
173Novi Sad J. Math.
Vol. 33, No. 2, 2003, 173-180

ON A FOURTH-ORDER FINITE DIFFERENCE
METHOD FOR NONLINEAR TWO-POINT

BOUNDARY VALUE PROBLEMS 1

Dragoslav Herceg2, Djordje Herceg2

Abstract. We consider a finite difference method of order four for nonlin-
ear two-point boundary value problems. In linear case the finite difference
schemes lead to a tridiagonal linear system. Numerical experiments sup-
port the theoretical results.
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1. Introduction

This paper is concerned with the construction of finite difference approxi-
mations for the boundary value problem:

−y′′ + f (x, y) = 0, x ∈ I = [0, 1] , y (0) = y (1) = 0.(1)

For simplicity, we shall assume that f ∈ C∞ (I × R) , and

0 < γ2 ≤ fy (x, y) , x ∈ I, y ∈ R.(2)

The condition (2) is the standard stability condition, which implies that (1) has
an unique solution y, which is in C∞ (I).

In Section 2 we discuss a method for obtaining three-point finite differ-
ence approximations for the differential equation. These approximations involve
derivatives of f. Assuming f to be sufficiently differentiable, the derivatives of f
can be expressed in terms of y′. Appropriate approximations for y′ at the mesh
points are obtained for the use in particular formulas.

In Section 3 some difference schemes are derived and described and consis-
tency errors are estimated. Numerical results are given to illustrate the order
of accuracy achieved.

Throughout the paper, M , sometimes subscripted, denotes a generic positive
constant, indepedent of number n of discretization subintervals that will be used
to solve (1) numerically.

1This paper was supported by the Ministry of Science, Technology and Development of
the Republic of Serbia under grant No 1840.
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2. Finite difference approximations

Let us introduce the following notation. Let n be a positive integer, xk,
k = 0, 1, . . . , n, be the mesh points,

0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1,

and
hk = xk − xk−1, k = 1, 2, . . . , n.

From now on we shall assume that our mesh has the following properties:

Hmax ≤ hmin (1 + Mhmin)

where Hmax = max {hk : k = 1, 2, . . . , n} , hmin = min {hk : k = 1, 2, . . . , n} .
Such a mesh is called almost equidistant, see [7].
At mesh points xk, we set yk = y (xk) , y′′ (xk) = y′′k = fk, f ′k = ∂

∂xf(x, y(x)),
f ′′k = ∂2

∂x2 f(x, y(x)), etc. In the following, we consider the obtaining of three-
point finite difference approximations for the differential equation at a fixed
point xk, k ∈ {1, 2, . . . , n− 1} . For simplicity, we define for a fixed k

h = xk − xk−1, H = xk+1 − xk.

Since our mesh is almost equidistant, it then holds

|H − h| ≤ Mh2.

Let wh be a mesh function. Mesh functions will be defined with the Rn+1

column vectors
wh = [w0, w1, . . . , wn]>

(for simplicity, the superscript h is omitted in the components). In particular,

uh = [u (x0) , u (x1) , . . . , u (xn)]> .

The standard maximum norm will be used:
∣∣∣∣wh

∣∣∣∣
∞ = max {|wi| : i = 0, 1, . . . , n} .

||·|| will also denote the matrix norm induced by the maximum vector norm.
Let us define the operators δ, µ and ψ:

δyk = −2yk +
2H

h + H
yk−1 +

2h

h + H
yk+1,

ψyk = hH (fk + Aδfk + D (H − h) f ′k + ChHf ′′k ) .

By Taylor’s expansion we obtain

δyk = 2hH




∞∑

j=1

Hj − (−h)j

(j + 1)! (H + h)
f

(j−1)
k


(3)
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δfk = 2hH




∞∑

j=1

Hj − (−h)j

(j + 1)! (H + h)
f

(j+1)
k


(4)

Now, we can form various three-point approximations for the differential
equation by using the terms δyk, h+H

2 µf ′k and hHf ′′k for approximation of 1.
However, we shall focus our attention here on obtaining approximations for
constructing methods of order four.

For this purpose we define

δyk = ψyk + τk (h,H) .(5)

With the help of (3) and (4) we obtain

τk (h, H) = δyk − ψyk = hH (E1 + E2 + E3 + E4 + E5)

where

E1 =
(

D − 1
3

)
(h−H) f ′k, E2 =

(
h3 + H3

12 (h + H)
−AhH − ChH

)
f ′′k ,

E3 =
1

120
(h−H)

(−2
(
h2 + H2

)
+ 40AhH

)
f

(3)
k ,

E4 =
1

360 (h + H)
(
h5 + H5 − 30AHh

(
H3 + h3

))
f

(4)
k ,

E5 = (h−H)O (
H2

max

)
+O (

H4
max

)
.

We first obtain approximations for f ′k and f ′′k . We easily find that

f ′k = y′kfy
k + fx

k , f ′′k = y′′kfy
k + 2y′kfx,y

k + (y′k)2fy,y
k + fx,x

k .

Since

y′k =
yk+1 − yk−1

h + H
+

1
2

(h−H) y′′k +O (
H3

max

)
, y′′k = fk,

we get

f ′k =
yk+1 − yk−1

h + H
fy

k + fx
k +O (

H2
max

)
,

and

f ′′k = fkfy
k + 2

yk+1 − yk−1

h + H
fx,y

k +
(

yk+1 − yk−1

h + H

)2

fy,y
k + fx,x

k +O (
H2

max

)
.

Now, because of (h−H) = O (
H2

max

)
and hH = O (

H2
max

)
, we have

(H − h) f ′k = (H − h)
(

yk+1 − yk−1

h + H
fy

k + fx
k +O (

H2
max

))

= (H − h)
(

yk+1 − yk−1

h + H
fy

k + fx
k

)
+O (

H4
max

)
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and

hHf ′′k =hH

(
fkfy

k + 2
yk+1 − yk−1

h + H
fx,y

k +
(

yk+1 − yk−1

h + H

)2

fy,y
k + fx,x

k +O (
H2

max

)
)

=hH

(
fkfy

k + 2
yk+1 − yk−1

h + H
fx,y

k +
(

yk+1 − yk−1

h + H

)2

fy,y
k + fx,x

k

)
+O (

H4
max

)
.

3. Difference scheme

In order to form a discretization of the problem (1) we approximate the
differential equation of (1) by considering (5) . After division by hH we obtain

− 1
hH

δyk +
1

hH
ψyk + E1 + E2 + E3 + E4 + E5 = 0.

It is easy to see that

1
hH

ψyk =fk + Aδfk + D (H − h) f ′k + ChHf ′′k

=fk + Aδfk + D (H − h)
(

yk+1 − yk−1

h + H
fy

k + fx
k

)

+ChH

(
fkfy

k + 2
yk+1 − yk−1

h + H
fx,y

k +
(

yk+1 − yk−1

h + H

)2

fy,y
k + fx,x

k

)
+ E6,

where E6 = O (
H4

max

)
. In the equations above we neglect the terms E1, E2, . . . , E6

and get

− 1
hH

δwk +
1

hH
ψwk = 0,(6)

where wk ≈ yk = y (xk). We shall use

− 1
hH

δwk = a1 (k) wk−1 + a0 (k)wk + a2 (k) wk+1,

where
a1 (k) = −2

h(h+H) , a0 (k) = 2
hH , a2 (k) = −2

H(h+H) .

and

1
hH

ψwk = b1 (k) f (xk−1, wk−1) + b0 (k) f (xk, wk) + b2 (k) f (xk+1, wk+1) ,

where b0, b1 and b2 depend only on xi−1, xi, xi+1, A, C and D. Now, we conclude
that

− 1
hH

δyk +
1

hH
ψyk = − 1

hH
δwk +

1
hH

ψwk +O (
H4

max

)
,

if Ei = O (
H4

max

)
, i = 1, 2, . . . , 5.
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Using this, from (6) we obtain the following approximation of the differential
equation (1) at xi ∈ Ih, i = 1, 2, . . . , n− 1 :

Fi := a1 (i)wi−1 + a0 (i) wi + a2 (i) wi+1

+b1 (i) c (xi−1, wi−1) + b0 (i) c (xi, wi) + b2 (i) c (xi+1, wi+1) = 0.

We form a discrete analogue of problem (1) in the form F (w) = 0, where
F = (F0, F1, . . . , Fn) , and

F0 := w0 = 0, Fn := wn = 0.

The solution w∗ = [w∗0 , w∗1 , . . . , w∗n]> to F (w) = 0, is an approximation to the
exact solution y of (1) .

Let

yh = [y (x0) , y (x1) , . . . , y (xn)]> ,

be the restriction of y on the discretization mesh. Our aim is to prove that there
holds ∥∥yh − w∗

∥∥
∞ ≤ MH4

max,(7)

for the following five choices of A, C and D. In each case different values for A
and C are given. D always equals 1

3 and because of that, E1 = 0 in all cases.
Also, in all cases E4 = O (

H4
max

)
. Since (h−H) = O (

H2
max

)
, E5 = O (

H4
max

)
.

Terms E2 and E3 are different for each case:

3.1 Case 1. A = 1
12 , C = 0

E2 =
1
12

(h−H)2 = O (
H4

max

)
,

E3 =
h−H

360
(
10hH − 6

(
h2 + H2

))
= O (

H4
max

)
.

3.2 Case 2. A = −h2+3hH−H2

12hH , C = 0

E2 =
1
6

(h−H)2 = O (
H4

max

)
,

E3 =
H − h

180
(
8h2 − 15hH + 8H2

)
= O (

H4
max

)
.

3.3 Case 3. A = −h2+2hH−H2

12hH , C = 2h2−3hH+2H2

12hH

E2 = 0,

E3 =
H − h

90
(
4h2 − 5hH + 4H2

)
= O (

H4
max

)
.
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3.4 Case 4. A = 1
12 , C = h2−2hH+H2

12hH

E2 = 0,

E3 =
H − h

360
(
6h2 − 10hH + 6H2

)
= O (

H4
max

)
.

3.5 Case 5. A = −2h2+5hH−2H2

60hH , C = h2+H2

20hH

E2 = 0,

E3 = 0.

In an equidistant case, i.e. if hmin = Hmax = h we obtain

τk (h, h) = h2

((
1
12
−A− C

)
h2f ′′k +

1
360

(1− 30A)h4f
(4)
k +O (

h4
))

.

Parameter D does not appear here. If A = C = 0, then we obtain a well-known
approximation

δyk = h2fk +
h4

12
f ′′k +O (

h6
)
.

As a special case, our schemes contain the fourth-order scheme from [1] when
the mesh is equidistant. (Cases 1, 2 and 4.)

The main result of this paper can be summarized in the following theorem.

Theorem 3.1. Let w∗ = [w∗0 , w∗1 , . . . , w∗n]> be the solution of F (w) = 0, and
let y be the exact solution of (1) , and

yh = [y (x0) , y (x1) , . . . , y (xn)]> ,

be the restriction of y on the discretization mesh. There exists an n0 such that
for n ≥ n0 there holds ∥∥yh − w∗

∥∥
∞ ≤ MH4

max.

Proof. As we have already shown, our discretization error is O (
H4

max

)
. It

remains to be proved that the Frechet derivative of F is uniformly bounded for
a sufficiently small Hmax:

∥∥∥(F ′ (u))−1
∥∥∥
∞
≤ M0, u ∈ {

z ∈ Rn+1 :
∥∥yh − z

∥∥
∞ ≤ M1H

4
max

}

with some suitable M0.
The rest of the proof can be carried out using the technique given in [2] and

[9]. 2
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4. Numerical results

To illustrate computationally the fourth-order method we solved the follow-
ing nonlinear two-point boundary value problem

y′′ =
1
3

(
(2− x) e2(y−x ln 2) +

1
1 + x

)
, y (0) = y (1) = 0,

with the exact solution y (x) = ln 1
1+x + x ln2. The discretization mesh was

generated using the mesh generating function

λ (t) =
1
2

(
1− sin

(π

2
cos (πt)

))
,

and the mesh points are

xi = λ

(
i

n

)
, i = 0, 1, . . . , n.

Our discrete analogue F (w) = 0 is a nonlinear system. We solve this system
using the Newton-Raphson method, where a tridiagonal linear system is solved
in each step. We performed the calculation in Mathematica.

The errors En = ‖uε,h − w∗‖∞ , where w∗ is the numerical solution on a
mesh with n subintervals, are given in the table. Also, we define in the usual
way the order of convergence Ord for two successive values of n with respective
errors En and E2n :

Ord =
ln En − ln E2n

ln 2
.

We expect that Ord = 4.

n Case 1 Case 2 Case 3 Case 4 Case 5

4 3.09 · 10−4 8.27 · 10−4 4.68 · 10−4 3.98 · 10−4 4.21 · 10−4

− − − − −
8 6.22 · 10−5 1.98 · 10−4 8.33 · 10−5 7.84 · 10−5 7.56 · 10−5

2.310 2.063 2.492 2.337 2.476

16 4.08 · 10−6 1.36 · 10−5 5.41 · 10−6 5.83 · 10−6 5.98 · 10−6

3.930 3.865 3.944 3.751 3.659

32 2.59 · 10−7 8.72 · 10−7 3.43 · 10−7 3.80 · 10−7 3.93 · 10−7

3.977 3.960 3.979 3.937 3.930

64 1.63 · 10−8 5.53 · 10−8 2.17 · 10−8 2.41 · 10−8 2.48 · 10−8

3.994 3.980 3.981 3.980 3.982

128 1.02 · 10−9 3.46 · 10−9 1.36 · 10−9 1.51 · 10−9 1.56 · 10−9

3.998 3.997 3.999 3.996 3.996

256 6.37 · 10−11 2.17 · 10−10 8.50 · 10−11 9.45 · 10−11 9.74 · 10−11

3.999 3.999 4.000 3.998 3.999

512 3.97 · 10−12 1.35 · 10−11 5.32 · 10−12 5.91 · 10−12 6.09 · 10−12

4.002 4.000 3.999 3.999 3.998
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[7] Vulanović, R., Mesh construction for discretization of singularly perturbed
boundary value problems. Doctoral Dissertation, Faculty of Science, University
of Novi Sad, 1986.
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