ON A FOURTH-ORDER FINITE DIFFERENCE
 METHOD FOR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS ${ }^{1}$

Dragoslav Herceg ${ }^{2}$, Djordje Herceg ${ }^{2}$

Abstract

We consider a finite difference method of order four for nonlinear two-point boundary value problems. In linear case the finite difference schemes lead to a tridiagonal linear system. Numerical experiments support the theoretical results.

AMS Mathematics Subject Classification (2000): 65L10
Key words and phrases: finite differences, boundary value problem, nonequidistant mesh

1. Introduction

This paper is concerned with the construction of finite difference approximations for the boundary value problem:

$$
\begin{equation*}
-y^{\prime \prime}+f(x, y)=0, \quad x \in I=[0,1], \quad y(0)=y(1)=0 \tag{1}
\end{equation*}
$$

For simplicity, we shall assume that $f \in C^{\infty}(I \times \mathbb{R})$, and

$$
\begin{equation*}
0<\gamma^{2} \leq f_{y}(x, y), \quad x \in I, y \in \mathbb{R} \tag{2}
\end{equation*}
$$

The condition (2) is the standard stability condition, which implies that (1) has an unique solution y, which is in $C^{\infty}(I)$.

In Section 2 we discuss a method for obtaining three-point finite difference approximations for the differential equation. These approximations involve derivatives of f. Assuming f to be sufficiently differentiable, the derivatives of f can be expressed in terms of y^{\prime}. Appropriate approximations for y^{\prime} at the mesh points are obtained for the use in particular formulas.

In Section 3 some difference schemes are derived and described and consistency errors are estimated. Numerical results are given to illustrate the order of accuracy achieved.

Throughout the paper, M, sometimes subscripted, denotes a generic positive constant, indepedent of number n of discretization subintervals that will be used to solve (1) numerically.

[^0]
2. Finite difference approximations

Let us introduce the following notation. Let n be a positive integer, x_{k}, $k=0,1, \ldots, n$, be the mesh points,

$$
0=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=1,
$$

and

$$
h_{k}=x_{k}-x_{k-1}, \quad k=1,2, \ldots, n
$$

From now on we shall assume that our mesh has the following properties:

$$
H_{\max } \leq h_{\min }\left(1+M h_{\min }\right)
$$

where $\quad H_{\max }=\max \left\{h_{k}: k=1,2, \ldots, n\right\}, \quad h_{\min }=\min \left\{h_{k}: k=1,2, \ldots, n\right\}$.
Such a mesh is called almost equidistant, see [7].
At mesh points x_{k}, we set $y_{k}=y\left(x_{k}\right), y^{\prime \prime}\left(x_{k}\right)=y_{k}^{\prime \prime}=f_{k}, f_{k}^{\prime}=\frac{\partial}{\partial x} f(x, y(x))$, $f_{k}^{\prime \prime}=\frac{\partial^{2}}{\partial x^{2}} f(x, y(x))$, etc. In the following, we consider the obtaining of threepoint finite difference approximations for the differential equation at a fixed point $x_{k}, k \in\{1,2, \ldots, n-1\}$. For simplicity, we define for a fixed k

$$
h=x_{k}-x_{k-1}, \quad H=x_{k+1}-x_{k} .
$$

Since our mesh is almost equidistant, it then holds

$$
|H-h| \leq M h^{2}
$$

Let w^{h} be a mesh function. Mesh functions will be defined with the \mathbb{R}^{n+1} column vectors

$$
w^{h}=\left[w_{0}, w_{1}, \ldots, w_{n}\right]^{\top}
$$

(for simplicity, the superscript h is omitted in the components). In particular,

$$
u^{h}=\left[u\left(x_{0}\right), u\left(x_{1}\right), \ldots, u\left(x_{n}\right)\right]^{\top} .
$$

The standard maximum norm will be used:

$$
\left\|w^{h}\right\|_{\infty}=\max \left\{\left|w_{i}\right|: i=0,1, \ldots, n\right\} .
$$

$\|\cdot\|$ will also denote the matrix norm induced by the maximum vector norm. Let us define the operators δ, μ and ψ :

$$
\begin{gathered}
\delta y_{k}=-2 y_{k}+\frac{2 H}{h+H} y_{k-1}+\frac{2 h}{h+H} y_{k+1}, \\
\psi y_{k}=h H\left(f_{k}+A \delta f_{k}+D(H-h) f_{k}^{\prime}+C h H f_{k}^{\prime \prime}\right) .
\end{gathered}
$$

By Taylor's expansion we obtain

$$
\begin{equation*}
\delta y_{k}=2 h H\left(\sum_{j=1}^{\infty} \frac{H^{j}-(-h)^{j}}{(j+1)!(H+h)} f_{k}^{(j-1)}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\delta f_{k}=2 h H\left(\sum_{j=1}^{\infty} \frac{H^{j}-(-h)^{j}}{(j+1)!(H+h)} f_{k}^{(j+1)}\right) \tag{4}
\end{equation*}
$$

Now, we can form various three-point approximations for the differential equation by using the terms $\delta y_{k}, \frac{h+H}{2} \mu f_{k}^{\prime}$ and $h H f_{k}^{\prime \prime}$ for approximation of 1 . However, we shall focus our attention here on obtaining approximations for constructing methods of order four.

For this purpose we define

$$
\begin{equation*}
\delta y_{k}=\psi y_{k}+\tau_{k}(h, H) \tag{5}
\end{equation*}
$$

With the help of (3) and (4) we obtain

$$
\tau_{k}(h, H)=\delta y_{k}-\psi y_{k}=h H\left(E_{1}+E_{2}+E_{3}+E_{4}+E_{5}\right)
$$

where

$$
\begin{gathered}
E_{1}=\left(D-\frac{1}{3}\right)(h-H) f_{k}^{\prime}, \quad E_{2}=\left(\frac{h^{3}+H^{3}}{12(h+H)}-A h H-C h H\right) f_{k}^{\prime \prime} \\
E_{3}=\frac{1}{120}(h-H)\left(-2\left(h^{2}+H^{2}\right)+40 A h H\right) f_{k}^{(3)} \\
E_{4}=\frac{1}{360(h+H)}\left(h^{5}+H^{5}-30 A H h\left(H^{3}+h^{3}\right)\right) f_{k}^{(4)} \\
E_{5}=(h-H) \mathcal{O}\left(H_{\max }^{2}\right)+\mathcal{O}\left(H_{\max }^{4}\right) .
\end{gathered}
$$

We first obtain approximations for f_{k}^{\prime} and $f_{k}^{\prime \prime}$. We easily find that

$$
f_{k}^{\prime}=y_{k}^{\prime} f_{k}^{y}+f_{k}^{x}, \quad f_{k}^{\prime \prime}=y_{k}^{\prime \prime} f_{k}^{y}+2 y_{k}^{\prime} f_{k}^{x, y}+\left(y_{k}^{\prime}\right)^{2} f_{k}^{y, y}+f_{k}^{x, x} .
$$

Since

$$
y_{k}^{\prime}=\frac{y_{k+1}-y_{k-1}}{h+H}+\frac{1}{2}(h-H) y_{k}^{\prime \prime}+\mathcal{O}\left(H_{\max }^{3}\right), \quad y_{k}^{\prime \prime}=f_{k}
$$

we get

$$
f_{k}^{\prime}=\frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{y}+f_{k}^{x}+\mathcal{O}\left(H_{\max }^{2}\right)
$$

and

$$
f_{k}^{\prime \prime}=f_{k} f_{k}^{y}+2 \frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{x, y}+\left(\frac{y_{k+1}-y_{k-1}}{h+H}\right)^{2} f_{k}^{y, y}+f_{k}^{x, x}+\mathcal{O}\left(H_{\max }^{2}\right)
$$

Now, because of $(h-H)=\mathcal{O}\left(H_{\max }^{2}\right)$ and $h H=\mathcal{O}\left(H_{\max }^{2}\right)$, we have

$$
\begin{aligned}
(H-h) f_{k}^{\prime} & =(H-h)\left(\frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{y}+f_{k}^{x}+\mathcal{O}\left(H_{\max }^{2}\right)\right) \\
& =(H-h)\left(\frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{y}+f_{k}^{x}\right)+\mathcal{O}\left(H_{\max }^{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
h H f_{k}^{\prime \prime} & =h H\left(f_{k} f_{k}^{y}+2 \frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{x, y}+\left(\frac{y_{k+1}-y_{k-1}}{h+H}\right) f_{k}^{y, y}+f_{k}^{x, x}+\mathcal{O}\left(H_{\max }^{2}\right)\right) \\
& =h H\left(f_{k} f_{k}^{y}+2 \frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{x, y}+\left(\frac{y_{k+1}-y_{k-1}}{h+H}\right)^{2} f_{k}^{y, y}+f_{k}^{x, x}\right)+\mathcal{O}\left(H_{\max }^{4}\right)
\end{aligned}
$$

3. Difference scheme

In order to form a discretization of the problem (1) we approximate the differential equation of (1) by considering (5). After division by $h H$ we obtain

$$
-\frac{1}{h H} \delta y_{k}+\frac{1}{h H} \psi y_{k}+E_{1}+E_{2}+E_{3}+E_{4}+E_{5}=0
$$

It is easy to see that

$$
\begin{aligned}
\frac{1}{h H} \psi y_{k} & =f_{k}+A \delta f_{k}+D(H-h) f_{k}^{\prime}+C h H f_{k}^{\prime \prime} \\
& =f_{k}+A \delta f_{k}+D(H-h)\left(\frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{y}+f_{k}^{x}\right) \\
+ & C h H\left(f_{k} f_{k}^{y}+2 \frac{y_{k+1}-y_{k-1}}{h+H} f_{k}^{x, y}+\left(\frac{y_{k+1}-y_{k-1}}{h+H}\right)^{2} f_{k}^{y, y}+f_{k}^{x, x}\right)+E_{6}
\end{aligned}
$$

where $E_{6}=\mathcal{O}\left(H_{\max }^{4}\right)$. In the equations above we neglect the terms $E_{1}, E_{2}, \ldots, E_{6}$ and get

$$
\begin{equation*}
-\frac{1}{h H} \delta w_{k}+\frac{1}{h H} \psi w_{k}=0 \tag{6}
\end{equation*}
$$

where $w_{k} \approx y_{k}=y\left(x_{k}\right)$. We shall use

$$
-\frac{1}{h H} \delta w_{k}=a_{1}(k) w_{k-1}+a_{0}(k) w_{k}+a_{2}(k) w_{k+1}
$$

where

$$
a_{1}(k)=\frac{-2}{h(h+H)}, \quad a_{0}(k)=\frac{2}{h H}, \quad a_{2}(k)=\frac{-2}{H(h+H)} .
$$

and

$$
\frac{1}{h H} \psi w_{k}=b_{1}(k) f\left(x_{k-1}, w_{k-1}\right)+b_{0}(k) f\left(x_{k}, w_{k}\right)+b_{2}(k) f\left(x_{k+1}, w_{k+1}\right),
$$

where b_{0}, b_{1} and b_{2} depend only on $x_{i-1}, x_{i}, x_{i+1}, A, C$ and D. Now, we conclude that

$$
-\frac{1}{h H} \delta y_{k}+\frac{1}{h H} \psi y_{k}=-\frac{1}{h H} \delta w_{k}+\frac{1}{h H} \psi w_{k}+\mathcal{O}\left(H_{\max }^{4}\right)
$$

if $E_{i}=\mathcal{O}\left(H_{\max }^{4}\right), i=1,2, \ldots, 5$.

Using this, from (6) we obtain the following approximation of the differential equation (1) at $x_{i} \in I_{h}, i=1,2, \ldots, n-1$:

$$
\begin{aligned}
F_{i}:= & a_{1}(i) w_{i-1}+a_{0}(i) w_{i}+a_{2}(i) w_{i+1} \\
& +b_{1}(i) c\left(x_{i-1}, w_{i-1}\right)+b_{0}(i) c\left(x_{i}, w_{i}\right)+b_{2}(i) c\left(x_{i+1}, w_{i+1}\right)=0
\end{aligned}
$$

We form a discrete analogue of problem (1) in the form $F(w)=0$, where $F=\left(F_{0}, F_{1}, \ldots, F_{n}\right)$, and

$$
F_{0}:=w_{0}=0, \quad F_{n}:=w_{n}=0
$$

The solution $w^{*}=\left[w_{0}^{*}, w_{1}^{*}, \ldots, w_{n}^{*}\right]^{\top}$ to $F(w)=0$, is an approximation to the exact solution y of (1).

Let

$$
y^{h}=\left[y\left(x_{0}\right), y\left(x_{1}\right), \ldots, y\left(x_{n}\right)\right]^{\top}
$$

be the restriction of y on the discretization mesh. Our aim is to prove that there holds

$$
\begin{equation*}
\left\|y^{h}-w^{*}\right\|_{\infty} \leq M H_{\max }^{4} \tag{7}
\end{equation*}
$$

for the following five choices of A, C and D. In each case different values for A and C are given. D always equals $\frac{1}{3}$ and because of that, $E_{1}=0$ in all cases. Also, in all cases $E_{4}=\mathcal{O}\left(H_{\max }^{4}\right)$. Since $(h-H)=\mathcal{O}\left(H_{\max }^{2}\right), E_{5}=\mathcal{O}\left(H_{\max }^{4}\right)$. Terms E_{2} and E_{3} are different for each case:
3.1 Case 1. $A=\frac{1}{12}, C=0$

$$
\begin{aligned}
& E_{2}=\frac{1}{12}(h-H)^{2}=\mathcal{O}\left(H_{\max }^{4}\right) \\
& E_{3}=\frac{h-H}{360}\left(10 h H-6\left(h^{2}+H^{2}\right)\right)=\mathcal{O}\left(H_{\max }^{4}\right)
\end{aligned}
$$

3.2 Case 2. $A=\frac{-h^{2}+3 h H-H^{2}}{12 h H}, C=0$

$$
\begin{aligned}
E_{2} & =\frac{1}{6}(h-H)^{2}=\mathcal{O}\left(H_{\max }^{4}\right) \\
E_{3} & =\frac{H-h}{180}\left(8 h^{2}-15 h H+8 H^{2}\right)=\mathcal{O}\left(H_{\max }^{4}\right)
\end{aligned}
$$

3.3 Case 3. $A=\frac{-h^{2}+2 h H-H^{2}}{12 h H}, C=\frac{2 h^{2}-3 h H+2 H^{2}}{12 h H}$

$$
\begin{aligned}
E_{2} & =0 \\
E_{3} & =\frac{H-h}{90}\left(4 h^{2}-5 h H+4 H^{2}\right)=\mathcal{O}\left(H_{\max }^{4}\right)
\end{aligned}
$$

3.4 Case 4. $A=\frac{1}{12}, C=\frac{h^{2}-2 h H+H^{2}}{12 h H}$

$$
\begin{aligned}
E_{2} & =0 \\
E_{3} & =\frac{H-h}{360}\left(6 h^{2}-10 h H+6 H^{2}\right)=\mathcal{O}\left(H_{\max }^{4}\right)
\end{aligned}
$$

3.5 Case 5. $A=\frac{-2 h^{2}+5 h H-2 H^{2}}{60 h H}, C=\frac{h^{2}+H^{2}}{20 h H}$

$$
\begin{aligned}
& E_{2}=0 \\
& E_{3}=0
\end{aligned}
$$

In an equidistant case, i.e. if $h_{\min }=H_{\max }=h$ we obtain

$$
\tau_{k}(h, h)=h^{2}\left(\left(\frac{1}{12}-A-C\right) h^{2} f_{k}^{\prime \prime}+\frac{1}{360}(1-30 A) h^{4} f_{k}^{(4)}+\mathcal{O}\left(h^{4}\right)\right)
$$

Parameter D does not appear here. If $A=C=0$, then we obtain a well-known approximation

$$
\delta y_{k}=h^{2} f_{k}+\frac{h^{4}}{12} f_{k}^{\prime \prime}+\mathcal{O}\left(h^{6}\right)
$$

As a special case, our schemes contain the fourth-order scheme from [1] when the mesh is equidistant. (Cases 1,2 and 4.)

The main result of this paper can be summarized in the following theorem.
Theorem 3.1. Let $w^{*}=\left[w_{0}^{*}, w_{1}^{*}, \ldots, w_{n}^{*}\right]^{\top}$ be the solution of $F(w)=0$, and let y be the exact solution of (1), and

$$
y^{h}=\left[y\left(x_{0}\right), y\left(x_{1}\right), \ldots, y\left(x_{n}\right)\right]^{\top}
$$

be the restriction of y on the discretization mesh. There exists an n_{0} such that for $n \geq n_{0}$ there holds

$$
\left\|y^{h}-w^{*}\right\|_{\infty} \leq M H_{\max }^{4}
$$

Proof. As we have already shown, our discretization error is $\mathcal{O}\left(H_{\max }^{4}\right)$. It remains to be proved that the Frechet derivative of F is uniformly bounded for a sufficiently small $H_{\text {max }}$:

$$
\left\|\left(F^{\prime}(u)\right)^{-1}\right\|_{\infty} \leq M_{0}, \quad u \in\left\{z \in \mathbb{R}^{n+1}:\left\|y^{h}-z\right\|_{\infty} \leq M_{1} H_{\max }^{4}\right\}
$$

with some suitable M_{0}.
The rest of the proof can be carried out using the technique given in [2] and [9].

4. Numerical results

To illustrate computationally the fourth-order method we solved the following nonlinear two-point boundary value problem

$$
y^{\prime \prime}=\frac{1}{3}\left((2-x) e^{2(y-x \ln 2)}+\frac{1}{1+x}\right), \quad y(0)=y(1)=0
$$

with the exact solution $y(x)=\ln \frac{1}{1+x}+x \ln 2$. The discretization mesh was generated using the mesh generating function

$$
\lambda(t)=\frac{1}{2}\left(1-\sin \left(\frac{\pi}{2} \cos (\pi t)\right)\right)
$$

and the mesh points are

$$
x_{i}=\lambda\left(\frac{i}{n}\right), \quad i=0,1, \ldots, n
$$

Our discrete analogue $F(w)=0$ is a nonlinear system. We solve this system using the Newton-Raphson method, where a tridiagonal linear system is solved in each step. We performed the calculation in Mathematica.

The errors $E_{n}=\left\|u_{\varepsilon, h}-w^{*}\right\|_{\infty}$, where w^{*} is the numerical solution on a mesh with n subintervals, are given in the table. Also, we define in the usual way the order of convergence Ord for two successive values of n with respective errors E_{n} and $E_{2 n}$:

$$
O r d=\frac{\ln E_{n}-\ln E_{2 n}}{\ln 2}
$$

We expect that $O r d=4$.

n	Case 1	Case 2	Case 3	Case 4	Case 5
4	$3.09 \cdot 10^{-4}$	$8.27 \cdot 10^{-4}$	$4.68 \cdot 10^{-4}$	$3.98 \cdot 10^{-4}$	$4.21 \cdot 10^{-4}$
	-	-	-	-	-
8	$6.22 \cdot 10^{-5}$	$1.98 \cdot 10^{-4}$	$8.33 \cdot 10^{-5}$	$7.84 \cdot 10^{-5}$	$7.56 \cdot 10^{-5}$
	2.310	2.063	2.492	2.337	2.476
16	$4.08 \cdot 10^{-6}$	$1.36 \cdot 10^{-5}$	$5.41 \cdot 10^{-6}$	$5.83 \cdot 10^{-6}$	$5.98 \cdot 10^{-6}$
	3.930	3.865	3.944	3.751	3.659
32	$2.59 \cdot 10^{-7}$	$8.72 \cdot 10^{-7}$	$3.43 \cdot 10^{-7}$	$3.80 \cdot 10^{-7}$	$3.93 \cdot 10^{-7}$
	3.977	3.960	3.979	3.937	3.930
64	$1.63 \cdot 10^{-8}$	$5.53 \cdot 10^{-8}$	$2.17 \cdot 10^{-8}$	$2.41 \cdot 10^{-8}$	$2.48 \cdot 10^{-8}$
	3.994	3.980	3.981	3.980	3.982
128	$1.02 \cdot 10^{-9}$	$3.46 \cdot 10^{-9}$	$1.36 \cdot 10^{-9}$	$1.51 \cdot 10^{-9}$	$1.56 \cdot 10^{-9}$
	3.998	3.997	3.999	3.996	3.996
256	$6.37 \cdot 10^{-11}$	$2.17 \cdot 10^{-10}$	$8.50 \cdot 10^{-11}$	$9.45 \cdot 10^{-11}$	$9.74 \cdot 10^{-11}$
	3.999	3.999	4.000	3.998	3.999
512	$3.97 \cdot 10^{-12}$	$1.35 \cdot 10^{-11}$	$5.32 \cdot 10^{-12}$	$5.91 \cdot 10^{-12}$	$6.09 \cdot 10^{-12}$
	4.002	4.000	3.999	3.999	3.998

References

[1] Chawla, M. M., A fourth-order tridiagonal finite difference methods for general two-point boundary value problems with non-linear boundary conditions. J. Inst. Maths Applics 22(1978), 89-97.
[2] Chawla, M. M.,High-accuracy tridiagonal finite difference approximations fornonlinear two-point boundary value problems. J. Inst. Maths Applics 22(1978), 203-209.
[3] Herceg, D., Uniform fourth order difference scheme for a singular perturbation problem. Numer. Math. 56(1990), 675-693.
[4] Herceg, D., Vulanović, R., Petrović, N., Higher order schemes and Richardson extrapolation for singular perturbation problems. Bull. Austral. Math. Soc. 39(1989), 129-139.
[5] Sun, G., Stynes, M., An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction-diffusion problem. Numer. Math. 70(1995), 487-500.
[6] Vulanović, R., On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. 13(1983), 187-201.
[7] Vulanović, R., Mesh construction for discretization of singularly perturbed boundary value problems. Doctoral Dissertation, Faculty of Science, University of Novi Sad, 1986.
[8] Vulanović, R., On numerical solution of semilinear singular perturbation problems by using the Hermite scheme. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. 23(2)(1993), 363-379.
[9] Vulanović, R., Fourth order algorithms for a semilinear singular perturbation problem. Numerical Algorithms 16(1997), 117-128.
[10] Vulanović, R., Herceg, D., The Hermite scheme for semilinear singular perturbation problems. J. Comput. Math. 11,2(1993), 162-171.
[11] Vulanović, R., Herceg, D., The Hermite scheme for semilinear singular perturbation problems. Journal of Computational Mathematics, 11,2(1993), 162-171.
[12] Vulanović, R., Herceg, D., Petrovic, N., On the extrapolation for a singularly perturbed boundary value problem. Computing 36(1986), 69-79.

Received by the editors September 17, 2002

[^0]: ${ }^{1}$ This paper was supported by the Ministry of Science, Technology and Development of the Republic of Serbia under grant No 1840.
 ${ }^{2}$ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg D.Obradovića 4, 21000 Novi Sad, Serbia and Montenegro

