu

i ≤ n. In particular, if the nonlinear connection N is integrable, then X is the
symmetry of N (or v) if and only if X = Xa (x) δ

δxa .
(ii) A vertical vector field X = Xn+a ∂

∂ya is a symmetry of v if and only if

δXn+a

δxi
+ Xn+j ∂Na

i

∂yj
= 0, 1 ≤ a, i ≤ n.

Let us suppose that v = vS for the semispray S
(
= Gi

)
. From (3.4′) we get

that X is a symmetry for vS if and only if:
[
1X (M) − [J, S]FN ,X

]
FN

= 0; but[
1X (M),X

]
FN

= 0 for every X and then X is a symmetry for vS if and only if

(4.4) [[J, S]FN ,X]
FN

= 0.

Looking at local expressions let us note that Ra
ij for vS is

(4.5) Ra
ij =

δ

δxj

(
∂Ga

∂yi

)
− δ

δxi

(
∂Ga

∂yj

)
and Proposition 4.1 yields:

Proposition 4.2. The vector field X = Xa δ
δxa + Xn+a ∂

∂ya is a symmetry for
vS if and only if (4.31) and

∂Xn+a

∂xi
− ∂Gj

∂yi

∂Xn+a

∂yj
+ Ra

ijX
j + Xn+j ∂2Ga

∂yi∂yj
= 0

holds, where Ra
ij is given by (4.5).

It comes out that S can not be symmetry for vS because (4.31) does not
hold.

Also, Corollary 4.1 yields:

Corollary 4.2. (i) The horizontal vector field X = Xa δ
δxa is symmetry for vS

if and only if the coefficients (Xa) do not depend on
(
yi

)
and Ra

ijX
j = 0, 1 ≤ a,

i ≤ n, where Ra
ij is given by (4.5). In particular, if the nonlinear connection NS

is integrable, i.e.
δ

δxj

(
∂Ga

∂yi

)
=

δ

δxi

(
∂Ga

∂yj

)
,

with
δ

δxi
=

∂

∂xi
− ∂Gk

∂yi

∂

∂yk
,

then X is a symmetry for vS if and only if X = Xa (x) δ
δxa .

(ii) The vertical vector field X = Xn+a ∂
∂ya is a symmetry for vS if and only

if
δXn+a

δxi
+ Xn+j ∂2Ga

∂yi∂yj
= 0, 1 ≤ a, i ≤ n.
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In a more particular case S=spray from (3.9′) it comes out that E is sym-
metry for vS .

Because we are interested in dynamics let us study the curves on bundle–
type tangent manifolds. Let c = c (t) be a curve on M with local expression
c (t) = (x (t) , y (t)) =

(
xi (t) , yi (t)

)
. Three cases are of importance:

I) c is an integral curve of the semispray S. It results from (3.2) that the
differential system

(4.6)


dxi

dt
(t) = yi (t)

dyi

dt
(t) + 2Gi (x (t) , y (t)) = 0

which explains the name sode for S.
II) the tangent field of c is horizontal with respect to the vertical projector

v. From (2.7)

(4.7) v

(
dc

dt

)
= v

(
dxi

dt

∂

∂xi
+

dyi

dt

∂

∂yi

)
=

(
N i

j

dxj

dt
+

dyi

dt

)
∂

∂yi
.

Such a curve is called h–path of v and it is a solution of the differential system

(4.8)
dyi

dt
(t) + N i

j (x (t) , y (t))
dxj

dt
(t) = 0.

III) an h–path of v satisfying in addition dxi

dt = yi will be called h–integral
curve of v and it is a solution to

(4.9)


dxi

dt
(t) = yi (t)

dyi

dt
(t) + N i

j

(
x (t) ,

dx

dt

)
dxj

dt
(t) = 0

.

With respect to Proposition 3.1 comparing (4.6) and (4.9) it results via (3.3):

Proposition 4.3. An h–integral curve of v is an integral curve of S (v).

With respect to Proposition 3.2 there is no relation between integral curves
of S and vS in the general case. But in the homogeneous case (3.9)− (3.10) we
get:

Proposition 4.4. If S is a spray then an integral curve of S is an h–integral
curve of vS.



22 M. Crâşmăreanu
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