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THE β–DUALS OF SOME MATRIX DOMAINS IN FK
SPACES AND MATRIX TRANSFORMATIONS1

Eberhard Malkowsky2, Ekrem Savas3

Abstract. We prove general results that reduce the determination of the
β–duals of matrix domains XT of triangles in certain FK spaces X to that
of the β–dual of X, and the characterization of matrix transformations
on XT to that of matrix transformations on X.
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1. Introduction

By ω we denote the set of all complex sequences x = (xk)∞k=0. Let `∞, c,
c0 and φ be the sets of all bounded, convergent, null and finite sequences, cs
and bs be the sets of all convergent and bounded series, and `p = {x ∈ ω :∑∞

k=0|xk|p < ∞} for 1 ≤ p < ∞.
By e and e(n) (n = 0, 1, . . .), we denote the sequences with ek = 1 for all k,

and e
(n)
n = 1 and e

(n)
k = 0 for k 6= n.

An FK space X is a complete linear metric sequence space with continuous
coordinates Pk : X → |C where Pk(x) = xk for all x ∈ X and k = 0, 1, . . .; a BK
space is a normed FK space. We say that an FK space X ⊃ φ has AD if φ is
dense in X; we say that X has AK if x[m] =

∑m
k=0 xke(k) → x (n → ∞) for

every sequence x = (xk)∞k=0 ∈ X.
If X and Y are subsets of ω, and z is a sequence, we write z−1 ∗ Y =

{x ∈ ω : xz = (xkzk)∞k=0 ∈ Y } and M(X, Y ) =
⋂

x∈X x−1 ∗ Y = {z ∈ ω :
zx ∈ Y for all x ∈ X} for the multiplier of X and Y . In the special case when
Y = cs, we write zβ = z−1 ∗ cs, and the set Xβ = M(X, cs) is called the β–dual
of X.

Let A = (ank)∞n,k=0 be an infinite matrix of complex numbers, x be a se-
quence and X be a subset of ω. Then we write An = (ank)∞k=0 and Ak =
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(ank)∞n=0 for the sequences in the n–th row and the k–th column of A, An(x) =∑∞
k=0ankxk (n = 0, 1, . . .) and A(x) = (An(x))∞n=0, provided An ∈ xβ for all

n. The set XA = {z ∈ ω : A(z) ∈ X} is called the matrix domain of A in X.
Given any subsets X and Y of ω, then (X, Y ) denotes the class of all matrices
A that map X into Y , that is for which An ∈ Xβ for all n and A(x) ∈ Y for all
x ∈ X, or equivalently A ∈ (X, Y ) if and only if X ⊂ YA.

A matrix T is said to be a triangle if tnk = 0 for all k > n and tnn 6= 0
(n = 0, 1, . . .). A subset X of ω is said to be normal if x ∈ X and |yk| ≤ |xk|
(k = 0, 1, . . .) for some sequence y simultaneously imply y ∈ X.

In this paper we prove general results that reduce the determination of the
β–duals of the matrix domains XT of triangles in certain FK spaces X to that
of the β–dual of X, and the characterization of matrix transformations on XT to
that of matrix transformations on X. Furthermore, we give some applications
of our general results.

2. The β– duals of matrix domains of triangles

In this section we reduce the determination of (XT )β to that of Xβ .
Throughout, let T = (tnk)∞n,k=0 be a triangle and Z = XT . It is well known

(cf. [11, 1.4.8, p. 9] and [1, Remark 22 (a), p. 22]) that every triangle T has
a unique inverse U = (unk)∞n,k=0 which also is a triangle, and x = T (U(x)) =
U(T (x)) for all x ∈ ω. Without explicitly mentioning it each time, we will
frequently use the trivial facts that x ∈ X if and only if z = U(x) ∈ Z, and
z ∈ Z if and only if x = T (z) ∈ X.

Proposition 2.1 Let T be a triangle, X and Y be subsets of ω and a ∈ ω. We
define the matrix B = B(a, T ) by Bk = aUk, that is bnk = anunk for 0 ≤ k ≤ n
and bnk = 0 for k > n (n = 0, 1, . . .). Then a ∈ M(XT , Y ) if and only if
B ∈ (X,Y ).

Proof. This is trivial since B(x) = aU(x) = az. 2

If (X, d) is a linear metric sequence space and a ∈ X, we write

Sδ = SX,δ = {x ∈ ω : d(x, 0) ≤ δ} (δ > 0) and S = SX = S1 for short,

and

‖a‖∗D = ‖a‖∗X,D = sup

{∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣ : x ∈ S1/D

}
(D > 0),

provided the expression on the right exists and is finite, which is the case when-
ever X is an FK space and a ∈ Xβ (cf. [11, Theorem 7.2.9, p. 107]). If X is a
BK space, we write

‖a‖∗ = ‖a‖∗X = sup

{∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣ : ‖x‖ ≤ 1

}
.
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It follows from [11, Theorem 4.3.12, p. 63] that if X is a BK space so is Z with
‖z‖Z = ‖T (z)‖ (z ∈ Z), and so SZ = SX .

If A is a matrix, we write At for its transpose, that is at
nk = akn for all

n, k = 0, 1, . . .. We define the matrix Σ = (σnk)∞n,k=0 by σnk = 1 for 0 ≤ k ≤ n
and σnk = 0 for k > n (n = 0, 1, . . .).

To be able to determine (XT )β in the case when X is an FK space, we need

Lemma 2.2 Let X be a normal FK space with AK. We put R = U t. Then
(XT )β ⊂ (Xβ)R.

Proof. We assume a ∈ Zβ and write C = ΣB where B is the matrix defined
in Proposition 2.1. Then B ∈ (X, cs) by Proposition 2.1, and this is the case
if and only if C ∈ (X, c) by [7, Theorem 3.8, p. 180]. Since A is an FK space
with AK it follows from [7, Theorem 1.23, p. 155] and [11, 8.3.6, p. 123] that

Rk(a) = lim
n→∞

cnk =
∞∑

j=k

ajujk exists for each k,(2.1)

and supn ‖Cn‖∗X,D < ∞ for some D > 0, that is there is a constant K such that

|Cn(x)| =
∣∣∣∣∣

n∑

k=0

cnkxk

∣∣∣∣∣ ≤ K for all n and for all x ∈ SX,1/D.(2.2)

Let x ∈ X be given and δ = 1/(2D). We define the sequence x̃ by x̃k =
xksgnRk(a) (k = 0, 1, . . .). Then x̃ ∈ X, since X is normal. Furthermore, since
SX,δ is absorbing (cf. [10, Chapter 4.1, Fact (ix), p. 53]) and X has AK, there
are a real λ > 0 and a non–negative integer m0 such that ỹ[m] = λ−1x̃[m] ∈ SX,δ

for all m ≥ m0. Let m ≥ m0 be given. Then for all n ≥ m by (2)
∣∣∣∣∣

m∑

k=0

cnkxksgnRk(a)

∣∣∣∣∣ = λ

∣∣∣∣∣
m∑

k=0

cnkỹ
[m]
k

∣∣∣∣∣ = λ
∣∣∣Cn(ỹ[m])

∣∣∣ ≤ λK,

and so by (1)
m∑

k=0

|Rk(a)xk| = λ lim
n→∞

|Cn(ỹ[m])| ≤ λK.

Since m ≥ m0 was arbitrary, we conclude R(a) ∈ xβ , and since x ∈ X was
arbitrary, R(a) ∈ ⋂

x∈X xβ = Xβ , that is a ∈ (Xβ)R. 2

Theorem 2.3 Let X be a normal FK space with AK and R = U t. Then
a ∈ (XT )β if and only if

a ∈ (Xβ)R and W ∈ (X, c0)(2.3)
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where the matrix W is defined by

wmk =
{ ∑∞

j=m ajujk (0 ≤ k ≤ m)
0 (k > m)

(m = 0, 1, . . .).

Furthermore, if a ∈ (XT )β then

∞∑

k=0

akzk =
∞∑

k=0

Rk(a)Tk(z) for all z ∈ Z = XT .(2.4)

Proof. First we assume a ∈ Zβ . Then R(a) ∈ Xβ by Lemma 2.2, and wmk

converges for all m and k, thus the matrix W is defined. Furthermore

m−1∑

k=0

akzk =
m∑

k=0

Rk(a)Tk(z)−
m∑

k=0

wmkTk(z) for all m and all z.(2.5)

Let x ∈ X be given. Then z = U(x) ∈ Z and so a ∈ zβ and a ∈ (xβ)R. Thus
W (x) ∈ c by (5). Since x ∈ X was arbitrary, we have W ∈ (X, c) ⊂ (X, `∞).
Furthermore, since Rk(a) =

∑∞
j=k ajujk exists for each k, we have

lim
m→∞

wmk = lim
m→∞

∞∑

j=m

ajujk = 0,(2.6)

and by [7, Theorem 1.23, p. 115] and [11, 8.3.6, p. 123] this and W ∈ (X, `∞)
together imply W ∈ (X, c0) . Now if a ∈ Zβ then the conditions in (3) hold by
what we have just shown, and (4) follows from (5).
Conversely, we assume that the conditions in (3) are satisfied. Then x = T (z) ∈
X and so az ∈ cs for all z ∈ Z by (5), that is a ∈ Zβ . 2

Using a different proof, we may drop the assumption that X is normal in
the case when X is a BK space.

Theorem 2.4 Let X be a BK space with AK and R = U t. Then a ∈ (XT )β

if and only if the conditions in (3) hold. Furthermore, if a ∈ (XT )β then (4)
holds.

Proof. First we assume a ∈ Zβ . Then, as in the proof of Lemma 2.2, we
conclude that condition (1) holds and

C = ΣB ∈ (X, `∞).(2.7)

From (1), we obtain that the matrix W is defined and again (6) holds. Further-
more, since X is a BK space with AK, condition (7) implies Ct ∈ (`1, Xβ) by
[11, Theorem 8.3.9, p. 124]. Now Xβ is a BK space with

‖y‖β = sup
m

{∣∣∣∣∣
m∑

k=0

ykxk

∣∣∣∣∣ : x ∈ SX

}
= ‖y[m]‖∗X for all y ∈ Xβ
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by [11, Example 4.3.16, p. 65]. Therefore, by [11, Example 8.4.1, p. 126], the
columns of the matrix Ct, that is the rows of C are a bounded set in Xβ . Thus
there is a constant K1 such that

∣∣∣∣∣
m∑

k=0

cnkxk

∣∣∣∣∣ ≤ K1 for all m and n and all x ∈ SX .(2.8)

Now (1) implies |∑m
k=0 Rk(a)xk| ≤ K1 for all m and all x ∈ SX . Since x ∈ SX

if and only if z ∈ SZ , it follows from (5) and (8) that

|Wm(x)| ≤ K1 +

∣∣∣∣∣
m−1∑

k=0

akzk

∣∣∣∣∣ for all x ∈ SX , z ∈ SZ and all m.(2.9)

We define the linear functionals fm (m = 0, 1, . . .) on Z by fm(z) =
∑m−1

k=0 akzk.
Since Z is a BK space, we have fm ∈ Z∗ for all m, and a ∈ Zβ implies
limm→∞ fm ∈ Z∗ by [11, Theorem 7.2.9, p. 107]. We are going to show that
the sequence (fm)∞m=0 is pointwise bounded. Then it is norm bounded by the
uniform boundedness principle, that is there is a constant K2 such that

|fm(z)| =
∣∣∣∣∣
m−1∑

k=0

akzk

∣∣∣∣∣ ≤ K2 for all m and all z ∈ SZ .(2.10)

Let z ∈ Z \ {0} be given. Then |fm(x)| ≤ ‖fm‖ ‖z‖ or all m. Since f(z) =
limm→∞ fm(z), there is a non–negative integer m0 = m0(z) such that |fm(z)−
f(z)| ≤ ‖z‖ for all m ≥ m0, and so |fm(z)| ≤ (‖f‖ + 1)‖z‖. We put K2(z) =
(max{‖f‖ + 1, max0≤m≤m0 ‖fm‖})‖z‖. Then |fm(z)| ≤ K2(z) for all m. Thus
the sequence (fm)∞m=0 is pointwise bounded.
Now it follows from (9) and (10) that |Wm(x)| ≤ K1 + K2 for all m and all
x ∈ SX , hence supm ‖Wm‖∗X < ∞. It follows from this and (6) that W ∈ (X, c0)
by [7, Theorem 1.23, p. 155] and [11, 8.3.6, p. 123]. Finally, from (5) we obtain
R(a) ∈ Xβ , that is a ∈ (Xβ)R.
The converse part of the proof is exactly the same as in the proof of Theorem
2.3. 2

Remark 2.5 Since (c0, `∞) = (c, `∞) = (`∞, `∞), the proof of Theorem 2.4
shows that Theorem 2.4 also holds for x = c and X = `∞.

Remark 2.6 It seems that the condition that X is normal is needed in the
proof of Lemma 2.2, hence in the hypotheses of Theorem 2.3. On the other
hand, however, some arguments in the proof of Theorem 2.4 fail in the case of
FK spaces, for instance the β–dual of an FK space need not be an FK space.
Thus the proof of Theorem 2.4 does not extend to FK spaces in general.
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3. Matrix transformations

In this section we shall prove a result which reduces the characterization of
the classes (XT , Y ) to that of (X,Y ).

Theorem 3.1 Let Y be an arbitrary subset of ω, X be a normal FK space (or
a BK space) with AK and R = U t. Then A ∈ (XT , Y ) if and only if

RA ∈ (X, Y )(3.1)

and
WAn ∈ (X, c0) for all n = 0, 1, . . .(3.2)

where RA = AU and the matrices WAn (n = 0, 1, . . .) are defined by

wAn

mk =





∞∑
j=m

anjujk (0 ≤ k ≤ m)

0 (k > m)
(m = 0, 1, . . .).

Proof. First we assume A ∈ (Z, Y ). Then An ∈ Zβ for all n, hence the condition
(12) holds and

R(An) = (RA)n ∈ Xβ for all n(3.3)

by Theorem 2.3 (or 2.4). Let x ∈ X be given. Then An ∈ Z implies

(RA)n(x) = An(z) for all n(3.4)

by (4) and A(z) ∈ Y yields RA(x) ∈ Y . Thus the condition (11) also holds.
Conversely, we assume that the conditions (11) and (12) are satisfied. Then
(13) holds, and this and (12) jointly imply An ∈ Zβ for all n by Theorem 2.3
(or 2.4). Now (14) again holds and we conclude that A ∈ (Z, Y ). 2

4. Some applications

In this section we apply our results.
First we give an application of Proposition 2.1.

Example 4.1 Let p = (pk)∞k=0 ∈ `∞, pk > 1 and qk = pk/(pk − 1) for k =
0, 1, . . .. We write `(p) = {x ∈ ω :

∑∞
k=0|xk|pk < ∞}, bv(p) = (`(p))∆ and, for

all N ∈ IN \ {1},

S(N) =

{
a ∈ ω : sup

n

n∑

k=0

|an|qk N−qk < ∞
}

.

Then
M(bv(p), c0) = c0 ∩

⋃

N∈IN\{1}
S(N);(4.1)
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if (pk)∞k=0 is a constant sequence, that is pk = p > 1 for all k, we write bvp =
bv(p) and

M(bvp, c0) = c0 ∩
(
(n + 1)1/q)∞n=0

)−1

∗ `∞(4.2)

Proof. Now T = ∆ and U = Σ, hence Bn = ane[n] for the rows of the matrix
B. By Proposition 2.1, a ∈ M(bv(p), c0) if and only if B ∈ (`(p), c0) and this is
the case by [2, Theorem 1 (i)] and [11, 8.3.6, p. 123] if and only if

sup
n

∞∑

k=0

|bnk|qk N−qk = sup
n

n∑

k=0

|an|qk N−qk < ∞ for some N ∈ IN \ {1}(4.3)

and limn→∞ bnk = limn→∞ an = 0 for each k. Thus we have shown (15).
Furthermore, the special case in (16) is an immediate consequence of (15). 2

Now we give an application of Theorem 2.4.

Example 4.2 Let δ be a positive real and T be the Cesàro matrix of order δ,
that is

tnk =

{
Aδ−1

n−k

Aδ
n

(0 ≤ k ≤ n)
0 (k > n)

(n = 0, 1, . . .),

where Aδ
n =

(
n+δ

n

)
denotes the nth Cesàro coefficient of order δ. We write

Cδ = cT . Then a ∈ (Cδ)β if and only if

∞∑

k=0

Aδ
k

∣∣∣∣∣∣

∞∑

j=k

A−δ−1
j−k aj

∣∣∣∣∣∣
< ∞,(4.4)

sup
n

n∑

k=0

Aδ
k

∣∣∣∣∣∣

∞∑

j=n

A−δ−1
j−k aj

∣∣∣∣∣∣
< ∞(4.5)

and

lim
n→∞

n∑

k=0

Aδ
k

∞∑

j=n

A−δ−1
j−k aj = 0.(4.6)

Proof. Now the matrices U and W are given by unk = A−δ−1
n−k Aδ

k, wnk =
Aδ

k

∑∞
j=n A−δ−1

j−k aj for 0 ≤ k ≤ n and unk = wnk = 0 for k > n (n = 0, 1, . . .).
Furthermore, Rk(a) = Aδ

k

∑∞
j=k A−δ−1

j−k aj . First, R(a) ∈ cβ = `1 if and only if
condition the (18) holds. Furthermore, by [11, Theorem 1.3.6, p. 6], W ∈ (c, c0)
if and only if supn

∑∞
k=0|wnk| < ∞ which is condition (19), limn→∞ wnk = 0

which is redundant (cf. (6)), and limn→∞
∑∞

k=0 wnk = 0, which is condition
(20). Thus the statement holds by Theorem 2.4 and Remark 2.5. 2

In the special case were T = ∆, Theorem 2.3 yields [6, Theorem 2.5].
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Corollary 4.3 Let X be a normal FK space (or a BK space) with AK. We
write E for the matrix with enk = 1 for k ≥ n and enk = 0 for k < n (n =
0, 1, . . .). Then a ∈ (X∆)β if and only if a ∈ (Xβ)E and W ∈ (X, c0) where
Wn = (En)[n](a) for the rows of the matrix W . This can be written in the form

(X∆)β =
(
Xβ ∩M(X∆, c0)

)
E

(cf. [6, Theorem 2.5]).(4.7)

Proof. If T = ∆ then R = E and wnk =
∑∞

j=n aj for 0 ≤ k ≤ n and wnk = 0
for k > n (n = 0, 1, . . .), that is Wn = (En)[n](a) for n = 0, 1, . . .. Thus the
first statement is an immediate consequence of Theorem 2.3 (or 2.4). Applying
Proposition 2.1 with X∆ and E(a) instead of X and a, we obtain E(a) ∈
M(X∆, c0) if and only if B ∈ (X, c0) where bnk = En(a) for 0 ≤ k ≤ n and
bnk = 0 for k > n (n = 0, 1, . . .), that is B = W . 2

Example 4.4 We use the notations of Example 4.1 and Corollary 4.3 and write

S̃(N) =

{
a ∈ ω :

∞∑

k=0

|ak|qk N−qk < ∞
}

for all N ∈ IN \ {1}. Then

(bv(p))β =


 ⋃

N∈IN\{1}
(S̃(N) ∩ S(N))




E

,(4.8)

that is a ∈ (bv(p))β if and only there is an integer N > 1 such that

∞∑

k=0

|Ek(a)|qk N−qk < ∞ and sup
n

n∑

k=0

|En(a)|qk N−qk < ∞,(4.9)

where Ek(a) =
∑∞

j=k aj for k = 0, 1, . . .. In the special case where pk = p for
all k, we have

(bvp)β =
(

`q ∩
(
((n + 1)1/q)∞n=0

)−1

∗ `∞

)

E

.(4.10)

Proof. By [3, Theorem 1], a ∈ (`(p))β if and only if a ∈ S̃(N) for some N ∈
IN \ {1}, and as in Example 4.1, W ∈ (`(p), c0) if and only if the condition in
(17) holds with a replaced by E(a), that is E(a) ∈ S(N) for some N ∈ IN \ {1}.
This shows (22). 2

Next we apply Theorem 2.4.

Example 4.5 Let bv = bv(e) and bv0 = bv ∩ c0. Then ((bv0)∆)β = (bs ∩ ((n +
1)∞n=0)

−1 ∗ `∞)E.



Matrix domains and matrix transformations 171

Proof. The space bv0 is a BK space with AK by [11, Theorem 7.3.5 (i), p. 110]
which is not normal, since for the sequences x and y with xk = 1/(k + 1) and
yk = (−1)kxk we have |yk| ≤ |xk| for all k and x ∈ bv0, but y 6∈ bv. Therefore
we apply Theorem 2.4 and Corollary 4.3 to obtain a ∈ ((bv0)∆)β if and only
if E(a) ∈ (bv0)β = bs (cf. [11, Theorem 7.3.5 (ii), p. 110]) and W ∈ (bv0, c0).
Now, by [11, Example 8.4.2A, p. 127], W ∈ (bv0, c0) if and only if

sup
n,m

∣∣∣∣∣
m∑

k=0

wnk

∣∣∣∣∣ = sup
n

(n + 1)En(a) < ∞.

2

Next we apply Theorem 3.1 to generalize [9, Theorem 2, p. 59].

Corollary 4.6 Let p = (pk)∞k=0, s = (sk)∞k=0 ∈ `∞, pk > 1, qk = pk/(pk−1) for
k = 0, 1, . . . and `∞(s) = {x ∈ ω : supk |xk|sk < ∞}. Then A ∈ (bv(p), `∞(s))
if and only if

for each n = 0, 1, . . . there is Nn > 1 such that

sup
m

m∑
k=0

∣∣∣∣∣
∞∑

j=m

anj

∣∣∣∣∣

qk

N−qk
n < ∞(4.11)

and

sup
n

∞∑

k=0

∣∣∣∣∣∣

∞∑

j=k

anjN
−1/sn

∣∣∣∣∣∣

qk

< ∞ for some N > 1.(4.12)

Proof. By Theorem 3.1, A ∈ (bv(p), `∞(s)) if and only if WAn ∈ (`(p), c0) for
all n which is (25), and RA ∈ (`(p), `(s)) which is (26) by [4, Theorem 7]. 2

Corollary 4.7 (cf. [9, Theorem 2, p. 59]) Let s ∈ `∞. Then A ∈ (bv, `(s)) if
and only if

sup
n


sup

k

∣∣∣∣∣∣

∞∑

j=k

anj

∣∣∣∣∣∣
N−1




sn

< ∞ for some N > 1.(4.13)

Proof. If p = e in Corollary 4.6 then bvβ = cs by [11, Theorem 7.3.5 (iii), p.
110], and so (25) becomes redundant in Corollary 4.6. Thus A ∈ (bv, `(s)) if
and only if RA ∈ (`1, `∞(s)) by Theorem 3.1, and by [4, Theorem 5 (i)] this is
(27). 2
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