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POSITIVE INTEGERS n SUCH THAT n|aσ(n) − 1

Florian Luca1

Abstract. For a positive integer n let σ(n) be the sum of divisors function
of n. In this note, we fix a positive integer a and we investigate the
positive integers n such that n|aσ(n) − 1. We also show that under a
plausible hypothesis related to the distribution of prime numbers there
exist infinitely many positive integers n such that n|aσ(n) − 1 holds for all
integers a coprime to n.
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1. Introduction

Throughout this paper, n is a positive integer and φ(n), σ(n), τ(n), Ω(n),
ω(n) denote the classical arithmetical functions of n, namely the Euler function,
the sum of divisors function, the number of divisors function, and the number
of prime divisors function (counted with or without multiplicity), respectively.
Euler’s Theorem asserts that the divisibility relation n|aφ(n)−1 holds whenever
a > 1 is an integer which is coprime to n. When n is prime, this reduces to
Fermat’s Little Theorem, namely that n|an−1 − 1. When a > 1 is fixed and
n satisfies the above divisibility relation without being a prime, the number
n is called a base a pseudoprime. When n is a composite number which is a
pseudoprime with respect to all bases a > 1 and coprime to n, then n is called
a Carmichael number. The most celebrated result on Carmichael numbers is
Theorem 1 from [1], which shows that for large values of the positive real number
x there are more than x2/7 Carmichael numbers n < x (see also [6] for some
related results). Several interesting results about pseudoprimes and Carmichael
numbers can also be found in [11].

In this paper, we address a question raised in [11] (see also [12]), namely
whether or not there exist infinitely many positive integers n so that n|aσ(n)−1
holds for all positive integers a > 1 which are coprime to n.

In order to formulate our results, we introduce some more notations. For any
positive integer k and any positive real x we set logk x := max{log logk−1 x, 1},
where log stands for the natural logarithm function. When k = 1, we simply
write log1 x = log x and we understand that this number is always ≥ 1.
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We start by fixing the number a > 1. Write Ra for the set of all n ≥ 1 so
that n|aσ(n)−1. For any positive real x we write Ra(x) := {1 ≤ n < x |n ∈ Ra}.
Our first theorem gives a lower bound for #Ra(x).

Theorem 1. There exists a constant c1 := c1(a) depending on a so that for
large values of x holds the inequality

(1) #Ra(x) > exp(c1 log2 x log3 x).

Theorem 1 shows that the number of numbers n < x which are members of
Ra as a function of x exceeds any fixed power of the logarithm of x once x is
sufficiently large. In particular, the series

(2)
∑

n∈Ra

1
log n

is divergent for all a > 1.
Our next theorem gives an upper bound on #Ra(x).

Theorem 2. There exists an absolute constant c2 so that for large x the esti-
mate

(3) #Ra(x) < x exp(−c2(log x log2 x)1/2)

holds uniformly in a ≤ 2 log x.

Let R be the set of all n ≥ 1 so that n ∈ Ra holds for all positive integers
a > 1 which are coprime to n. Thus, Rotkiewicz’s question asks if R is an
infinite set. Since for large n there exists a prime number p < 2 log n which
does not divide n, Theorem 2 immediately implies that the sum

∑
n∈R

1
n is

finite. In particular, if R is an infinite set, then the above series is convergent.
While we have not been able to prove unconditionally that R is an infinite
set, we show that this is indeed so if we assume a certain conjecture on the
distribution of primes in arithmetical progressions. For every positive coprime
integers 1 ≤ a < d and any positive real number x let π(x; a, d) denote the
number of primes p < x so that p ≡ a(mod d), let π(x) denote the total number
of primes p < x, and let R(x) := {1 ≤ n < x |n ∈ R}. Our result is:

Theorem 3. Assume that there exists δ < 1/2 and xδ > 0 so that the estimate

(4) #{p ≤ x : p ≡ 1(mod d)} ≥ π(x)
2φ(d)

holds for all coprime positive integers 1 ≤ a < d < x1−δ once x ≥ xδ. Then, for
every ε > 0, there exists a number xδ,ε so that the inequality #R(x) > x1−2δ−ε

holds once x > xδ,ε. In particular, if such an xδ exists for all δ ∈ (0, 1/2), then
#R(x) = x1−o(1).
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A theorem similar to our Theorem 3 addressing the Carmichael numbers
appears in [1] and also in [6]. We point out that the fact that inequality (4)
holds with some rather large δ ∈ [1/2, 1] for almost all pairs of coprime integers
1 ≤ a < d < x1−δ follows from Theorem 2.1 in [1]. Specifically, that theorem
shows that inequality (4) holds with δ ≥ 7/12 for all 1 ≤ a < d < x1−δ with a
and d coprime, except possibility for the set of all d divisible by some member
of Dδ(x), a finite set whose cardinality is bounded in terms of δ alone and
independently on x, and all members of Dδ(x) are larger than log x. While the
fact that (4) holds for almost all choices of d with some δ < 1 was sufficient in [1]
to prove that there are infinitely many Carmichael numbers, our argument, while
closely following the argument from [1], does work only under the assumption
that δ < 1/2.

Throughout the proofs we use c1, c2, . . . for computable constants which are
either absolute or depend on the given data, like a in the case of Theorem 1, or
δ and ε in the case of Theorem 3. We also use the Vinogradov symbols � and
� and the Landau symbols O and o with their regular meanings.

2. The proof of Theorem 1

The line of attack here is as follows. We fix a large positive real num-
ber x and first construct some small number m ∈ Ra. We shall request that
σ(m) < (log1/2 x)/ log a, that τ(σ(m)) � log2 x, and that σ(m) has a num-
ber � log3 x of odd divisors. We then take the relation m|aσ(m) − 1. By
the primitive divisor theorem (see [5], [3]), we get that ω(aσ(m) − 1) � log2 x.
Since ω(m) � log m/ log2 m � log2 x/ log3 x, it follows that most of the prime
factors of aσ(m) − 1 are not prime factors of m. Select λ := �c1 log2 x� such
odd prime factors of aσ(m) − 1 which are not prime factors of m, where c1 is
some constant with c1 < 1/(2 log 2), and let M be the product of all these
primes. Then we still have mM |aσ(m) − 1, and therefore mM |aσ(m)σ(M) − 1.
From the way we have selected our numbers, we have that 2λ|σ(M), and
2λσ(m) < log x/ log a. In particular, a2λσ(m) − 1 < x is a multiple of mM .
Since λ � log2 x and σ(m) has a number � log3 x of odd divisors, we get that
τ(2λm) � log2 x log3 x. Applying the primitive divisor theorem one more time,
we get that ω(a2λσ(m) − 1) � log2 x log3 x. Since ω(mM) � log2 x, it follows
that a2λσ(m) − 1 has a number � log2 x log3 x prime factors which do not di-
vide mM , and therefore this number has at least exp(c2 log2 x log3 x) divisors d
coprime to mM . Clearly, mMd < x and mMd ∈ Ra holds for every such value
of d, which achieves the conclusion of Theorem 1.

We now give details. In the next lemma we explain how we choose the
number m.

Lemma 1. Let k ≥ 4. Then there exists d ∈ {1, 3, 5, a2 − 1} so that m :=
d · (a2 + 1) · (a4 + 1) · . . . · (a2k−1

+ 1) ∈ Ra.
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Proof. Assume first that a is even. Then, each one of the numbers a2 − 1, a2 +
1, . . . , a2k−1

+ 1 is odd, they are coprime any two, and none of them is a perfect
square. Thus, the sum of divisors of each one of these numbers is even, and
therefore 2k|σ(a2 − 1) · σ(a2 + 1) · . . . · σ(a2k−1

+ 1) = σ(a2k − 1). Hence, with
d := a2 − 1, and m := (a2 − 1) · (a2 + 1) · . . . · (a2k−1

+ 1) = a2k − 1, we have
m|a2k − 1|aσ(m) − 1.

Assume now that a is odd. Then, each one of the numbers (a2i

+ 1)/2 for
i = 2, . . . , k − 1 is odd, and none of them is a perfect square. Indeed, if one of
these numbers, say (a2i

+ 1)/2 = y2 is a perfect square with some i ≥ 2, then
with the substitution x := a2i−2

we would get a positive integer solution (x, y)
with x > 1 for the Diophantine equation x4 + 1 = 2y2, and it is known that
there is no such solution (see [13]). Thus, 2|σ((a2i

+ 1)/2) for i = 2, . . . , k − 1.
We now write (a2 + 1)/2 = sy2, where s ≥ 1 is a squarefree number.

Assume that ω(s) ≥ 2. Then 4|σ((a2 +1)/2). This implies immediately that
2k|σ(a2k − 1), and so with d := a2 − 1 we have that m ∈ Ra.

Assume that s = 1. Then 3	 |a, because otherwise we would get 1 ≡
2y2(mod 3), which is impossible. Clearly, 3	 |(a2i

+ 1) because −1 is not a
quadratic residue modulo 3. Thus, with d := 3, we have

m := 3(a2 + 1) · . . . · (a2k−1
+ 1) = 2k−1 · 3 ·

k−1∏
i=1

(a2i

+ 1
2

)
,

and

σ(m) = σ(2k−1) · σ(3) ·
k−1∏
i=1

σ
(a2i

+ 1
2

)
= (2k − 1) · 4 ·

k−1∏
i=1

σ
(a2i

+ 1
2

)
,

is a multiple of 2k. Clearly, a2i

+1|a2k −1 holds for i = 1, . . . , k−1, and 3|a2k −1
because 3 does not divide a. Thus, m ∈ Ra.

Assume that s is a prime. Thus, 2|σ((a2 + 1)/2). Write µ for the order at
which 2 appears in the prime factorization of a2 − 1. If (a2 − 1)/2µ is not a
perfect square, it follows that we may set d := a2 − 1, and then 2k|σ(a2k − 1),
therefore m ∈ Ra. If (a2−1)/2µ is a perfect square, it follows that µ is odd, and
therefore a2 − 1 = 2z2 holds with some positive integer z. Clearly, 5	 |a, because
the congruence −1 ≡ 2z2(mod 5) is impossible. If s 	= 5, it follows that we may
set d := 5, and then both primes 5 and s will appear at an odd power in the
factorization of 5(a2 + 1). Clearly, 5 is coprime to a2i

+ 1 for i ≥ 2, and thus it
follows that 2k|σ(5(a2 +1) · . . . · (a2k−1

+1)), therefore m ∈ Ra. Finally, if s = 5,
we get that a2 + 1 = 10y2, and therefore a4 − 1 = 20(yz)2. The only solution
of this equation is for a = 3 (see [2]). In this case, σ(316 − 1) is a multiple
of 24, and by the previous arguments it follows that if we set d := a2 − 1 and
m := a2k − 1, then 2k|σ(m) holds for all k ≥ 4. This completes the proof of
Lemma 1. �
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We now let x to be large. We want to construct such an m like in Lemma
1, so that the inequality

(5) aσ(m) < exp(
√

log x)

holds. Certainly, inequality (5) is equivalent to σ(m) < (log1/2 x)/ log a. But
σ(m) � m log2 m < a2k

log2 a2k � a2k

k holds for large values of k, and, in
particular, it follows that the inequality σ(m) < a2k+1

holds for large values of
k as well. Thus, in order for (5) to hold, it suffices that a2k+1

< (log1/2 x)/ log a
holds, which is implied by

(6) 2k+1 <
log2 x

2 log a
− log2 a

log a
.

Thus, with c2 any constant so that c2 < 1/(2 log a), we get that inequality (5)
holds for large x provided that 2k+1 < c2 log2 x. We choose k to be the largest
possible integer so that this last inequality holds. In particular, 2k ≥ c3 log2 x,
where c3 := c2/4.

To continue, we need to know some lower bounds for τ(σ(m)), where m is
the number constructed in Lemma 1.

Lemma 2. Let m ∈ Ra be the number appearing in Lemma 1. There exist two
constants c4 := c4(a) and c5 := c5(a), depending on a, so that if k is sufficiently
large, then σ(m) has at least c4 · 2k divisors of which at least c5k of them are
odd.

Proof. We let c6 to be a constant which is a positive integer to be fixed later,
and we look at the numbers of the form

(7) σ
(a2i1 + 1

2γ

)
· σ

(a2i2 + 1
2γ

)
· . . . · σ

(a2is + 1
2γ

)
,

where k > i1 > i2 . . . > is > c6 and γ = 0, 1 according to whether a is even
or odd. It is clear that all these numbers are divisors of σ(m). The question
reduces therefore to showing that a positive proportion of those are distinct.
Well, let us assume that

(8) σ
(a2i1 + 1

2γ

)
· σ

(a2i2 + 1
2γ

)
· . . . · σ

(a2is + 1
2γ

)

= σ
(a2j1 + 1

2γ

)
· σ

(a2j2 + 1
2γ

)
· . . . · σ

(a2j
s′ + 1
2γ

)

holds where k > i1 > i2 > . . . > is > c6, k > j1 > j2 > . . . > js′ > c6, and
(i1, . . . , is) 	= (j1, . . . , js′). We shall first show that there exist a constant c7, so
that the number shown at (7) satisfies

(9) σ
(a2i1 + 1

2γ

)
· σ

(a2i2 + 1
2γ

)
· . . . · σ

(a2is + 1
2γ

)
< c7

a2i1+...+2is

2γs
.
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Indeed, for every odd prime number p which divides a2i

+ 1 for some i, write
t(p) := 2i. Clearly, t(p) is uniquely determined. Using the fact that the inequal-
ity σ(n)/n < n/φ(n) holds for all positive integers n, we get

(10) σ
(a2i1 + 1

2γ

)
· σ

(a2i2 + 1
2γ

)
· . . . · σ

(a2is + 1
2γ

)

<
a2i1+...+2is

2γs
·

∞∏
j=c6

(
1 +

1
a2j

)
·

∞∏
j=c6

φ((a2j

+ 1)/2γ)
(a2j + 1)/2γ

� a2i1+...+2is

2γs
·

∏
t(p)=2j

j≥c6

(
1 +

1
p − 1

)
.

In [7], it was shown that the sum of the reciprocals of all prime divisors of the
Fermat numbers is convergent. The same argument from there can be used to
lead to the conclusion that the sum of the reciprocals of the prime divisors of the
numbers of the form a2i

+1 for i ≥ 1 is convergent as well. This and (10) imply
(9). We now return to (8), assume that {i1, . . . , is} is disjoint from {j1, . . . , js′},
and assume that i1 > j1. Write S := 2i1 + . . . + 2is and S′ := 2j1 + . . . + 2js′ .
Using the trivial lower bound σ(n) > n on the left–hand side of (8), and using
(9) to get an upper bound for the right–hand side of (8), we get

(11) aS−S′ ≤ c7

2γ(s′−s)
.

Since max(s′, s) ≤ i1, it follows that the estimate S−S′ = O(i1) holds, where the
constant understood in O above depends on a. It is now easy to see that since the
binary digits of 1 of S and S′ do not overlap (they are concentrated in different
positions), there exists a constant c8 so that j1 = i1−1, j2 = i1−2, . . . , jl = i1−l
holds for l < log i1/ log 2 − c8. But this shows that s � log i1 and s′ � i1. In
particular, if i1 is large enough, then (11) with γ = 1 shows that aS−S′

< 1,
which is impossible because S > S′. Thus, the only possibility when i1 is large
enough (i.e., when i1 > c6 and c6 is large enough) is when γ = 0, for which we
get S − S′ = O(1). But since is > c6, js′ > c6, we get that S − S′ is a multiple
of 2c6 . This together with the fact that S − S′ = O(1) leads to a contradiction
once c6 is chosen to be sufficiently large. Thus, we have shown that all the
numbers shown at (7) are distinct. The number of such numbers is

k−c6−1∑
s=0

(
k − 1 − c6

s

)
= 2k−1−c6 = c4 · 2k,

where c4 := 2−1−c6 (the choice s := 0 above accounts for the divisor 1 of σ(m)).
It remains to find a lower bound for the number of odd divisors. For this,

it suffices to find an upper bound for the exponent at which 2 divides σ(m).
Write λi for the exponent at which 2 divides σ((a2i

+ 1)/2γ), where again
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γ = 0, 1 according to whether a is even or odd. Let Ωi be the number of
prime divisors counted with multiplicities of (a2i

+ 1)/2γ . Since every prime
divisor p of (a2i

+ 1)/2γ is congruent to 1 modulo 2i+1 for i ≥ 1, it follows that
a2i

> (a2i

+1)/2 > (2i+1)Ωi , and therefore Ωi � 2i/i. Assume pα||a2i

+1, where
p is odd. Then, σ(pα) = pα + . . . + 1 ≡ α + 1(mod 2i+1). Since α ≤ Ωi � 2i/i,
it follows that if i > c9 is sufficiently large, then α + 1 < 2i+1. Thus, the order
at which 2 divides σ(pα) is at most log(α+1)/ log 2 � α. This argument shows
that λi � Ωi � 2i/i. Thus, the order at which 2 can appear in σ(m) is

�
k−1∑
i=1

2i

i
�

∫ k

1

2t

t
dt � 2k

k
.

Since the total number of divisors of σ(m) is � 2k, we get that the number of
odd divisors of σ(m) is � k, which concludes the proof of Lemma 2. �

We now continue with our argument. Since for us we have 2k > c3 log2 x,
Lemma 2 shows that τ(σ(m)) > c10 log2 x and that at least c11 log3 x of the
divisors of σ(m) are odd, where c10 = c3 · c4, and c11 can be taken to be any
constant slightly smaller than c5/ log 2 provided that x is large. Let d be any
divisor of σ(m). By the primitive divisor theorem (see [5], [3]), there exists a
prime number p|ad−1 (in particular, dividing aσ(m)−1) so that p 	 |at−1 for any
positive integer t < d, except possibly if d = 1, 2, 3, 6. Thus, aσ(m)−1 has at least
τ(σ(m)) − 4 > c10 log2 x − 4 prime factors. Of course, some of these are prime
factors of m. However, since ω(m) � log m/ log2 m � 2k/k � (log2 x)/(log3 x),
it follows that aσ(m) − 1 has at least c12 log2 x odd prime factors coprime to m,
where c12 can be taken to be any fixed constant smaller than c10. Choose λ :=
�c1 log2 x� such prime factors of aσ(m)−1, where c1 := min{c11, 1/(2 log 2)}, and
let M be the product of all of these. Then m and M are coprime, Mm|aσ(m)−1
and σ(mM) = σ(m) ·σ(M). Clearly, σ(M) is a multiple of 2λ < log1/2 x. From
(5), we get

(12) a2λσ(m) − 1 < a2λσ(m) < elog x = x.

We now count the number of divisors of 2λσ(m). The number of them is at
least λ + 1 times the number of odd divisors of σ(m), and so it is at least
c13 log2 x log3 x, where c13 := c11 · c12. By the primitive divisor theorem, the
number a2λσ(m) − 1 will have at least c13 log2 x log3 x − 4 prime factors. We
now show that most of these are coprime to mM . Indeed, ω(mM) ≤ ω(m) +
ω(M) = λ+O(log2 x/ log3 x) � log2 x, therefore indeed a2λσ(m)−1 has at least
c14 log2 x log3 x prime factors coprime to mM , where we can take c14 to be any
constant strictly smaller than c13. Let d be an arbitrary squarefree number built
up with these primes. Then n := mMd has σ(n) = σ(m)σ(M)σ(d) a multiple of
2λσ(m), and n|a2λσ(m)−1. In particular, n < x. Thus, n is counted by #Ra(x),
and the number of such numbers n is > 2c14 log2 x log3 x = exp(c15 log2 x log3 x),
where c15 := c14 log 2. Theorem 1 is therefore proved.
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3. The proof of Theorem 2

For every positive integer n, we write P (n) for the largest prime factor of n
with the convention that P (1) := 1. For 1 < y < x we write Ψ(x, y) := #{1 ≤
n < x |P (n) < y}. For this proof, we shall need some estimates for Ψ(x, y) once
x is large and in a certain range of y versus x. The following result appears in
[9].

Lemma 3. Suppose that ε > 0 is arbitrarily small, but fixed. If y satisfies
exp((log x)ε) < y < exp((log x)1−ε), then

(13) Ψ(x, y) = x exp((−1 + o(1))u log u), u :=
log x

log y
.

We now let x be large, and set y := exp(c1(log x log2 x)1/2), where c1 is a
constant to be fixed later. Clearly, for large x our y satisfies the condition from
Lemma 3 with ε := 1/3.

Let A1(x) := {1 ≤ n < x |P (n) < y}. Then u := log x/ log y = 2/c1 ·
(log x/ log2 x)1/2, therefore u log u = 1

c1
· (1 + o(1))(log x log2 x)1/2. Thus, with

Lemma 3, we get that

(14) #A1(x) := Ψ(x, y) = x · exp
(
− 1

c1
(1 + o(1))(log x log2)

1/2
)
.

Let A2(x) := {1 ≤ n < x |n 	∈ A1(x) and P (n)2|n}. Clearly,

(15) #A2(x) <
∑
p>y

x

p2
= o

(x

y

)
< x · exp(−c1(log x log2 x)1/2).

We now assume n ∈ Ra(x) for some a < 2 log x, and suppose that n 	∈
A1(x) ∪ A2(x). Then n = mP , where P ≥ y, and P (m) < P . Fix a and for a
prime p, let ta(p) be the order of apparition of p in the sequence (an − 1)n≥1.
That is, ta(p) is the smallest positive integer k so that p|ak −1 (and it is infinity
if p|a). Let Pa := {p prime | ta(p) < p1/3}, and for any positive integer z let
Pa(z) := {p ∈ Pa | p < z}. We claim that the inequality #Pa(z) < 2z2/3 log a
holds uniformly in a > 1 and z > 1. Indeed, fix the number z. Then, every
prime number counted by #Pa(z) satisfies p|ak − 1 for some positive integer
k < z1/3. In particular,

∏
p∈Pa
p<z

p ≤
∏

1≤k<z1/3

(ak − 1) < exp
(
log a

( ∑
k<z1/3

k
))

< exp(z2/3 log a),

where the last inequality holds for all z > 1. Let t := #Pa(z). Since the product
on the left is at least

∏t
i=1 pi > 2t = exp(t log 2), where 2 = p1 < p2 < . . . are

all the prime numbers, it follows that

(16) t <
log a

log 2
z2/3 < 2z2/3 log a.
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Let A3(x) := {1 ≤ n < x |n 	∈ A1(x)∪A2(x), P (n) ∈ Pa holds with some a <
2 log x}. Fix the number a and the number m. Then n = Pm, and P < x/m.
By (16), it follows that the number of such numbers P when a and m are
fixed is < 2(x/m)2/3 · log a. Summing up over all a < 2 log x, we get that the
number of such numbers n with m fixed is < 4 log x(log(2 log x))(x/m)2/3 <
5 log x log2 x(x/m)2/3, with the last inequality holding for large values of x.
Summing up over all the values of m, and keeping in mind that m < x/y, it
follows that

(17) #A3(x) < 5 log x log2 x
∑

1≤m<x/y

( x

m

)2/3

= 5x2/3 log x log2 x
∑

1≤m<x/y

1
m2/3

� x2/3 log x log2 x

∫ x/y

1

dt

t2/3
� x2/3 log x log2 x · t1/3

∣∣∣t:=x/y

t:=1

� x log x log2 x

y1/3
= xexp

(
−c1

3
(1 + o(1))(log x log2 x)1/2

)
.

Finally, let A4(x) := {1 ≤ n < x |n ∈ Ra(x) for some a < 2 log x and n 	∈
A1(x) ∪ A2(x) ∪ A3(x)}. Fix again the number m and the number a. Since
n 	∈ A2(x), it follows that σ(n) = σ(m)(P + 1). Since n ∈ Ra, it follows that
P |aσ(mP )−1, therefore P |aσ(m)(P+1)−1. However, from the definition of ta(P )
and Fermat’s Little Theorem, we have that ta(P )|(P − 1). In particular, it
follows that ta(P )|gcd(P − 1, σ(m)(P + 1)), therefore ta(P )|gcd(2σ(m), P − 1).
Write d := ta(p). It follows that d is a divisor of 2σ(m), and P ≡ 1 (mod d).
Moreover, since n 	∈ A1(x) ∪ A3(x), it follows that d = ta(P ) > P 1/3 > y1/3.
Since P < x/m and P ≡ 1(mod d), it follows that with m, a and d fixed, the
number of such numbers n < x is at most π(x/m, 1, d) � x/(md), (note that
d < P , therefore md < mP < x). Keeping m and a fixed and summing up over
all d > y1/3, we get that the number of such n is

(18) � x

y1/3m
· τ(2σ(m)) � x

y1/3
· τ(m)

m
.

The upper bound (18) is independent on a, so that we get that the number of
numbers n ∈ A4(x) for which m is fixed is

(19) � x log x

y1/3
· τ(σ(m))

m
.

Summing up over all m < x, we get that

(20) #A4(x) � x log x

y1/3

∑
m<x

τ(σ(m))
m

.

The following lemma is an adaptation of a result from [8].

Lemma 4. There exists an absolute constant c3 so that for x sufficiently large
holds the inequality
(21)

∑
n<x

τ(σ(n))/n < exp(c3(log x)1/2).
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We postpone for the time being the proof of this lemma and we complete
the proof of Theorem 2. With (20) and Lemma 4, it follows that

(22) #A4(x) < x exp
(
−c1

3
(log x log2 x)1/2 + log2 x + c3(log x)1/2

)

= x exp
(
−c1

3
(1 + o(1))(log x log2 x)1/2

)
.

It is now clear that the sum of #Ai(x) for i = 1, . . . , 4 is an upper bound
for the number of n < x which belong to Ra(x) for some a < 2 log x, and
comparing (14), (15), (17), and (22), it follows that the estimate # ∪1<a<2 log x

Ra(x) < x exp(−c3(log x log2 x)1/2) holds for large x with any constant c3 so
that c3 < min{1/c1, c1/3}. The best cut point for our constant c3 is, of course,
achieved when 1/c1 = c1/3, i.e. c1 =

√
3, and therefore the constant c2 from

the statement of Theorem 2 can be chosen to be any constant strictly smaller
than 1/

√
3, and then estimate (3) will hold once x is sufficiently large.

The proof of Lemma 4. This is a simplified version of the method proving the
main Theorem in [8], where we gave lower and upper bounds for the mean
value of the function τ(φ(n)) in the interval (1, x). We use the fact that the
inequality τ(mn) ≤ τ(m)τ(n) holds for all positive integers mn. For every
n :=

∏
pαp ||n pαp , where the numbers p denote distinct primes and αp denote

positive integers, we use the above inequality to say that

(23) τ(σ(n)) ≤
∏

pαp ||n
τ(σ(pαp)).

We let x be a large real number, s > 0 to be a parameter depending on x to be
chosen later, and write U(x) :=

∑
n<x τ(σ(n))/n. We use (23), to say that

(24) U(x) ≤
∑
k≥0

∑
p

α1
1

,...,p
αk
k

p
α1
1

·...·pαk
k

<x

k∏
i=1

τ(σ(pαi
i ))

pαi
i

≤
∑
k≥0

∑
p

α1
1

,...,p
αk
k

p
α1
1

·...·pαk
k

<x

( x

pα1
1 · . . . · pαk

k

)s

·
k∏

i=1

τ(σ(pαi
i ))

pαi
i

≤ xs
∑
k≥0

∑
p

α1
1 ,...,p

αk
k

<x

k∏
i=1

τ(σ(pαi
i ))

p
αi(1+s)
i

= xs
∏

2≤p<x

(
1 +

∑
α≥1

τ(σ(pα))
pα(1+s)

)

= exp
(
s log x +

∑
2≤p<x

τ(p + 1)
p1+s

+
∑
p≥2

∑
α≥2

τ(σ(pα))
pα(1+s)

)
,

where the indices of summation pαi
i in (24) stand for distinct prime powers > 1,

and in the inequality (24) we used the fact that the inequality 1 + y < exp(y)
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holds for all y > 0. And so, with Rankin’s method, it suffices to find a value of
s, depending on x, so that the expression appearing in the right–hand side of
(24) is as small as possible. Let us first notice that the double sum appearing
in the right–hand side of (24) is O(1). Indeed, for every ε > 0, there exists nε,
so that if n > nε then the inequality τ(σ(n)) < nε holds. Taking ε := 1/3, we
get

(25)
∑
p≥2

∑
α≥2

τ(σ(pα))
pα(1+s)

< O(1) +
∑
p≥2

∑
α≥2

1
p2α/3

= O(1) +
∑
p≥2

1
p4/3

∑
β≥0

1
p2β/3

� 1 +
∑
p≥2

1
p4/3

= O(1).

So, we shall now concentrate on finding, for a given large value of x, a parameter
s > 0 such that

(26) f(s) := s log x +
∑

2≤p<x

τ(p + 1)
p1+s

is as small as possible function of x. For any positive real number y, let C(y) :=∑
2≤p<y τ(p + 1). From [4], we know that there exists an absolute constant c4

such that

(27) C(y) := c4y + O
(y log2 y

log y

)

holds for large values of y. We use partial integration and (27) to get that
∑

2≤p<x

τ(p + 1)
p1+s

=
C(x)
x1+s

+
∫ x

2

1 + s

t2+s
C(t) dt

= O(1) +
∫ x

2

(1 + s)c4

t1+s
+ O

(
log log t

t1+s log t

)
dt

=
c4

s
(1 + s)(2−s − x−s) + O

(
log log x

∫ x

2

dt

t1+s log t

)
.

We assume that 1/ log x < s < 1. The last integral may be broken at e1/s.
The integrand for t smaller than this bound is � 1/t log t, and in the remaining
range the integrand is � 1/st log2 t. So the integral in the first range is �
log(1/s) ≤ log log x, and in the second range is � 1. Hence,

∑
p≥2

τ(p + 1)
p1+s

=
c4

s
(2−s − x−s) + O((log log x)2),

so that

(28) f(s) ≤ s log x +
c4

s
+ O((log log x)2).

Setting g(s) := s log x + c4/s, we have g′(s) = log x − c4/s2, and therefore g(s)
is minimal when s = sx :=

√
c4/ log x. Substituting this value of s in (28) and
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setting c5 := 2
√

c4, we get f(sx) = c5

√
log x + O((log log x)2), and putting this

together with (25) into (24) we get

(29) U(x) < exp(c5

√
log x + O((log log x)2)),

which proves (21) for large x, where the constant c3 appearing in (21) can be
taken to be any constant strictly larger than our c5.

This completes the proof of Lemma 4, and the proof of Theorem 2. �

4. The proof of Theorem 3

We let δ < 1/2 be fixed so that inequality (4) holds for all x > xδ. We
let ε > 0 be some sufficiently small number which we shall later on make more
explicit in terms of δ. We write D for the set of all numbers 1 ≤ d < xα, where
α := ((1 − δ)2 − ε)/δ having P (d) < y, where y := xε. Write z := x1−δ. For
every odd prime number q < y we write Dq for subset of those d ∈ D which are
coprime to q. Fix such an odd prime number q. For any d ∈ Dq, write aq,d for
the uniquely defined positive integer < dq which is congruent to 1 modulo d and
−1 modulo q. Such an integer exists and is unique by the Chinese Remainder
Lemma, and is coprime to both d and q. Note that the inequality dq < (dz)1−δ

holds, because this inequality is equivalent to dδq < z1−δ = x(1−δ)2 , and this
last inequality is satisfied because dδq < dδy < xαδ+ε = x(1−δ)2 holds by our
choice for α. With our assumption, for large x (that is x so large so that the
inequality z = x1−δ > xδ holds) we have that

(30) π(dz; aq,d, dq) ≥ π(dz)
2φ(dq)

≥ π(dz)
2dq

≥ dz

2dq log dz
>

2zδ

(1 − δ)q log x
,

where in the above estimates we used the fact that π(t) ≥ t/ log t holds for all
t ≥ 17 (see [10]), in particular, for t := dz with x sufficiently large, together
with the fact that

(31) log dz = log d + log z < α log x + (1 − δ) log x

<
( (1 − δ)2

δ
+ (1 − δ)

)
log x =

(1 − δ)
δ

log x.

Summing up (30) over all d ∈ Dq, it follows that

(32)
∑

d∈Dq

π(dz; aq,d, dq) ≥ 2zδ

(1 − δ) log xq
· #Dq.

We claim that there exists a constant c1 := c1(δ, ε) such that for large x the
estimate

(33) #Dq > c1x
α
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holds. Indeed, it is clear that

(34) #Dq = Ψ(xα, y) − Ψ
(xα

q
, y

)
.

Write u := log(xα)/ log y = α/ε, and uq := log(xα/q)/ log y = (α−log q/ log x)/ε.
By Theorem 6 on page 367 in [14], we know that

(35) Ψ(xα, y) = ρ(u)xα + O
( xα

log y

)
= ρ

(α

ε

)
xα + Oε

( xα

log x

)
,

where ρ stands for Dickman’s function. In particular, if q > log x, then Ψ(xα/q, y)
≤ xα/q ≤ xα/ log x, and therefore with (34) and (35), we get that

(36) #Dq = ρ
(α

ε

)
xα + Oε

( xα

log x

)
>

1
2
· ρ

(α

ε

)
· xα,

with the last inequality holding for x > xδ,ε. If, on the other hand, q < log x,
we then get

#Dq = ρ
(α

ε

)
· xα − ρ

(α − log q
log x

ε

)
· xα

q
+ Oε

( xα

log x

)

= ρ
(α

ε

)
·
(
1 − 1

q

)
· xα +

(
ρ
(α

ε

)
− ρ

(α − log q
log x

ε

))
· xα

q
+ Oε

( xα

log x

)

= ρ
(α

ε

)
·
(
1 − 1

q

)
· xα + Oε,δ

(xα log2 x

log x

)
>

1
2
· ρ

(α

ε

)
· xα

holds for sufficiently large values of x, where in the above estimates we used the
intermediate value theorem for the function ρ in the vicinity of α/ε for large
values of x, together with the fact that 3 ≤ q < log x. This proves (33) with
c1 := ρ(α/ε). Writing c2 := 2δc1/(1 − δ), we get that

(37)
∑

d∈Dq

π(dz; aq,d, dq) > c2
zxα

q log x
.

The left–hand side of (37) clearly counts all pairs (d, p), with d ∈ Dq, p prime,
p < dz so that p− 1 = dm and p + 1 = qn hold for some integers m and n with
m < z. Since m can assume at most z values, it follows that there exists a value
of m, let us call it m := mq, so that the number md+1 is a prime number p with
p+1 ≡ 0(mod q) for a subset of numbers d ∈ Dq of cardinality > c1x

α/(q log x).
Fix such a value of mq and let Pq be the set of such resulting primes p with
(p − 1)/d = mq for some d ∈ Dq, and also p + 1 ≡ 0(mod q). We do this for all
the prime numbers q < y which are odd, and we obtain pairs (mq,Pq) formed
of positive integers mq < z = x1−δ, and primes Pq. Of course, we have lower
bounds on the cardinality of Pq which are uniform in q, but for our purposes
we will need to select subsets of primes P ′

q of Pq, so that the cardinalities of
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these are still sufficiently large, but so that moreover all such are disjoint for
distinct values of the parameter q. We show that if x is sufficiently large in a
way depending on δ and ε, we can then choose subsets P ′

q of Pq, so that the
inequality #P ′

q > 3xα−3ε holds for all odd q < y, and so that all these subsets
are disjoint for distinct values of q. To see that we can do this, let us assume
the contrary, that is that there is no way of choosing such subsets. Write k for
the largest positive integer, k < π(y)− 1 := the number of odd primes below y,
so that there exists k odd primes q1, . . . , qk smaller than y and for each one of
these a subset P ′

qi
of Pqi

of cardinality �3xα−3ε� + 1 but so that for any other
q < y distinct from qi, i := 1, . . . , k, there are less than 3xα−3ε elements in Pq

which are not already in ∪1≤i≤kP ′
qi

. Well, note that if this is so, we then have

(38) # ∪1≤i≤k P ′
qi

< π(y)(�3xα−3ε� + 1) < 6xα−2ε.

However, since q < xε, and since the inequality xε/2 > log x/c2 holds for all
sufficiently large values of x, we get by (37) that

(39) #Pq > xα−3ε/2 > 6xα−2ε + 3xα−3ε + 1.

Thus, with (38) and (39), we do conclude that such a maximal value of k <
π(y) − 1 does not exist, so that we have indeed proved the existence of pairs
(mq,P ′

q)3≤q<y formed by numbers mq < z together with sets of primes P ′
q,

so that every prime p ∈ P ′
q has p − 1 ≡ 0(mod mq), P ((p − 1)/mq) < xε,

p + 1 ≡ 0(mod q), and the sets P ′
q have the properties that #P ′

q > 3xα−3ε,
and moreover Pq ∩ Pq′ = ∅ holds for all 3 ≤ q < q′ < y. For every odd
q < y, we eliminate all the prime numbers p < y which might belong to P ′

q and
write P ′′

q for the remaining subset of P ′
q. Clearly, the cardinality of P ′′

q satisfies
#P ′′

q > #P ′
q − π(y) > 3xα−3ε − xε > 2xα−3ε, if ε is chosen sufficiently small,

say such that 4ε < α holds.
We now look at the numbers mq for odd values of q < y. Clearly, mq and

q are coprime because mq|p − 1 and q|p + 1 for p ∈ P ′′
q . We fix such a prime

number q, and choose a number l(q) which satisfies the following properties:
i. mq|(ql(q) − 1)/(q − 1);

ii. l(q) satisfies the inequality z/2 ≤ l(q) < z.
It clearly suffices to prove the existence of a positive integer l(q) < z which

satisfies i above. Indeed, if a positive integer l(q) < z satisfies i above, then
either l(q) ≥ z/2, in which case l(q) satisfies ii above as well, or l(q) < z/2. In
this last case, any multiple of l(q) will satisfy i above as well, and the interval
(z/2, z) will contain a multiple of l(q). Thus, by replacing l(q) by some multiple
of it which lives in the interval (z/2, z), we have produced a number l(q) which
satisfies both i and ii above. To produce a positive integer l(q) < z satisfying i
above, write

(40) mq :=
∏

pαp,q ||mq

pαp,q
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and let

(41) l(q) := lcm[u(pαp,q ) | pαp,q ||mq],

where

(42) u(pαp,q ) :=
{

φ(pαp,q ), if p 	 |q − 1;
pαp,q , if p|q − 1.

It is easy to see, say by Euler’s Theorem together with the standard divisibility
properties of the Lucas sequences, that if the prime factorization of mq is given
by (40), then the number l(q) constructed at (41) and (42) satisfies i above, and
clearly l(q) ≤ mq < z. Thus, there exists a number l(q) satisfying both i and ii
above. We also set l(2) to be any number in the interval (z/2, z).

We write:

(43) n0 :=
∏

2≤q<y

ql(q)−1.

We also write t := �z�, and consider numbers n of the form

(44) n := n0 ·
∏

2<q<y

Mq,

where each one of the numbers Mq is squarefree, has precisely t prime factors,
and all of them belong to P ′′

q . From now on, the proof of Theorem 3 proceeds
in the following way. We first show that if x is sufficiently large with respect
to ε and δ, then every number of the form (44) belongs to R. We next find an
upper bound, call it T , for all the numbers of the form (44). Finally, we find a
lower bound for the count of all the numbers of the form (44), and we complete
the proof of the theorem.

4.1. The numbers shown at (44) are in R.

It is clear that n ∈ R if and only if λ(n)|σ(n), where λ(n) stands for the
maximal order of elements in the multiplicative group modulo n. The function
λ(n), which is also called the Carmichael function, has the property that if
n :=

∏
pαp ||n pαp then λ(n) = lcm[λ(pαp) | pαp ||n], where λ(pαp) = pαp−1(p− 1)

holds whenever p > 2 or αp ≤ 2, and λ(2α2) = 2α2−2 holds when α2 ≥ 3.
We now compute λ(n) where n is as shown in (44). Since P ′′

q are disjoint
and free of primes p < y, we get

(45) λ(n)
∣∣∣ lcm[φ(n0), φ(Mq) | q ∈ P ′

q]

∣∣∣ lcm
[
ql(q)−2(q − 1), mq,

(pq − 1
mq

)
| 2 < q < y, pq ∈ P ′′

q

]
.

We claim that (45) implies that

(46) λ(n)|n0 · lcm[mq | 2 < q < y].
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Indeed, the point is that if pq ∈ P ′′
q , then (pq −1)/mq is a number d < xα whose

largest prime factor is at most y. Thus, the power at which any fixed prime
q < y can appear in the factorization of (pq − 1)/mq is at most log(xα)/ log 2 =
α log x/ log 2 < z/2 = x1−δ/2, with the last inequality holding for x sufficiently
large with respect to δ and ε. In particular, the exponent at which every fixed
prime can appear in the prime factor factorization of (pq−1)/mq is smaller than
l(q). Moreover, since q < y, it follows that all prime factors of q − 1 are also
smaller than y, and the same argument as above shows that if q1|q − 1, then
q1 	= q and the exponent at which q1 can appear in the prime factor factorization
of q − 1 is less than l(q1). These remarks show that (45) implies (46).

We now show that the number appearing in the right–hand side of (46) is a
divisor of σ(n), where n is given by (44). Clearly, since P ′′

q are disjoint and free
of primes q < y, it follows that

(47) σ(n) = σ(n0)
∏

2<q<y

σ(Mq) =
∏

2≤q<y

ql(q) − 1
q − 1

·
∏

2<q<y

∏
p|Mq

(p + 1).

From the way we have chosen the numbers lq, it is clear that the first product
appearing in (47) is a multiple of mq for all odd q < y. Thus, it suffices to show
that ql(q) divides the number appearing in the right–hand side of (47) for all
q < y. Fix such an odd prime q. Since Mq contains t = �z� ≥ l(q) prime factors
in P ′′

q and all such are congruent to −1 modulo q, it follows that qt divides the
number appearing in the right–hand side of (47). In particular, ql(q) divides
this number. This is true for all odd primes q < y. For q = 2, this is also
true because all primes p dividing Mq1 for some odd q1 < y are odd (in fact,
they are larger than y, and so of course larger than 2), so 2t divides the number
appearing in the right–hand side of (47) as well. Thus, every number n given
by (44) is indeed in R.

4.2. An upper bound for the size of the numbers shown at (44)

Note that

(48) n0 < exp
(
z

∑
q<y

log q
)

= exp
(
zy(1 + o(1))

)
= exp(x1−δ+ε(1 + o(1)),

with the estimate (48) following from the Prime Number Theorem.
Moreover, if p ∈ P ′′

q for some odd q < y, then p − 1 = dmq for some d < xα

and mq < z, therefore p < xαz = xα+1−δ. Thus,

(49)
∏

2<q<y

Mq < exp
(
(π(y) − 1)t log(xα+1−δ)

)

= exp
( y

log y
z (α + 1− δ) log x · (1 + o(1))

)
= exp

(α + 1 − δ

ε
x1−δ+ε(1 + o(1))

)
,

with estimate (49) following by the Prime Number Theorem. With (48) and
(49), we get
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(50) n < exp
( (α + 1 − δ + ε)

ε
· x1−δ+ε(1 + o(1))

)

< exp
( (α + 1 − δ + ε)(1 + ε)

ε
· x1−δ+ε

)
:= T,

with the right most inequality in (50) holding for all x sufficiently large with
respect to δ and ε.

4.3. A lower bound for the number of numbers of the form (44)

While we did not say this up to now, it is implicit that at least one number
of the form (44) exists only when δ < 1/2. Indeed, in order to be able to
construct a number Mq, we will definitely need that #P ′′

q > t holds. We show
that xα−3ε > z ≥ t holds with ε sufficiently small with respect to δ when
δ < 1/2. Indeed, in order for the above inequality to hold, it suffices that
α − 3ε > 1 − δ holds. With the formula for α, this last inequality is equivalent
to ((1−δ)2−ε)/δ−3ε > 1−δ, which is equivalent to (1−δ)(1−2δ) > (3δ+1)ε,
and this inequality does hold when δ < 1/2, and ε is chosen so that

(51) ε <
(1 − δ)(1 − 2δ)

3δ + 1
.

In particular, with such ε, and since #P ′′
q > 2xα−3ε, we get that #P ′′

q − t >
xα−3ε > t. We now note that the number of possibilities of choosing numbers
of the form (44) is precisely

(52)
∏

2<q<y

(
#P ′′

q

t

)
>

∏
2<q<y

(#P ′′
q − t

t

)t

>
(xα−3ε

z

)t(π(y)−1)

= (xα−(1−δ)−3ε)t(π(y)−1) = exp
(
t(π(y) − 1) log(xα−(1−δ)−3ε)

)

= exp
( zy

log y
· (α − (1 − δ) − 3ε) log x · (1 + o(1))

)

= exp
( (α − (1 − δ) − 3ε)

ε
· x1−δ+ε(1 + o(1))

)
.

In particular, for large x, the number of numbers of the form (44) is at least

exp
( (α − (1 − δ) − 3ε)(1 − ε)

ε
· x1−δ+ε

)
= T β ,

where the exponent β is given by the formula

(53) β :=
(α − (1 − δ) − 3ε)(1 − ε)
(α + (1 − δ) + ε)(1 + ε)

.

The limit of β as a function of ε when ε → 0 is

(1 − δ)2/δ − (1 − δ)
(1 − δ)2/δ + 1 − δ

=
(1 − δ)(1 − 2δ)

(1 − δ)
= 1 − 2δ.
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In particular, if ε1 > 0 is arbitrary, there for every ε > 0 and bounded above
by some function depending on both δ and ε1 has the property that both the
inequality (51) and the inequality β > 1−2δ−ε1 are satisfied with such a value
of ε. Replacing now ε1 with ε, we get the assertion of Theorem 3.

Acknowledgements. The work was partly supported by grants SEP–
CONACYT 37259–E, SEP–CONACYT 37260–E and PAPIIT IN104602 from
the UNAM.

References

[1] Alford, W. R., Granville, A., Pomerance, C., There are infinitely many
Carmichael numbers. Ann. of Math. 139(3) (1994), 703–722.

[2] Bennett, M. A., Walsh, P. G., The Diophantine equation b2X4 − dY 2 = 1. Proc.
Amer. Math. Soc. 127(12) (1999), 3481–3491.

[3] Bilu, Y., Hanrot, G., Voutier, P. M., Existence of primitive divisors of Lucas and
Lehmer numbers. With an appendix by M. Mignotte. J. Reine Angew. Math. 539
(2001), 75–122.

[4] Bombieri, E., Friedlander, J. B., Iwaniec, H., Primes in arithmetic progressions
to large moduli. Acta Math. 156(3–4) (1986), 203–251.

[5] Carmichael, R. D., On the numerical factors of the arithmetic forms αn ± βn.
Ann. Math. 15 (1913), 30–70.

[6] Granville, A., Pomerance, C., Two contradictory conjectures concerning
Carmichael numbers. Math. Comp. 71(238) (2002), 883–908.
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