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ON STABILITY OF SPLINE DIFFERENCE SCHEME
FOR REACTION–DIFFUSION TIME–DEPENDENT

SINGULARLY PERTURBED PROBLEM1

Katarina Surla2, Zorica Uzelac3

Abstract. The singularly perturbed parabolic boundary value problem is
considered. Difference scheme is obtained by using cubic spline difference
scheme on Shishkin’s mesh in space and classical discretization on uniform
mesh in time. To obtain better stability and simpler matrix the fitting
factor in polynomial form is used. The uniform convergence is achieved.
Numerical results are presented.
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1. Introduction

For the open interval D = (0, 1), on the domain

Q = D × (0, T ], S = Q̄/Q,

we consider a boundary value problem for the parabolic equation




Ly(x, t) ≡ −ε2yxx(x, t) + c(x, t)y(x, t) + d(x, t)yt(x, t) = f(x, t),

(x, t) ∈ Q,

y(x, t) = ϕ(x, t), (x, t) ∈ S.

(1)

Here the functions c(x, t), d(x, t), f(x, t), and also the function ϕ(x, t), are
sufficiently smooth functions on the sets Q̄ and S respectively. Moreover,

c(x, t) ≥ d0 > 0, d(x, t) ≥ r0 > 0, (x, t) ∈ Q̄,

ε ∈ (0, 1]. The solution of the boundary value problem is a smooth function y,
which satisfies the equation on Q and the boundary condition on S.
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The estimates of the derivatives are given in [4]. Namely, according to [4]
we can assume that

y(x, t) = g(x, t) + v(x, t),

where |∂kg(x,t)
∂xk | ≤ M, |∂kv(x,t)

∂xk | ≤ Mε−k(exp(−pε−1x) + exp(pε−1(1− x)), k =

0, 1, ..., 4, |∂ky(x,t)
∂tk |, k = 1, 2; p is a positive constant.

When the parameter ε tends to zero, a parabolic boundary layer appears
in the neighborhood of the lateral boundary of the set Q. On the set Q̄ we
introduce the grid

Q̄h = ω̄1 × ω̄0,(2)

where ω̄1 is a grid, generally nonuniform, on the interval [0, 1] and ω̄0 is a
uniform grid on the interval [0, T ]. Let hi+1 = xi+1 − xi, xi, xi+1 ∈ ω̄1 and
τ = tk+1 − tk , tk, tk+1 ∈ ω̄0. By N + 1 and N0 + 1 we denote the number of
nodes in the grids ω̄1 and ω̄0 respectively. By gj,k = g(xj , tk) we denote the
value of the function g(x, t) at the grid point (xj , tk) .

Different schemes for the problem (1) when c(x, t) = 0, is considered in [5].
Here we use one of them and introduce the fitting factor in order to simplify
matrix and to magnify stability.

2. Construction of the scheme

In the grid Q̄h we define the following collocation equation for problem (1)
{
−σj,ku(xj , tk) + cj,ku(xj , tk) = Fj,k, (xj , tk) ∈ Qh = Q

⋂
Q̄h

u(xj , tk) = ϕ(xj , tk), (xj , tk) ∈ Sh = S
⋂

Q̄h,
(3)

where Fj.k = −dj,k ut(xj,tk) + fj.k. Using cubic spline discretization for the
fixed tk as in [6], we obtain





r−j,k uj−1,k + rc
j,k uj,k + r+

j,k uj+1,k = q−j,k Fj−1,k + qc
j,k Fj,k + f+

j,k Fj+1,k,

r−j,k = −(1− h2
jcj−1,k/(6σj−1,k))/hj ,

r+
j,k = −(1− h2

j+1cj+1,k/(6σj+1,k))/hj+1,

rc
j,k = (1 + h2

jcj,k/(6σj,k))/hj + (1 + h2
j+1cj,k/(6σj,k))/hj+1,

q−j,k = hj/(6σj−1,k), q+
j,k = hj̄1/(6σj+1,k), qc

j,k = (hj + hj+1)/(6σj,k),

u(xj , tk) = ϕ(xj , tk), (xj , tk) ∈ Sh = S
⋂

Q̄h.

(4)

If we replace Fj,k in (4) by Φj,k = −dj,k (uj,k − uj,k−1)/τ + fj.k , we obtain
the scheme
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



R uj,k = Q uj,k−1 + qfj,k,

R uj,k = R−j,k uj−1,k + Rc
j,k uj,k + R+

j,k uj+1,k

Quj,k−1 = Q−
j,k uj−1,k−1 + Qc

j,k uj,k−1 + Q+
j,k uj+1,k−1

q f−j,k = q−j,k fj−1,k + qc
j,k fj,k + f+

j,k fj+1,k,

R−j,k = r−j,k + dj−1,k q−j,k/τ, R+
j,k = r+

j,k + dj+1,k q+
j,k/τ,

Rc
j,k = rc

j,k + dj,k qc
j,k/τ,

Q−j,k = dj−1,k q−j,k/τ

Q+
j,k = dj+1,k q+

j,k/τ

Qc
j,k = dj,k qc

j,k/τ.

(5)

On the set Q̄ we introduce a special grid, condensed in the boundary layer,
similar to the grid constructed in [1],

Q̄∗
h = ω̄∗1 × ω̄0,(6)

where ω̄∗1 is a piecewise grid on [0, 1]. The step size of the grid ω̄∗1 on the intervals
[0, δ], [1− δ, 1] and on the interval [δ, 1− δ] are constant and equal

h1 = 4δN−1 and h2 = 2(1− 2δ)N−1,

respectively. The value δ is chosen to satisfy the condition

δ = min (1/4, 4 ε ln N).

If ε = σj−1,k and hj = h2 , r−j,k → ∞when ε → 0. The stability of the
system becomes weak. Because of that we put

σj,k = h2
j+1cj,k/6 , when xj ≤ 1/2,

σj,k = h2
jcj,k/6 , when xj ≥ 1/2.

Then r−j,k = r+
j,k = 0, for j 6= i0 − 1 and j 6= n− i0 + 1, i0 = δ.

At the end of the paper we present numerical results when fitting factor is
used only outside the boundary layers. The results are very similar, but in the
previous case the matrix is simpler.
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3. Convergence of the method

Let zj,k = yj,k−uj,k and τj,k(y) be the truncation error at the point (xj , tk).
Then

Rzj,k −Qzj,k−1 = τj,k(y),

τj,k(y) = τ̃j,k(y) + Mτ/hj ,
(7)

where τ̃j,k(y) is the truncation error for the cubic spline difference scheme for
the fixed tk,

τ̃j,k(y) = Φ2,j+1,k/hj+1 − Φ2,j,k/hj + Φ1,j,k,(8)





Φ2,j,k = Ψ0,j,k + h2
j (ηj−1,k/3σj−1,k + ηj,k/6σj,k −Ψ2,j,k/6)

Φ1,j,k = Ψ1,j,k + hj(ηj−1,k/σj−1,k + ηj,k/σj,k −Ψ2,j,k)

Ψb,j,k = y(4)(Θb,j , tk) h4−b
j /(4− b)!, xj−1 ≤ Θb,j ≤ xj ,

ηj,k = (ε− σj,k)y′′j,k.

By analyzing the values ∆j,k = |Rc
j,k| − |R−j,k| − |R+

j,k| we obtain

∆j,k ≥





δ−1
j,k =

M

τεn−1 ln n
, j = 1, 2, ..., i0 − 1, j = n− i0 + 1, ..., n,

δ−1
j,k = M

n−1τ + εn−1 ln n

τεn−2 ln n
, j = i0, n− i0,

δ−1
j,k =

M

τn−1
, j = i0 + 1, ..., n− i0 − 1.

(9)

Now, we multiply the equations of the scheme by the corresponding δj,k. Let
A be the matrix of the system which corresponds to new scheme, then

‖zj,k‖ ≤ ‖A−1‖ (‖δj,k Q zj,k−1‖+ ‖δj,k τj,k(y)‖),(10)

and ‖A−1‖ ≤ M. For k = 1, zj,k = 0 and ‖zj,1‖ ≤ ‖A−1‖ ‖δj,k τj,k(y)‖. Since
‖δj,k τj,k(y)‖ ≤ ‖δj,k τj,k(g)‖+ ‖δj,k τj,k(v)‖ from (7),(8) we obtain

‖δj,k τ̃j,1(g)‖ ≤ Mτ max(ε2, h2
j ),

‖δj,k τ̃j,1(v)‖ ≤ Mτ n−2 ln2 n, j 6= i0, n− i0.

For j = i0 and j = n− i0 we use the truncation error in the form

τ̃j,1(v) = rvj,k − q(−εv′′j,k + cj,kvj,k),



On stability of spline difference scheme 93

and we have that
‖δj,k τ̃j,1(v)‖ ≤ Mτn−2.

Thus we have the following theorem.

Theorem 3.1 Let N0τ = T and the mesh Q̄∗h be defined by (6). Let τ ≥ n−1.
Then for 0 ≤ jτ ≤ T and the solution uj,k of the scheme (4), the estimate

|y(xj,tk)− u(xj , tk)| ≤ M(n−2 ln2 n + τ)(11)

is valid.

Proof. From the above analysis we have

|zj,k| ≤ Mkτ(n−2 ln2 n + τ).

Since kτ ≤ T, the theorem holds. 2

4. Numerical example

Let us consider the boundary value problem
{

Lu(x, t) ≡ −ε2yxx(x, t) + y(x, t) + ut(x, t) = 0, (x, t) ∈ Q

y(x, t) = W (x, t), (x, t) ∈ S = Q̄/Q.
(12)

where

W (x, 0) = sin(πx) + 1/2 sin(3πx), 0 ≤ x, t ≤ 1,

W (0, t) = 0, W (1, t) = 0,

y(x, t) = exp(−(1 + ε2π2t)) sin(πx) + 1/2 exp(−(1 + 9ε2π2t)) sin(3πx).

Using the solutions of the difference scheme (5) on grid (6) we calculated the
values

En = max
Q̄h

|y(xj , tk)− u(xj , tk)|,

for various values of ε = 2−k, N = N0 and T = 1.
Table 1 contains results when the fitting factor is used at all points of the

grid.

k n

16 32 64 128 256 512 1024
15 2.91(-2) 1.00(-2) 3.61(-3) 1.82(-3) 1.02(-3) 5.38(-4) 2.77(-4) Enn

1.54 1.48 .987 .840 .918 .960 Ord
16 2.91(-2) 1.00(-2) 3.61(-3) 1.82(-3) 1.02(-3) 5.38(-4) 2.77(-4) En

1.54 1.48 .988 .840 .918 .960 Ord
20 2.91(-2) 1.00(–2) 3.61(–3) 1.82(-3) 1.02(-3) 5.38(-4) 2.77(-4) En

1.54 1.48 .988 .840 .918 .960 Ord
29 2.91(-2) 1.00(-2) 3.44(-3) 1.82(-3) 1.02(-3) 5.38(-4) 2.77(-4) En

1.54 1.48 .988 8.40 .918 .960 Ord

Table 1.
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Table 2 contains results when the fitting factor is used only outside the
boundary layers, i.e. for hj = h2.

k n

16 32 64 128 256 512 1024
15 2.92(-2) 1.05(-2) 3.62(-3) 1.82(-3) 1.02(-3) 5.38(-4) 2.77(-4) En

1.53 1.48 .987 .840 .918 .960 Ord
16 2.92(-2) 1.05(-2) 3.68(-3) 1.82(-3) 1.02(-3) 5.39(-4) 2.77(-4) En

1.54 1.48 .988 .840 .918 .960 Ord
20 2.91(-2) 1.00(-2) 3.61(-3) 1.82(-3) 1.02(-3) 5.39(-4) 2.77(-4) En

1.54 1.48 .988 .840 .918 .960 Ord
29 2.91(-2) 1.00(-2) 3.44(-3) 1.82(-3) 1.02(-3) 5.39(-4) 2.77(-4) En

1.54 1.48 .988 8.40 .918 .960 Ord

Table 2.
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