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SOME CHARACTERIZATIONS OF RECTIFYING
CURVES IN THE MINKOWSKI 3–SPACE

Kazim Ilarslan1, Emilija Nešović2, Miroslava Petrović–Torgašev2

Abstract. Some characterizations of the Euclidean rectifying curves, i.e.
the curves in E3 which have a property that their position vector always
lies in their rectifying plane, are given in [3]. In this paper, we charac-
terize non–null and null rectifying curves, lying fully in the Minkowski
3–space E3

1 . Also, in considering a causal character of a curve we give
some parametrizations of rectifying curves.
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1. Introduction

In the Euclidean space E3, to each regular unit speed curve α : I → E3,
I ⊂ R, with at least four continuous derivatives, it is possible to associate
three mutually orthogonal unit vector fields T , N and B, called respectively the
tangent, the principal normal and the binormal vector field. The planes spanned
by the vector fields {T,N}, {T,B} and {N,B} are known as the osculating
plane, the rectifying plane and the normal plane, respectively. The Euclidean
curves that have a property that their position vector α always lies in their
rectifying plane, are called in [3] rectifying curves. Therefore, the position vector
α of a rectifying curve satisfies by definition of Chen [3] the equation α(s) =
λ(s)T (s)+µ(s)B(s), for some differentiable functions λ(s) and µ(s). One of the
most interesting characteristics of such curves is that the ratio of their torsion
and curvature is a non–constant linear function of the arclength parameter s.
In [3], rectifying curves, lying fully in the space E3, are determined explicitely.

In this paper, we give some characterizations of rectifying curves lying fully
in the Minkowski 3–space E3

1 . In particular, we prove that the ratio of torsion
and curvature of any regular rectifying curve in E3

1 is a non–constant linear
function of the pseudo arclength parameter s. We emphasize that this property
is invariant with respect to the causal character of a curve and its rectifying
plane. Also, we find some parametrizations of non–null and null rectifying
curves that lie fully in the Minkowski 3–space.
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2. Preliminaries

The Minkowski 3–space E3
1 is the real vector space R3 provided with the

standard flat metric given by

g = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since g is an indef-

inite metric, recall that a vector v �= 0 in E3
1 can be a spacelike, a timelike or

a null (lightlike), if respectively holds g(v, v) > 0, g(v, v) < 0 or g(v, v) = 0. In
particular, the vector v = 0 is a spacelike. The norm (length) of a vector v is
given by ||v|| =

√|g(v, v)| and two vectors v and w are said to be orthonormal
when g(v, w) = 0. We also recall that an arbitrary curve α = α(s) can locally
be a spacelike, timelike or null (lightlike), if all of its velocity vectors α′(s) are
respectively spacelike, timelike or null. A non–null or a null curve α(s) is said
to be parameterized by the pseudo arclength parameter s, if respectively hold
g(α′(s), α′(s)) = ±1 or g(α′′(s), α′′(s)) = 1 (see [6], [1]). In both of these cases,
the curve α is said to be of unit speed. Recall that an arbitrary plane π in
E3

1 is by definition a spacelike, timelike or lightlike, if g|π is respectively posi-
tive definite, nondegenerate of index 1, or degenerate. Recall that when α is a
non–null curve in E3

1 with spacelike or timelike rectifying plane, then the Frenet
equations are of the form [4]:

(∗)
T ′ = kN,
N ′ = −ε0ε1kT + τB,
B′ = −ε1ε2τN,

where ε0 = g(T, T ) = ±1, ε1 = g(N,N) = ±1, ε2 = g(B,B) = ±1 and
ε0ε1ε2 = −1. Further, when α is a spacelike curve with lightlike rectifying plane
or a null curve (with timelike rectifying plane), then the Frenet formulae are
given respectively by [7]:

(∗∗)
T ′ = kN,
N ′ = τN,
B′ = −kT − τB,

and

(∗ ∗ ∗)
T ′ = kN,
N ′ = τT − kB,
B′ = −τN.

In both cases (**) and (***), there are only two values of the first curvature
k(s): k(s) = 0 when α is a straight line, or k(s) = 1 in all other cases.

We also recall that the pseudosphere of radius 1 and center at the origin is
the hyperquadric in E3

1 defined by S2
1(1) = {v ∈ E3

1 : g(v, v) = 1}, and the
pseudohyperbolic space of radius 1 and center at the origin is the hyperquadric
in E3

1 defined by H2
0 (1) = {v ∈ E3

1 : g(v, v) = −1}.
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3. Some characterizations of rectifying curves in E3
1

In this section we characterize non–null (spacelike and timelike) and null
rectifying curves lying fully in the Minkowski 3–space. Accordingly, we first
characterize unit speed non–null rectifying curves.

Theorem 1. Let α = α(s) be a unit speed non–null rectifying curve in E3
1 with

spacelike or timelike rectifying plane, the curvature k(s) > 0 and g(T, T ) = ε0 =
±1. Then the following statements hold:

(i) The distance function ρ = ||α|| satisfies ρ2 = |ε0s2 + c1s + c2|, for some
c1 ∈ R, c2 ∈ R0.

(ii) The tangential component of the position vector of α is given by g(α, T ) =
ε0s + c, where c ∈ R.

(iii) The normal component αN of the position vector of the curve has a con-
stant length and the distance function ρ is non–constant.

(iv) The torsion τ(s) �= 0 and the binormal component of the position vector
of the curve is constant, i.e. g(α,B) is constant.

Conversely, if α(s) is a unit speed non–null curve in E3
1 , with spacelike or

timelike rectifying plane, the curvature k(s) > 0, g(T, T ) = ε0 = ±1 and one of
the statements (i), (ii), (iii) and (iv) holds, then α is a rectifying curve.

Proof. Let us first suppose that α = α(s) is a unit speed non–null rectifying
curve. Then the position vector α of a curve satisfies the equation

(1) α(s) = λ(s)T (s) + µ(s)B(s),

where λ(s) and µ(s) are some differentiable functions of the pseudo arclength
parameter s. Differentiating the relation (1) with respect to s, and by applying
the Frenet equations (*), we obtain

(2) λ′(s) = 1, λ(s)k(s) − ε1ε2µ(s)τ(s) = 0, µ′(s) = 0,

whereby ε1 = g(N,N) = ±1 and ε2 = g(B,B) = ±1. Therefore, it follows that

(3) λ(s) = s + j, j ∈ R, µ(s) = l, l ∈ R, µ(s)τ(s) = λ(s)k(s) �= 0,

and hence µ(s) = l �= 0, τ(s) �= 0. From the equation (1) we easily find
ρ2 = |g(α, α)| = |ε0λ2 + ε2µ

2|. Substituting (3) into the last equation, we
obtain statement (i). Further, from (1) we obtain g(α, T ) = ε0λ, which together
with (3) implies (ii). Next, from the relation (1) it follows that the normal
component αN of the position vector α is given by αN = µB. Therefore,
||αN || = |l| �= 0. Thus we proved statement (iii). Finally, from (1) we easily get
g(α,B) = µε2 = constant and since τ(s) �= 0, the statement (iv) is proved.

Conversely, assume that statement (i) or statement (ii) holds. Then there
holds the equation g(α(s), T (s)) = s + c, c ∈ R. Differentiating this equation
with respect to s, we get k(s)g(α(s), N(s)) = 0. Since k(s) > 0, it follows that
g(α,N) = 0. Hence α is a rectifying curve.
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Next, suppose that statement (iii) holds. Let us put α(s) = m(s)T (s)+αN ,
m(s) ∈ R. Then we easily find that g(αN , αN ) = C = constant = g(α, α) −
1
ε0

g(α, T )2. Differentiating this equation with respect to s gives

(4) g(α, T ) =
1
ε0

g(α, T )(ε0 + kg(α,N)).

Since ρ �= constant, we have g(α, T ) �= 0. Moreover, since k(s) > 0 and from
(4) we obtain g(α,N) = 0, which means that α is a rectifying curve.

Finally, if statement (iv) holds, then by applying Frenet equations (*), we
easily obtain that the curve α is a rectifying curve. �

In the next theorem, we prove that the ratio of torsion and curvature of
a unit speed non–null rectifying curve is a non–constant linear function of the
pseudo arclength parameter s.

Theorem 2. Let α = α(s) be a unit speed non–null curve in E3
1 , with a space-

like or a timelike rectifying plane and with the curvature k(s) > 0. Then
up to isometries of E3

1 , the curve α is a rectifying if and only if there holds
τ(s)/k(s) = c1s + c2, where c1 ∈ R0, c2 ∈ R.

Proof. Let us first suppose that the curve α(s) is rectifying. By the proof of
Theorem 1 and by the relations (2) and (3), it follows that

(5)
τ(s)
k(s)

=
s + j

ε1ε2l
,

whereby j ∈ R, l ∈ R0. Consequently, τ(s)/k(s) = c1s + c2, whereby c1 ∈ R0,
c2 ∈ R.

Conversely, let us suppose that τ(s)/k(s) = c1s + c2, c1 ∈ R0, c2 ∈ R. Then
we may choose c = 1/(ε1ε2l), c2 = j/(ε1ε2l), where j ∈ R, l ∈ R0, ε1 = ±1,
ε2 = ±1. Hence τ(s)/k(s) = (s+ j)/(ε1ε2l). Applying the Frenet equations (*),
we easily find that

d

ds
(α(s) − (s + j)T (s) − lB(s)) = 0,

which means that up to isometries of E3
1 , the curve α is rectifying. �

In the next theorem we determine some parametrizations of a unit speed
non–null rectifying curves in E3

1 .

Theorem 3. Let α = α(s) be a unit speed non–null curve in E3
1 . Then the

following statements hold:
(i) α is a rectifying curve with a spacelike rectifying plane if and only if, up

to a parametrization, α is given by

(a) α(t) = y(t)
l

cos t
, l ∈ R+

0 ,

where y(t) is a unit speed spacelike curve lying in the pseudosphere S2
1(1).

(ii) α is a spacelike (timelike) rectifying curve with a timelike rectifying plane
and a spacelike (timelike) position vector if and only if, up to a parametriza-
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tion, α is given by

(b) α(t) = y(t)
l

sinh t
, l ∈ R+

0 ,

where y(t) is a unit speed timelike (spacelike) curve lying in the pseudo-
sphere S2

1(1) (pseudohyperbolic space H2
0 (1)).

(iii) α is a spacelike (timelike) rectifying curve with a timelike rectifying plane
and a timelike (spacelike) position vector if and only if, up to a parametriza-
tion, α is given by

(c) α(t) = y(t)
l

cosh t
, l ∈ R+

0 ,

where y(t) is a unit speed spacelike (timelike) curve lying fully in the pseu-
dohyperbolic space H2

0 (1) (pseudosphere S2
1(1)).

Proof. (i) Let us first assume that α(s) is a unit speed non–null rectifying
curve with spacelike rectifying plane in E3

1 . Since the position vector lies in
the spacelike rectifying plane, we have g(α, α) > 0, g(T, T ) = ε0 = 1 and
g(B,B) = ε2 = 1. By the proof of Theorem 1, it follows that ρ2 = ||α||2 =
(s + j)2 + l2, j ∈ R, l ∈ R0. We may choose l ∈ R+

0 . Also, we may apply a
translation with respect to s , such that ρ2 = s2 + l2. Next, we define a curve
y lying in the pseudosphere S2

1(1) by

(6) y(s) =
α(s)
ρ(s)

.

Then we have

(7) α(s) = y(s)
√

s2 + l2.

Differentiating (7) with respect to s, we get

(8) T (s) = y(s)
s√

s2 + l2
+ y′(s)

√
s2 + l2.

Since g(y, y) = 1, it follows that g(y, y′) = 0. From (8) we obtain

1 = g(T, T ) = g(y′, y′)(s2 + l2) +
s2

s2 + l2
,

and hence

(9) g(y′, y′) = l2/(s2 + l2)2,

which means that y is a spacelike curve. From (9) we get ||y′(s)|| = l/(s2 + l2).
Let t =

∫ s

0
||y′(u)||du be the pseudo acrlength parameter of the curve y. Then

we have
t =

∫ s

0

l

u2 + l2
du,

and therefore s = l tan t. Substituting this into (7) we obtain the parametriza-
tion (a).
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Conversely, assume that α is a curve defined by (a), where y(t) is a unit speed
spacelike curve lying in the pseudosphere S2

1(1). Differentiating the equation (a)
with respect to t, we get

α′(t) =
l

cos2 t
(y(t) sin t + y′(t) cos t).

By assumption we have g(y′, y′) = 1, g(y, y) = 1 and consequently g(y, y′) = 0.
Therefore, it follows that

(10) g(α, α′) =
l2 sin t

cos3 t
, g(α′, α′) =

l2

cos4 t
,

and consequently ||α′(t)|| = l
cos2 t . Let us put α(t) = m(t)α′(t) + αN , where

m(t) ∈ R and αN is a normal component of the position vector α. Then we
easily find that m = g(α, α′)/g(α′, α′), and therefore

g(αN , αN ) = g(α, α) − g(α, α′)2

g(α′, α′)
.

Since g(α, α) = l2

cos2 t and by using (10), the last equation becomes g(αN , αN ) =
l2 = constant. It follows that ||αN || = constant and since ρ = ||α|| = l

cos t �=
constant, Theorem 1 implies that α is a rectifying curve.

(ii) Let us first suppose that α is a spacelike rectifying curve with a timelike
rectifying plane and a spacelike position vector. Then we have g(α, α) > 0,
g(T, T ) = ε0 = 1 and g(B2, B2) = ε2 = −1. By the proof of Theorem 1, we
obtain ρ2 = ||α||2 = g(α, α) = (s + j)2 − l2, where j ∈ R, l ∈ R0. We may
choose l ∈ R+

0 and apply a translation with respect to s, such that ρ2 = s2 − l2,
|s| > l. Further, define a curve y(s) lying in the pseudosphere S2

1(1) by

(11) y(s) =
α(s)
ρ(s)

.

It follows that

(12) α(s) = y(s)
√

s2 − l2,

and differentiating the previous equation with respect to s, we find

(13) T (s) = y′(s)
√

s2 − l2 + y(s)
s√

s2 − l2
.

Since g(y, y) = 1, it follows that g(y, y′) = 0. Consequently,

g(T, T ) = g(y′, y′)(s2 − l2) +
s2

s2 − l2
= 1.

The previous equation implies that

(14) g(y′, y′) = − l2

s2 − l2
,

which means that y is a timelike curve. By using (14), we easily get that
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||y′(s)|| = l
s2−l2 , l ∈ R+

0 , |s| > l. Let t =
∫ s

0
||y′(u)||du be the pseudo arclength

parameter of the curve y. Then we have

t =
∫ s

0

l

u2 − l2
du,

and thus t = − coth−1( s
l ). Hence s = −l coth(t). Substituting this into equation

(12), we obtain parametrization (b).
Conversely, let us assume that α is a curve defined by (b), where y(t) is a

unit speed timelike curve lying in the pseudosphere S2
1(1). Differentiating the

equation (b) with respect to t, we get

(15) α′(t) =
l

sinh2(t)
(y′(t) sinh t − y(t) cosh t).

By assumption we have g(y′, y′) = −1, g(y, y) = 1 and therefore g(y, y′) = 0.
Then the equation (15) implies that

(16) g(α, α′) = − l2 cosh t

sinh3 t
, g(α′, α′) =

l2

sinh4 t

and therefore ||α′(t)|| = l
sinh2 t

. Let us put α(t) = m(t)α′(t) + αN , where
m(t) ∈ R and αN is a normal component of the position vector α. Then we
easily find that m = g(α′, α′)/g(α, α′), and hence

(17) g(αN , αN ) = g(α, α) − g(α, α′)2

g(α′, α′)
.

Since g(α, α) = l2

sinh2 t
and by using (16), the equation (17) becomes g(αN , αN ) =

−l2 = constant. Hence ||αN || = constant and since ρ = l
sinh t �= constant, The-

orem 1 impies that the curve α is rectifying.
The proof in the case when α is a timelike rectifying curve with a timelike

rectifying plane and a timelike position vector is analogous.
(iii) The proof is analogous to the proofs of the statements (i) and (ii). �

Theorem 4. There are no unit speed non–null rectifying curves in E3
1 with the

curvature k(s) = 1 and a lightlike rectifying plane.

Proof. Let us suppose that there exists a unit speed non–null rectifying curve
α in E3

1 , with the curvature k(s) = 1 and a lightlike rectifying plane. Then α is
a spacelike curve with the position vector satisfying the following equation:

α(s) = λ(s)T (s) + µ(s)B(s),

where λ(s) and µ(s) are arbitrary functions. Differentiating the previous equa-
tion with respect to s and by using the Frenet equations (***), we obtain

λ(s) = 0, µ(s) = −1, τ(s) = 0.
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Consequently, α(s) = −B(s). Further, since τ(s) = 0 and by using the Frenet
equations (***), we find α′ = T , α′′ = N , α′′′ = 0. On the other hand, by using
the MacLaurin expansion for α given by

α(s) = α(0) + α′(0)
s

1!
+ α′′(0)

s2

2!
+ α′′′(0)

s3

3!
+ . . . ,

we conclude that α lies fully in the osculating plane, spanned by {α′(0), α′′(0)},
which is a contradiction. �

In the next three theorems we characterize all null rectifying curves in E3
1 .

Theorem 5. Let α(s) be a unit speed null rectifying curve in E3
1 with the cur-

vature k(s) = 1. Then the following statements hold:

(i) The distance function ρ = ||α|| satisfies ρ2 = |c1s + c2|, where c1 ∈ R0,
c2 ∈ R.

(ii) The tangential component g(α, T ) of the position vector of the curve is
constant.

(iii) The torsion τ(s) �= 0 and the binormal component of the position vector
of the curve is given by g(α,B) = s + c, whereby c ∈ R.

Conversely, if α(s) is a unit speed null curve in E3
1 with the first curvature

k(s) = 1 and one of the statements (i), (ii) or (iii) holds, then α is a rectifying
curve.

Proof. Let us suppose that α(s) is a unit speed null rectifying curve in E3
1

with the curvature k(s) = 1. Then the position vector of the curve satisfies the
equation

(18) α(s) = λ(s)T (s) + µ(s)B(s),

where λ(s) and µ(s) are arbitrary functions of the pseudo arclength parameter
s. Differentiating the equation (18) with respect to s and using the Frenet
equations (***), we obtain

(19) λ′(s) = 1, λ(s) − µ(s)τ(s) = 0, µ′(s) = 0.

From the previous equation, we find

(20) λ(s) = s + j, j ∈ R, µ(s) = l, l ∈ R, µ(s)τ(s) = λ(s) �= 0.

Therefore, it follows that µ(s) = l ∈ R0 and τ(s) �= 0. Next the equation
(18) implies g(α, α) = 2l(s + j) and hence ρ2 = ||α||2 = |c1s + c2|, where
c1 ∈ R0, c2 ∈ R. This proves statement (i). Next, from the equation (18) we
get g(α, T ) = l, l ∈ R0 and g(α,B) = s + j, j ∈ R. This proves statements (ii)
and (iii).

Conversely, assume that α is a unit speed null rectifying curve in E3
1 with the

curvature k(s) = 1 and let statement (i) holds.Then ρ2 = |g(α, α) = |c1s + c2|,
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where c1 ∈ R0, c2 ∈ R, and hence g(α, α) = ±(c1s + c2). Differentiating
the last equation two times with respect to s and using the Frenet equations
(***), we obtain g(α,N) = 0. Therefore, α is a rectifying curve. Next, suppose
that statement (ii) holds. By differentiating with respect to s the equation
g(α, T ) = constant and by applying the Frenet equations (***), we easily find
that g(α,N) = 0, which means that α is a rectifying curve. Finally, assume that
statement (iii) holds. Since τ(s) �= 0 and by taking the derivative with respect
to s of the equation g(α,B) = s + c, c ∈ R, we get g(α,N) = 0. Thus the curve
α is rectifying. �

In Theorem 2 we have proved that the ratio of torsion and curvature of a non–
null rectifying curve is a non–constant linear function of the pseudo arclength
parameter s. The same property holds for the null rectifying curves. We omit
the proof of the following theorem, since it is analogous to the proof of Theorem
2.

Theorem 6. Let α = α(s) be a unit speed null curve in E3
1 with the first cur-

vature k(s) = 1. Then up to isometries of E3
1 the curve α is rectifying if and

only if there holds τ(s)/k(s) = c1s + c2, where c1 ∈ R0, c2 ∈ R.

In Theorem 7 we determine explicitly all unit speed null rectifying curves,
lying fully in the Minkowski 3–space.

Theorem 7. Let α = α(s) be a unit speed null curve in E3
1 with the first curva-

ture k(s) = 1. Then α is a rectifying curve with a spacelike (timelike) position
vector if and only if, up to a parameterization, α is given by

(d) α(t) = ety(t),

where y(t) is a unit speed timelike (spacelike) curve lying in the pseudosphere
S2

1(1) (pseudohyperbolic space H2
0 (1)).

Proof. Let us assume first that α(s) is a unit speed null rectifying curve in E3
1

with the first curvature k(s) = 1 and a spacelike position vector. Then we have
g(α, α) > 0. By the proof of Theorem 5, it follows that g(α, α) = c1s+c2, where
c1 ∈ R0, c2 ∈ R, and thus ρ2(s) = ||α||2 = c1s + c2. We may take c1 ∈ R+

0 .
Further, define a curve y lying in the pseudosphere S2

1(1) by

y(s) =
α(s)
ρ(s)

.

Then we have

(21) α(s) = y(s)
√

c1s + c2.

Differentiating the previous equation with respect to s we get

(22) T (s) =
c1

2
√

c1s + c2
y(s) +

√
c1s + c2y

′(s),
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Since g(y, y) = 1, it follows that g(y, y′) = 0. From (22) we obtain

0 = g(T, T ) = g(y′, y′)(c1s + c2) +
c2
1

4(c1s + c2)

and thus

(23) g(y′, y′) = − c2
1

4(c1s + c2)2
,

which means that y is a timelike curve. Equation (23) implies that ||y′(s)|| =
c1/2(c1s + c2). Let t =

∫ s

0
||y′(u)||du be the pseudo arclength parameter of the

curve y. Then we obtain

t =
∫ s

0

c1

2(c1s + c2)
du

and hence t = 1
2 ln(c1s + c2). From the last equation we get c1s + c2 = e2t.

Substituting this into (21), we obtain the parametrization (d).
Conversely, assume that α is a curve defined by (d), where y(t) is a unit speed

timelike curve lying in the pseudosphere S2
1(1). Then we may reparameterize the

curve α(t) by t = (1/2) ln(c1s + c2), where s is the pseudo arclength parameter
of the null curve α, c1s + c2 > 0, and c1 ∈ R0, c2 ∈ R. Then we have α(s) =
y(s)

√
c1s + c2. Consequently, we obtain that ρ2 = ||α||2 = g(α, α) = c1s + c2.

Finally, Theorem 5 implies that α is a rectifying curve.
The proof in the case when α is a unit speed null rectifying curve in E3

1 with
the timelike position vector is analogous. �
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