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GENERAL AGGREGATION OPERATORS ACTING
ON FUZZY NUMBERS INDUCED BY ORDINARY
AGGREGATION OPERATORS

Aleksandar Takaéi!

Abstract. Some special general aggregation operators are given with re-
spect to different ordering relations on the set of all fuzzy subsets of a
universe X, F(X). The proof that pointwise extensions of aggregation
operators are general aggregation operators with respect to the ordering
fuzzy subset (Cr) is given. Also, we have proved that min—extensions of
aggregation operators are general aggregation operators. When pointwise
extensions of aggregation are viewed with respect to the ordering Cr we
conclude that they are not necessarily general aggregation operators.
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1. Introduction

In order to expand the classical fuzzy arithmetic general aggregation opera-
tors are introduced as special functions defined on the space of all fuzzy subsets
of some universe X. Classical fuzzy arithmetic is based on the extension prin-
ciple (see [6], [7]) and operations on the values of membership functions of the
arguments (see [10]).

First definition of aggregation operators on F(X) is given. They are derived
from ordinary aggregation operators on the unit interval. In the definition of
general aggregation operators the ordering plays an important role. It can
happen that some functions are general aggregation operators with respect to
one ordering and not when viewed with respect to another ordering. Also, the
ordering relation determines which element of F(X) are boundary elements for
that aggregation operator.

The remainder of the paper has the following structure. In Section 2 general
aggregation operators are defined and also three types of possible general ag-
gregation operators are introduced. In Section 3 the orderings on the set F(X),
=<7 and Cr are given. In Section 4 general aggregation operators of type 1 and
2 are viewed in respect to the orderings <; and Cr.
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2. Aggregation Operators

Definition 1. A : U,en[0,1]™ — [0,1] is an aggregation operator on the unit
interval if the following conditions hold:

(A1) A(0,...,0) =0,

(A2) A(1,...,1) =1,

(A3)if (Vi=1,2,...,n)(x; <y;) then A(z1,22, ..., Tn) < A(Y1,Y2, -+, Yn)-

Conditions (A1) and (A2) are called boundary conditions, and (A3) re-
sembles the monotonicity property of the operator A. Let us now briefly define
the notion of a fuzzy set. One of the most common aggregation operators are
t-—norms.

Definition 2. Associative and symmetric aggregation operators with the unit
element 1 are called triangular norms (t-norms).

A fuzzy subset P of a universe X is described by its membership function
pp : X — [0,1]. The value of the membership function denoted by pp at the
point x € X is a membership degree of the element x in the fuzzy set P.

We denote by F(X) set of all fuzzy subsets of the universe X. The main
contribution of this paper is the definition of aggregation operators on F(X)
which are derived from ordinary aggregation operators on the unit interval.
Fuzzy numbers 0 and 1 used in the next definition are defined depending on the
ordering to resemble the minimal and maximal element in the ordering.

Definition 3. Let A~ be a mapping A : UpenF(X) — F(X) and let < be an
ordering on F(X). A is called a general aggregation operator on F(X) if the
following properties hold:

(A1) A(0,...,0) =0,

(A2) A(1,...,1) =1, ; )

(A3) ’Lf (V’L = 1,27...,71)(1:)1‘ j Qz) then A(P1,7Pn) j A(Ql;-~-7Qn)7
where Py, Py, ..., Pp,Q1,Q2,...,Q,,0,1 € F(X).

This definition implies that the orderings are important in defining aggrega-
tion operators on F(X). Obviously, different orderings generate different sets of
aggregation operators. We will show the ways to derive operators A from ordi-
nary aggregation operators A. Many ways can be proposed, the three (probably
most common ones) will be given in the following definition.

Definition 4. Let Py,...,P, € F(X), A : UpenF(X)" — F(X) and A be an
ordinary aggregation operator on the unit interval.

1. A is a pointwise extension of A if the following holds:

(Vt €R MA(Pl,..A,Pn)(t) = A(:U’P1 (t)7 s HP, (t))

BA(Py,....Py) is the membership function of the resulting fuzzy set obtained

by applying the operator A to the fuzzy sets Py, ..., P,.
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2. Let T be a t-norm. A is defined as a T extension of an aggregation
operator A:

MA(PI,‘.WP,,L)(t) = sSup {T(/JJP1 (xl)a Py, (1’2)7 ceey MP, (‘rn))}
t=A(x1,....,xn ), T, €EX

3. Let X1,X5...X,,Y be universes and let Py, P> ... P, be fuzzy subsets of

those universes, respectively. A is defined as an A extension of some
increasing operator ¢ : X1 X Xo X --- x X, =Y :

Har B = s {AGup,(21), i, (2a)):

t=p(z1,....Tn),Ti EP;

The operators that are derived by means of the previous definition we will call
operators of type 1,2 and 3 respectively. The question is whether the properties
(A1), (A2) and (A3) hold for all three types of extensions A from Definition 5.
Condition (A3) depends on the order on F(X). In the remainder of the paper
we will prove that the properties (A:l) and (A2) hold for the extensions of type
1 and 2 and also we will propose fuzzy numbers which will act as numbers 0
and 1 depending on the type of general aggregation operator that we are using.
Also, we will discus two different orderings on F(X). As we mentioned earlier
the orderings are <; and fuzzy subset Cr. We will discuss when A fulfills
property (13;3) with respect to the orderings and in the next section we will give
the definitions of <; and C .

3. Orderings on the set F(X)

3.1. Fuzzy subset ordering Cr

Definition 5. For any two fuzzy subsets P, Q of the universe X we say that P
s a fuzzy subset of Q, denoted by P Cr Q, if the following holds:

(Vo € X)(up(z) < po(e)),

where < is an ordering on X.

Obviously, the relation Cx is an ordering on F(X), although it is not a total
ordering. It is an ordering that ranks fuzzy numbers depending on their vertical
position on the graph, i.e. if the two numbers are comparable the one that is
bigger (the superset) is closer to the line y = 1 on the graph. It is obvious
that the minimal and the maximal element in this order are the lines y = 1
(the whole universe) and y = 0 (empty set). That is why if we want to study
aggregation operators with the ordering C# the obvious choice for numbers 0
and 1is:

(Vo € X)(pg(z) =0) and (Vz € X)(ui(x) = 1), respectively.
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3.2. The =<; ordering

This ordering is introduced in [2].

Definition 6. Let < be an ordering on X and let P € F(X). A fuzzy superset
of P, denoted by LT R(P) is defined as:

prrrp)(z) = sup{up(y)ly < o}.

Similarly, RTL(P) is defined as:

prrLp) () = sup{up(y)lz < y}.

LTR(P) is actually the smallest fuzzy superset of P with a non—decreasing
membership function.

Likewise, LT R(P) is the smallest fuzzy superset of P with a non—increasing
membership function.

Definition 7. If P,Q € F(X) then we can define an ordering <; on F(X):
P=<;Q yf LTR(P) 2 LTR(Q) N RTL(P) C RTL(Q).

It can easily be seen that two fuzzy sets with different heights cannot be
compared. Thus, a new ordering < is defined. First, a new set [P] is defined:

{1 up(e) = height(4)
nrpy (@) = { up(x) otherwise

Definition 8. For arbitrary P,Q € F(X), a new ordering which can be applied
to larger number of fuzzy sets is proposed:

P =7 Qiff [P] =1 [Q]

The ordering <; ranks fuzzy numbers depending on their horizontal position
on the graph. The more the membership function is to the right on the graph
the "bigger” the fuzzy number is.

4. General aggregation operators A

4.1. General aggregation operators of type 1

Definition 9. General aggregation operators A of type 1 are derived from the
classical aggregation operators A in the following way:

(V¢ €R) (Lagp,.. ooy () = Al (1), i, (1),
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The question is whether these operators satisfy properties (A~1), (13:2) and
(13:3) Since the operators of type 1 are a kind of vertical operators (the result
moves vertically on the graph from the arguments) the obvious ordering to use is
the fuzzy subset (Cx) since it ranks fuzzy numbers depending on their vertical
position on the graph. Now, we will prove that operators type 1 respect to the
ordering fuzzy subset are general aggregation operators.

Theorem 1. Let A be a general aggregation operator of type 1, i.e. a pointwise
extension of an aggregation operator A and the membership functions of fuzzy
sets 0 i 1 are respectively defined:

(1) pslz) = 0, z € X,
(2) pi(z) = 1, ze X.

B>

Then, for the operator A and fuzzy sets 0 i 1 the following conditions hold:
(A1) A(D,...,0) =0,
=1

(A2) A(1,...,1) =

(A3) if (Vi=1,2,...,n)(P; Cp Q;) then
A(P,Py,....P)) Cr A(Q1,Qa, ..., Q).

where Py,..., P, QL, ..., Qy are arbitrary fuzzy sets.
In other words, A is a general aggregation operator in respect to the ordering
Cr and fuzzy sets 0 i 1 defined by (1) and (2) respectively.

Proof. We have:
(A1) A0, ...,0)(t) = A(ug(t), - .., us(t)) = A(0,...,0) =0

Since the upper presumption holds for every ¢ € R we can conclude

A(0,...,0)=0.

(A2) is proved analogously as (A1).
Now, let us prove (A3). Let us assume that for some fuzzy sets

(Pl,7Pn,Q1,,QnEf(X))(VZ:1,2,,n)(PZ Cp Qz)

Then for any t € X we have

A(PL, Py, .., P (1)

A(pp, (t), ..., 1p, (1))
< A(MQI (t)7 s HQy, (t))
A(Q17Q27"'7Qn)(t)' g
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Figure 1. Pointwise minimum of two fuzzy sets

4.2. General aggregation operators of type 1 and the ordering <;

We will now prove that the general aggregation operators of type 1 with
respect to the ordering <; do not fulfill the condition (A3) in the general case.
The proof will be given by a counterexample.

Theorem 2. Let A be a general aggregation operator of type 1. The next
implication does not hold for arbitrary fuzzy sets K, P i Q) and arbitrary operator
A:

if P <1 Q then A(K, P) <; A(K,Q)
Proof. We will prove the proposition by giving a counterexample. Fuzzy sets

K, P and @ will be given so that the following holds P <; @, but A(K, P) =
A(K, @) does not hold. Let g, up and p1o be defined by Figure 2:

2.5z + 0.5, x € (0.5,3);
p(xr) = —2x 45, x€]3,5];

0 otherwise;

0.25z + 1, € [1,1.25];

0.3, x € [1.25,5.5];
pp(z) = 0.35z + 2.625, x € [5.5,7.5];

—x + 8.5, x € [7.5,8.5];

0 otherwise;
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Figure 2. K, P and Q Figure 3. min(K, P) and min(K, Q)

92 —3, x€][-3,6];
pol(z) = -2z +8, x€][6,8];

0 otherwise.

When we compare the fuzzy numbers P and K and the fuzzy numbers
min(K, P) and min(K, @) (where min is the pointwise extension of the classical
minimum), we obtain that it holds P <; @, but min(K, P) =<; min(K,Q)
does not hold (see Figure 3), i.e. pointwise extensions are not always general
aggregation operators with respect to <j, because the monotonicity property
does not generally hold. g

Remark 1. From Figure 3 we can also see that min(K, P) <;» min(K,Q),
which leads to a similar conclusion for the ordering <y .

5. General aggregation operators of type 2 and the ordering
=I

General aggregation operators of type 2 are a min—extension of a arbitrary
aggregation operator A on any interval [a, b]:

BA(Xy,. x,) (1) = sup {min(pp, (1), pp, (22), - - -5 pp, (T0))}-
t=A(x1,...,Tn),T; €X;

The result that is obtained by applying a type 2 operator on any two fuzzy
sets is always a movement horizontally on the graph (see Figure 4). So naturally,
we will investigate whether the type 2 operators are aggregation operators with
respect to the ordering <.
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First we need to determine the values of fuzzy sets 0 and 1. As we mentioned
earlier, the sets 0 and 1 are respectively the minimal and maximal element with
respect to the ordering. As is well known, aggregation operators can act on any
interval [a, b] of the real line. Then, the obvious choices for 0 and 1 are: 0 = {a}
i 1 = {b}, the most left and the most right fuzzy set we can obtain from the
interval [a, b]. Furthermore we will consider aggregation operators to act on any
interval on the real line [a, b] not only on the unit interval.

Theorem 3. Let A be a general aggregation operator of type 2 which is a min
extension of a classical aggregation operator A : [a,b]™ — [a,b]. Then, the
operator Aisa general aggregation operator of type 2 with respect to =<y and
the fuzzy sets 0 and 1 are defined by 0 = {a} and 1 = {b} respectively.

Proof. We have to prove that A satisfies conditions (A1) — (A3). First we will
prove (A1l). Rewritten, the condition (A1) is

A{b},..., b)) = {b}.
On the other hand, since A is a min extension of A we know that

ALY, o) = sup  min{ugy (@), ppy (e}

A(z1,...,zp)=t

If at least one of the values z;, i = 1,2...,n, is different from b we have that
pgpy (i) = 0 and

mind pgpy (1) -+ pgpy (i), - -5 ey (T0) } = 0.

Analogously, if x1 = --- =z, = b then

min{sgpy (0), . ey (), - iy ()} = 1.
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We can now conclude that only at the point b we have a value of 1 and in every
other point the value is 0 which proves condition (A1).

We can prove (A2) analogously.

(A3) is proved in [2] by proving the following theorem. O

The following theorem proves that MIN,, the min extension of the in-
creasing operation ¢ is always an aggregation operator on F(X), i.e. it fulfills
property (A3).

Theorem 4. Let ¢ : X1 x XX+ X,, = Y be a mapping whose partial mappings
are non—decreasing, i.e. for Vi =1,2...n, and for Va;,z;, € X; we have

’

’
T 25T = (X1, Ty Tn) Dy (T, T, T,

where <; is an ordering on X;. Then, all the partial mappings of min extension
of ¢, denoted by ¢ are non—decreasing, i.e. forVi=1,2...n and for VP;, P, €
F(X,) we have:

’

P, =<y, P, = o(Py,....Pi,...,P.) <y o(Py,...,P,,.... Py,

where other components Pj, j # i, are arbitrary but fized.

6. Conclusion and further work

In conclusion we would like to say that the results that are obtained are nat-
ural. The operators that are vertical by nature (general operators of type 1) are
aggregation operators with respect to the ordering C » which is a vertical order-
ing. Analogously, horizontal operators work well with horizontal orderings. On
the other hand, we cannot mix vertical operators with horizontal orderings. In
our further work we will investigate in more detail the set of general aggregation
operators on fuzzy numbers.

Many applications of classical aggregation operators can be found (see [1],
[5]). A relatively new concept of agent oriented programming seems to be an
area that operators A can be applied, in most cases, agent is embedded in an
unpredictable and dynamic environment (see [12], [13]). Therefore, agent needs
a capability to adapt itself to new circumstances that emerge during its life. One
way to achieve this adaptation is to use machine learning and fuzzy capabilities
in which classic and extended aggregation operators have to play a certain role.
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