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ON PRIMITIVE Γ-SEMIRINGS
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Abstract. After introducing the notions of primitive Γ-semiring and
primitive ideal of a Γ-semiring we study them via operator semiring and
obtain some results analogous to those of semiring theory.
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1. Introduction

We introduce the notion of Γ-semiring S-semimodule which we call ΓS-
semimodule along with the ideas of irreducible, semi-irreducible and faithful ΓS-
semimodules with an intention to introduce the notion of primitive Γ-semiring
and in future to introduce the notion of Jacobson radical of a Γ-semiring. Here
we study primitive Γ-semiring via the operator semirings of a Γ-semiring which
we introduced in [1]. We show that a Γ-semiring S is primitive if and only if its
right operator semiring R is a primitive semiring ([6]). Lastly, we characterize
primitive h-ideal of a Γ-semiring S using the relation between the annihilator
of an irreducible ΓS-semimodule M in S and that of M in the right operator
semiring R of the Γ-semiring S.

2. Preliminaries

Let S and Γ be two additive commutative semigroups. Then S is called a
Γ-semiring if there exists a mapping S × Γ×S→ S (images to be denoted by
a α b for a, b ∈ S and α ∈ Γ) satisfying the following conditions:
(i) a α (b + c) = a α b + a α c
(ii) (a + b) α c = a α c + b α c
(iii) a(α + β)c = a α c + a β c
(iv) a α (b β c) = (a α b) β c for all a, b, c ∈ S and for all α, β ∈ Γ.
If A and B are subsets of a Γ-semiring S and ∆ ⊆ Γ, we denote by A∆B, the
subset of S consisting of all finite sums of the form

∑
aiαibi where ai ∈ A,

bi ∈ B and αi ∈ Γ. For the singleton subset {x} of S we write x∆B instead
of {x}∆B. A right(left)ideal I of a Γ-semiring S is an additive subsemigroup

1Department of Mathematics, University of Burdwan, Golapbag, Burdwan, West Bengal-
713104, India, e–mail: sksardarbumath@hotmail.com

2Department of Pure Mathematics, University of Calcutta, India



2 S. K. Sardar, U. Dasgupta

of S such that I Γ S ⊆ I (S Γ I ⊆ I). If I is both a right and a left ideal
of S, then we say that I is a two-sided ideal or simply an ideal of S. An ideal
I in a Γ-semiring S is called a k-ideal if x + y ∈ I, x ∈ S, y ∈ I imply that
x ∈ I. An ideal I in a Γ-semiring S is called an h-ideal if x + y1 + z = y2 + z,
x, z ∈ S and y1, y2 ∈ I imply that x ∈ I. Let S be a Γ-semiring and G be the
free additive commutative semigroup generated by Γ× S . Then the relation ρ

on G, defined by
m∑

i=1

(αi, xi)ρ
n∑

j=1

(βj , yj) if and only if
m∑

i=1

aαixi =
n∑

j=1

aβjyj

for all a ∈ S (m,n ∈ Z+ = the set of all positive integers), is a congru-

ence on G. Congruence class containing
m∑

i=1

(αi, xi) is denoted by
m∑

i=1

[αi, xi].

Then G/ρ is an additive commutative semigroup. Now G/ρ forms a semir-

ing with the multiplication defined by (
m∑

i=1

[αi, xi])(
n∑

j=1

[βj , yj ]) =
∑

i,j

[αi, xiβjyj ].

We denote this semiring by R and call it the right operator semiring of the Γ-
semiring S. Dually we define the left operator semiring L of the Γ-semiring

S where L = {
m∑

i=1

[xi, αi] : αi ∈ Γ, xi ∈ S, i = 1, 2, . . . , m; m ∈ Z+} and the

multiplication on L is defined as (
m∑

i=1

[xi, αi])(
n∑

j=1

[yj , βj ]) =
∑

i,j

[xiαiyj , βj ]. For

N ⊆ S and ∆ ⊆ Γ we denote by [N, ∆] the set of all finite sums
m∑

i=1

[xi, αi]

in L, where xi ∈ N and αi ∈ ∆. Thus in particular [S, Γ] = L. Similarly,

we denote by [∆, N ] the set of all finite sums
n∑

j=1

[βj , yj ] in R where yj ∈ N,

βj ∈ ∆ and in particular [Γ, S] = R. For simplicity [{x}, Γ] is written as
[x, Γ] and [Γ, {x}] is written as [Γ, x]. We also have [x, Γ] ⊆ P ([Γ, x] ⊆ P )
if and only if [x, α] ∈ P (respectively [α, x] ∈ P ) for all α ∈ Γ, where P
is a subset of L (respectively R) and x ∈ S. For P ⊆ L(P ⊆ R) we de-
fine P+ = {a ∈ S : [a, I] ⊆ P} (respectively P ∗ = {a ∈ S : [Γ, a] ⊆
P}). For Q ⊆ S we define Q+‘ = {

m∑

i=1

[xi, αi] ∈ L : (
m∑

i=1

[xi, αi])S ⊆ Q} where

(
m∑

i=1

[xi, αi])S denotes the set of all finite sums
∑

i,k

xiαisk, sk ∈ S and Q∗‘ =

{
m∑

i=1

[αi, xi] ∈ R : S(
m∑

i=1

[αi, xi]) ⊆ Q } where S(
m∑

i=1

[αi, xi]) ) is the set of all fi-

nite sums
∑

k,i

skαixi, sk ∈ S. Here we note that S(
m∑

i=1

[αi, xi]) ⊆ Q(
m∑

i=1

[xi, αi]) S
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⊆ Q) if and only if
m∑

i=1

sαixi ∈ Q (respectively
m∑

i=1

xiαis ∈ Q) for all s ∈ S. If

P is a (k−, h−) ideal of L(R), then P+(P ∗) is a (k−, h−) ideal of S. If Q is
a (k−, h−)ideal of S then so is Q+‘(Q∗‘) in L(R). For a Γ-semiring S if there
exists an element 0 ∈ S such that 0 + x = x and 0αx = xα0 = 0 for all
x ∈ S and α ∈ Γ then 0 is called the zero of the Γ-semiring S and in that
case we say that the Γ-semiring S is with zero. In such a case [0, α] is the
zero of L and [α, 0] is the zero of R for any α ∈ Γ. Again, if there exists an

element
m∑

i=1

[ei, δi] ∈ L (
n∑

j=1

[γj , fj ] ∈ R) such that
m∑

i=1

eiδia = a (
n∑

j=1

aγjfj = a)

for all a ∈ S then S is said to have the left unity
m∑

i=1

[ei, δi] (respectively the

right unity
n∑

j=1

[γj , fj ] ). The left (right) unity of the Γ-semiring S, if it exists,

is the identity of the left operator semiring L (respectively the right operator
semiring R) of S. An equivalence relation ρ, defined on a Γ-semiring S satisfying
the condition that if rρr′ and sρs′ in S then (r + s)ρ(r′ + s′) and (rαs)ρ(r′αs′)
for all α ∈ Γ, is called a Γ-congruence on the Γ-semiring S. For a proper ideal
A of a Γ-semiring S the Γ-congruence on S, denoted by ρA, defined as sρAs′

if and only if s + a1 = s′ + a2 for some a1, a2 ∈ A, is called the Bourne Γ-
congruence on S defined by the ideal A. We denote the Bourne Γ-congruence
(ρA) class of an element r of S by r/ρA or simply by r/A and denote the set of
all such Γ-congruence classes of the Γ-semiring S by S/ρA or by S/A. It should
be noted here that for any proper ideal A of S and for any s ∈ S, s/A is not
necessarily equal to s + A = {s + a : a ∈ A} but surely contains it. For any
proper ideal A of a Γ-semiring S, if the Bourne Γ-congruence ρA, defined by A,
is proper i.e. 0/A 6= S then S/A is a Γ-semiring with the following operations:
s/A + s′/A = (s + s′)/A and (s/A)α(s′/A) = (sαs′)/A for all α ∈ Γ. We call
this Γ-semiring the Bourne factor Γ-semiring or simply the factor Γ-semiring
of S by A.

For preliminaries of semirings, Γ-semirings, operator semirings of a Γ-semiring
and Γ-rings we refer to [4], [1], [2], [7].

Throughout this paper the Γ-semiring S is assumed to be with zero, left
unity and right unity.

3. Irreducible, semi-irreducible, faithful Γ-semimodules

Definition 3.1. Let S be a Γ-semiring. An additive commutative monoid M is
said to be a right Γ-semiring S-semimodule or simply a ΓS-semimodule, if there
exists a mapping M × Γ × S → M (images to be denoted by aαS for a ∈ M,
α ∈ Γ, s ∈ S ) satisfying the following conditions:



4 S. K. Sardar, U. Dasgupta

(i) (a + b)αs = aαs + bαs,
(ii) aα(s + t) = aαs + aαt,
(iii) a(α + β)s = aαs + aβs,
(iv) aα(sβt) = (aαs)βt and
(v) 0Mαs = 0M = aα0S for all a, b ∈ M, for all s, t ∈ S and for all α, β ∈ Γ.

If in addition to the above conditions
∑

j

aγjfj = a holds for all a ∈ M,

where
n∑

j=1

[γj , fj ] is the right unity of the Γ-semiring S, then M is said to be a

unitary ΓS-semimodule.
Left Γ-semimodule of S can be defined in a similar manner and it is called

SΓ-semimodule.

Example 3.2. Let S be a Γ-semiring, where S is the additive commutative
semigroup of all 2× 3 matrices over the set of all nonnegative rational numbers
Q+

0 and Γ is the additive commutative semigroup of all 3× 2 matrices over the
same set and aαb denotes the usual matrix product of a, α, b where a, b ∈ S and
α ∈ Γ. Let M be the additive commutative monoid of all 3 × 3 matrices over
Q+

0 . Then M is a unitary ΓS-semimodule, where mαa denotes the usual matrix
product of m,α, a with m ∈ M, a ∈ S and α ∈ Γ. Here the right unity of S is
3∑

i=1

[γi, fi] where

γ1 =




1 0
0 1
0 0


 , γ2 =




0 0
0 1
0 0


 , γ3 =




0 0
1 0
0 1


 ,

f1 =
[

1 0 0
0 1

3 0

]
, f2 =

[
0 0 1
0 1

3 0

]
and f3 =

[
0 1

3 0
0 0 1

]
.

A nonempty subset N of a ΓS-semimodule M is said to be a ΓS-subsemimodule
of M if i) a + b ∈ N, ii) aαs ∈ N for all a, b ∈ N, for all s ∈ S and for all α ∈ Γ.
N contains the zero of M.

A ΓS-subsemimodule N of a ΓS-semimodule M is said to be a kΓS-sub-
semimodule of M if a + b, b ∈ N, a ∈ M imply that a ∈ N. Let N be a ΓS-
subsemimodule of a ΓS-semimodule M. Then k-closure of N, denoted by N̄ , is
defined by N̄ = {a ∈ M : a + b = c for some b, c ∈ N}. A ΓS-subsemimodule N
of a ΓS-semimodule M is said to be an hΓS-subsemimodule of M if x+n1 +z =
n2 + z, n1, n2 ∈ N, x, z ∈ M imply that x ∈ N. Let N be a ΓS-subsemimodule
of a ΓS-semimodule M. Then h-closure of N, denoted by N̂ , is defined by
N̂ = {a ∈ M : a+n1 + z = n2 + z for some n1, n2 ∈ N and for some z ∈ M}.
Proposition 3.3. Let N be a ΓS-subsemimodule of a ΓS-semimodule M. Then
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N is a kΓS-(hΓS-)subsemimodule if and only if N̄ = N (N̂ = N).

Proof. The proof is a matter of routine verification. 2

A ΓS-semimodule M is said to be cancellative if a + b = a + c, a, b, c ∈ M
implies that b = c.

Throughout the rest of the paper a ΓS-semimodule is assumed to be can-
cellative.

Definition 3.4. A ΓS-semimodule M 6= {0} is said to be irreducible if for any
arbitrary fixed pair u, v ∈ M with u 6= v and for any x ∈ M there exist xi, yj ∈
S, αi, βj ∈ Γ (i = 1, 2, . . . , m and j = 1, 2, . . . , n, m, n are positive integers)
such that x +

∑

i

uαixi +
∑

j

vβjyj =
∑

j

uβjyj +
∑

i

vαixi. A ΓS-semimodule

M is said to be semi-irreducible if MΓS 6= {0} and M does not have any kΓS-
subsemimodule other than 0 and M.

The notions of both irreduciblity and semi-irreducibility coincide with the
notion of irreducibility in a Γ-ring ([7], [8], [9]) S or in a ring R when R or S is
treated as a Γ-semiring, where Γ = R in case of R.

Proposition 3.5. Let P be an ideal of a Γ-semiring S and M be a ΓS-
semimodule with MΓP 6= {0}. Then the following statements are true.

(1) If M is semi-irreducible and m is an element of M then m = 0 if and
only if mαp = 0 for all α ∈ Γ and for all p ∈ P i.e. m = 0 if and only if
mΓP = {0}.

(2) If M is irreducible and u,v are elements of M then u = v if and only if
m∑

i=1

uαixi =
m∑

i=1

vαixi, for all αi ∈ Γ, for all xi ∈ S, i = 1, 2, . . . , p; p is

any positive integer.

Proof. (1) Let M be a semi-irreducible ΓS-semimodule and mαp = 0 for all
p ∈ P and for all α ∈ Γ. Let M0 = {y ∈ M : yΓP = {0}}. Then m ∈ M0.
Let x, y ∈ M0. Then (x + y)ΓP ⊆ xΓP + yΓP = {0}. Thus x + y ∈ M0. Let
α ∈ Γ and p ∈ P. Then (xαp)ΓP = 0ΓP = {0}. So xαp ∈ M0. Thus M0 is a
ΓS-subsemimodule of M. Let x+y, y ∈ M0 and x ∈ M. Then (x+y)αp = 0 and
yαp = 0 for all α ∈ Γ and for all p ∈ P. This implies that xαp = xαp + yαp =
(x+ y)αp = 0 for all α ∈ Γ and for all p ∈ P whence xΓP = {0}. Hence x ∈ M0

proving that M0 is a kΓS-subsemimodule of M. Since MΓP 6= {0}, M0 6= M.
Since S is semi-irreducible so M0 = {0}. So m = 0. Conversely, if m = 0 then
mαp = 0 for all α ∈ Γ and for all p ∈ P.
(2) Let M be irreducible and u, v ∈ M be such that u 6= v. Since MΓP 6=
{0} so there exist m ∈ M, α ∈ Γ, p ∈ P such that mαp 6= {0}. For this
m ∈ M , there exist xi, yj ∈ S, αi, βj ∈ Γ (1 ≤ i ≤ p, 1 ≤ j ≤ q; p, q are
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positive integers) such that m +
p∑

i=1

uαixi +
q∑

j=1

vβjyj =
q∑

j=1

uβjyj +
p∑

i=1

vαixi.

Hence mαp +
p∑

i=1

uαixiαp +
q∑

j=1

vβjyjαp =
q∑

j=1

uβjyjαp +
p∑

i=1

vαixiαp i.e.,

mαp +
p∑

i=1

uαix
′
i+

q∑

j=1

vβjy
′
j =

q∑

j=1

uβjy
′
j +

p∑

i=1

vαix
′
i where x′i = xiαp and y′j =

yjαp for all i = 1, 2, . . . , p and j = 1, 2, . . . , q. Since M is cancellative and

mαp 6= 0, so at least one of
p∑

i=1

uαix
′
i 6=

p∑

i=1

vαix
′
i and

q∑

j=1

uβjy
′
j 6=

q∑

j=1

vβjy
′
j

holds. Converse follows easily. 2

Proposition 3.6. Let M be a ΓS-semimodule and M 6= {0}. Then M is semi-
irreducible if and only if for every non-zero m ∈ M mΓS = M i.e. for any
x ∈ M there exist xi, yj ∈ S , αi, βj ∈ Γ (i = 1, 2, . . . , p and j = 1, 2, . . . , q, p, q

are positive integers) such that x +
∑

i

mαixi =
∑

j

mβjyj .

Proof. Let M 6= 0 be semi-irreducible. Then MΓS 6= {0}. Let m ∈ M such
that m 6= 0. Hence by Proposition 3.5, mΓS 6= {0}; so mΓS 6= {0}. Since
mΓS is a kΓS-subsemimodule of M, mΓS = M. Hence for any x ∈ M there
exist xi, yj ∈ S, αi, βj ∈ Γ (i = 1, 2, . . . , p and j = 1, 2, . . . , q; p, q are positive
integers) such that x +

∑

i

mαixi =
∑

j

mβjyj .

Conversely, suppose for any nonzero m ∈ M, mΓS = M. Let N 6= {0} be a
kΓS-subsemimodule of M. Then there exists n ∈ N such that n 6= 0. So, by the
given condition mΓS = M. Hence for any x ∈ M there exist xi, yj ∈ S, αi, βj ∈
Γ (i = 1, 2, . . . , p and j = 1, 2, . . . , q; p, q are positive integers) such that
x +

∑

i

nαixi =
∑

j

nβjyj . Since N is kΓS-subsemimodule of M and
∑

i

nαixi,

∑

j

nβjyj ∈ N, x ∈ N. Hence N = M. Now if MΓS = {0} then mΓS = {0}

for all m ∈ M. In particular, mΓS = {0} for any nonzero m ∈ M. Hence
mΓS = {0} for any nonzero m ∈ M. This implies that M = 0- a contradiction.
Hence M is semi-irreducible. 2

Corollary 3.7. If a ΓS-semimodule M is irreducible, then it is semi-irreducible
and mΓS = M.

Proof. Let M be an irreducible ΓS-semimodule. Then M 6= {0}. So, there
exists m(6= 0) ∈ M. Thus for any x ∈ M there exist xi, yj ∈ S, αi, βj ∈
Γ (i = 1, 2, . . . , p and j = 1, 2, . . . , q; p, q are positive integers) such that
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x +
∑

i

mαixi =
∑

j

mβjyj . Hence by Proposition 3.6, M is a semi-irreducible

ΓS-semimodule. Then MΓS 6= {0} which implies that mΓS = {0}. Since mΓS
is a kΓS-subsemimodule of M, mΓS = M. 2

Proposition 3.8. Let S be a Γ-semiring and R be its right operator semiring.
Then M is an irreducible ΓS-semimodule if and only if M is an irreducible
R-semimodule.

Proof. Let M be an irreducible ΓS-semimodule. Now we define R-action on M

as follows: for a ∈ M,
∑

i

[αi, xi] ∈ R, a
∑

i

[αi, xi] =
∑

i

aαixi. If
∑

i

[αi, xi] =
∑

j

[βj , yj ] in R then
∑

i

sαixi =
∑

i

sβjyj for all s ∈ S. Since M is an ir-

reducible ΓS-semimodule, mΓS = M. (Corollary 3.7). Then for m ∈ M,

m +
∑

k

akγksk =
∑

t

btδtvt where ak, bt ∈ M, γk, δt ∈ Γ, sk, vt ∈ S (k = 1, 2,

. . . , p; t = 1, 2, . . . , q; p, q are positive integers). So,
∑

i

mαixi+
∑

k,i

akγkskxiαi

=
∑

t,i

btδtxiαi, implying that

∑

i

mαixi +
∑

k,j

akγkskβjyj =
∑

i,j

btδtvtβjyj .(1)

Again
∑

j

mβjyj +
∑

k,j

akγkskβjyj =
∑

t,j

btδtvtβjyj(2)

Since M is cancellative so we have from (1) and (2)
∑

i

mαixi =
∑

j

mβjyj .

Thus the R-action defined above on M is well defined. Now it can be easily
verified that M with the above action is an R-semimodule. Next, let u, v ∈ M
with u 6= v. Then for any x ∈ M there exist xi, yj ∈ S, αi, βj ∈ Γ such that
x +

∑

i

uαixi +
∑

j

vβjyj =
∑

j

uβjyj +
∑

i

vαixi (using irreducibility of M as

a ΓS-semimodule). This implies that x + u
∑

i

[αi, xi] + v
∑

j

[βj , yj ] + v
∑

i

[αi, xi]

where
∑

i

[αi, xi],
∑

j

[βj , yj ] ∈ R. Hence M is an irreducible R-semimodule ([6]).

Conversely, suppose M is an irreducible R-semimodule. We define Γ-action of
S on M as follows: for a ∈ M, α ∈ Γ and s ∈ S , aαS = a[α, s]. Then, with this
composition M is a ΓS-semimodule. Let u, v ∈ M with u 6= v and let x ∈ M.



8 S. K. Sardar, U. Dasgupta

Then there exist
∑

i

[αi, xi],
∑

j

[βj , yj ] ∈ R such that

x + u
∑

i

[αi, xi] + v
∑

j

[βj , yj ] = u
∑

j

[βj , yj ] + v
∑

i

[αi, xi].

So x +
∑

i

uαixi +
∑

j

vβjyj =
∑

j

uβjyj +
∑

i

vαixi. Hence by definition M is

an irreducible ΓS-semimodule. This completes the proof. 2

Let S be a Γ-semiring. The zeroid of S, denoted by Z(S), is defined as
Z(S) = {x ∈ S : x + z = z for some z ∈ S}. Clearly, 0 is a member of Z(S)
of a Γ-semiring S with zero element 0. The zeroid Z(S) of a Γ-semiring S is an
h-ideal of S. Let M be a ΓS-semimodule. We put (0 : M) = {x ∈ S : MΓx =

{0}} where MΓx = {
k∑

i=1

miαix : mi ∈ M, α ∈ Γ, k is a positive integer}. We

call (0 : M) the annihilator of M in S. We also denote it by AS(M). A ΓS-
semimodule M is said to be faithful if Z(S) = AS(M).

Proposition 3.9. Let M be a ΓS-semimodule. Then AS(M) is an h-ideal of
S. Moreover, M is a faithful Γ(S/AS(M))-semimodule.

Proof. Clearly AS(M) is an additive subsemigroup of S. Now let x ∈ AS(M),
α ∈ Γ, s ∈ S. Then MΓ(xαS) = (MΓx)αS = {0}. Hence, xαS ∈ AS(M)
proving that it is a right ideal of S. To prove that AS(M) is also a left ideal
of S we see that MΓ(SΓAS(M)) = (MΓS)ΓAS(M) ⊆ MΓAS(M) = {0} which
means SΓAS(M) ⊆ AS(M). Thus AS(M) is a two-sided ideal of S. Next, let
x + a + z = b + z where x, z ∈ S, a, b ∈ AS(M). Then for all α ∈ Γ, for all
m ∈ M, mαa = 0 and so mαx + mαz = mαb + mαz. Since M is cancellative
we have mαx = mαb = 0 for all m ∈ M, for all α ∈ Γ. Hence x ∈ AS(M).
Thus AS(M) is an h-ideal of S. Now let us define a Γ-action of S/AS(M) on M
as follows: mα(s/AS(M)) = mαS for m ∈ M, α ∈ Γ, s/AS(M) ∈ S/AS(M).
If s/As(M) = t/As(M) then s + p1 = t + p2 for some p1, p2 ∈ AS(M). Then
mαS + mαp1 = mαt + mαp2 for all m ∈ M, for all α ∈ Γ i.e. mαs = mαt for
all m ∈ M, for all α ∈ Γ. Hence the Γ-action of S/AS(M) on M is well-defined.
Now it is easy to see that M is a Γ(S/AS(M))-semimodule. It remains to show
that AS/AS(M)(M) = Z(S/AS(M)). Clearly Z(S/AS(M) ⊆ AS/AS(M). Now let
x/AS(M) ∈ AS/AS(M)(M). Then mα(x/AS(M)) = 0 for all m ∈ M, for all
α ∈ Γ i.e. mαx = 0 for all m ∈ M, for all α ∈ Γ. Hence x ∈ AS(M). This
implies that x/AS(M) = 0/AS(M). Hence x/AS(M) ∈ Z(S/AS(M)). Thus
AS/AS(M))(M) ⊆ Z(S/AS(M)). Hence AS/AS(M) = Z(S/AS(M)) (whence M is
a faithfuul Γ(S/AS(M))-semimodule. 2

Proposition 3.10. Let S be a Γ-semiring and R be its right operator semiring.
Then
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(i) AS(M)∗
′

= AR(M) and AR(M)∗ = AS(M); where M is an irreducible
ΓS-semimodule (and hence an irreducible R-semimodule)

(ii) Z(S)∗
′
= Z(R) and Z(R)∗ = Z(S).

Proof. (i)

AS(M)∗
′

= {
∑

i

[αi, xi] ∈ R : S(
∑

i

[αi, xi]) ⊆ AS(M)}

= {
∑

i

[αi, xi] ∈ R : MΓS(
∑

i

[αi, xi]) = {0}}

= {
∑

i

[αi, xi] ∈ R : M(
∑

i

[αi, xi]) = {0}}
= AR(M).

AR(M)∗ = {x ∈ S : [Γ, x] ⊆ AR(m)}
= {x ∈ S : M [Γ, x] = {0}}
= {x ∈ S : MΓx = {0}}
= AS(M).

(ii) By Propositions 6.14 ([1]) and since zeroid is an h-ideal, (Z(S)∗)∗ = Z(S)
and (Z(R)∗)∗

′
= Z(R). So it is sufficient to prove one of the two relations.

Let x ∈ Z(R)∗. Then [Γ, x] ⊆ Z(R). So SΓx ⊆ SZ(R) ⊆ Z(S). Since S
has the left unity, x ∈ Z(S). Thus Z(R)∗ ⊆ Z(S). Now let

∑m
i=1[αi, xi] ∈

[Γ, Z(S)] where xi ∈ Z(S) for all i = 1, 2, 3, . . . ,m. Then xi + zi = zi for
some zi ∈ S for all i = 1, 2, . . . , m. Then [αi, xi] + [αi, zi] = [αi, zi] for all

i = 1, 2, 3, . . . , m. This implies that
m∑

i=1

[αi, xi] +
m∑

i=1

[αi, zi] =
m∑

i=1

[αi, zi] where

m∑

i=1

[αi, zi] ∈ R. Hence
m∑

i=1

[αi, xi] ∈ Z(R) and so [Γ, Z(S)] ⊆ Z(R). Thus Z(S) ⊆

Z(R)∗. Hence Z(R)∗ = Z(S). 2

Proposition 3.11. Let S be a Γ-semiring and R be its right operator semiring.
Then M is a faithful irreducible ΓS-semimodule if and only if M is a faithful
irreducible R-semimodule.

Proof. Let M be a faithful irreducible ΓS-semimodule. Then by Proposi-
tion 3.8, M is an irreducible ΓS-semimodule. Again, AS(M) = Z(S). So
AS(M)∗

′
= Z(S)∗

′
. This implies by Proposition 3.10, AR(M) = Z(R). Hence

M is a faithful irreducible ΓS-semimodule. Converse follows by reversing the
above argument. 2

Definitions 3.12. A Γ-semiring S is said to be primitive if it has a faithful
irreducible ΓS-semimodule.

An ideal P of S is said to be primitive if the Bourne factor Γ-semiring S/P
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is primitive. Hence a Γ-semiring S is primitive if {0} is a primitive ideal of S.

Lemma 3.13. Let S be a Γ-semiring and R be its right operator semiring and Q
be a proper ideal of S. Then R(S/Q) and R/Q∗′ are isomorphic, where R(S/Q)
is the right operator semiring of the Bourne factor Γ-semiring S/Q.

Proof. We define a mapping φ : R(S/Q) → R/Q∗′ as follows: φ(
m∑

i=1

[αi, xi/Q]) =

m∑

i=1

[αi, xi]/Q∗′ . Now let
m∑

i=1

[αi, xi/Q] =
n∑

j=1

[βj , yj/Q] in R(S/Q). Then

m∑

i=1

(s/Q)αi(xi/Q) =
n∑

j=1

(s/Q)βj(yj/Q) for all s/Q ∈ S/Q i.e.
∑m

i=1(sαixi)/Q =

∑n
j=1(sβjyj)/Q for all s ∈ S, which means that

m∑

i=1

sαixi + q =
n∑

j=1

sβjyj + q′

for some q, q′ ∈ Q and for all s ∈ S. This implies that
m∑

i=1

fkαixi + ak =
n∑

j=1

fkβjyj

for some ak, bk ∈ Q, for all k, 1 ≤ k ≤ p, where
p∑

k=1

[γk, fk] is the right unity of S.

This implies that
∑

k,i

sγkfkαixi +
∑

k

sγkak =
∑

k,j

sγkfkβjyj +
∑

k

sγkbk for all

s ∈ S and for all ak, bk ∈ Q, 1 ≤ k ≤ p. This implies that (
p∑

k=1

[γk, fk])(
m∑

i=1

[[αi, xi])

+
p∑

k=1

[γk, ak] = (
p∑

k=1

[γk, fk])(
n∑

j=1

[βj , yj ]) +
p∑

k=1

[γk, bk], where
p∑

k=1

[γk, ak],
p∑

k=1

[γk, bk] ∈ Q∗
′

(Proposition 3.5 [3]) i.e.,
m∑

i=1

[αi, xi] +
p∑

k=1

[γk, ak] =
n∑

j=1

[βj , yj ]

+
p∑

k=1

[γk, bk], where
p∑

k=1

[γk, ak],
p∑

k=1

[γk, bk] ∈ Q∗
′
. This implies that

m∑

i=1

[[αi, xi]]/Q∗
′

=
n∑

j=1

[βj , yj ]/Q∗
′
i.e. φ(

m∑

i=1

[αi, xi/Q]) = φ(
n∑

j=1

[βj , yj/Q]). Thus φ is well-defined.

Clearly, φ is surjective. Next, let φ(
m∑

i=1

[αi, xi/Q]) = φ(
n∑

j=1

[βj , yj/Q]). Then

m∑

i=1

[αi, xi]/Q∗ =
n∑

j=1

[βj , yj ]/Q∗. So
m∑

i=1

[αi, xi] +
p∑

k=1

[γk, ak] =
n∑

j=1

[βj , yj ]+

p∑

k=1

[γk, bk], where
p∑

k=1

[γk, ak],
p∑

k=1

[γk, bk] ∈ Q∗
′

(Proposition 3.5 [3]). This im-
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plies that
m∑

i=1

sαixi +
∑

k

sγkak =
n∑

j=1

sβjyj +
∑

k

sγkbk for all s ∈ S, where

∑

k

sγkak,
∑

k

sγkbk ∈ Q for all s ∈ S. This implies that
m∑

i=1

sαixi/Q =
n∑

j=1

sβjyj/Q

for all s ∈ S i.e.
m∑

i=1

(s/Q)αi(xi/Q) =
n∑

j=1

(s/Q)βj(yj/Q) for all s/Q ∈ S/Q. This

implies that
m∑

i=1

[αi, (xi/Q)] =
n∑

j=1

[βj , (yj/Q)]. Hence φ is injective. Clearly, φ

is a semiring homomorphism. Therefore φ is a semiring isomorphism, whence
R(S/Q) and R/Q∗ are isomorphic. 2

Proposition 3.14. Let S be a Γ-semiring and R be its right operator semiring.
If P is a primitive ideal of S then P ∗

′
is a primitive ideal of R.

Proof. Let P be a primitive ideal of S. Then S/P is a primitive Γ-semiring. So
there exists an irreducible faithful Γ(S/P )-semimodule M. Then by Proposition
3.11, M is a faithful irreducible R(S/P )-semimodule where R(S/P ) is the right
operator semiring of S/P. Since R(S/P ) and R/P ∗

′
are isomorphic (Lemma

3.13), M is a faithful irreducible R/P ∗
′
-semimodule. Consequently, R/P ∗

′
is a

primitive semiring ([6]), i.e. P ∗
′
is a primitive ideal of R. 2

Proposition 3.15. Let S be a Γ-semiring and R be its right operator semiring.
If Q is a primitive ideal of R then Q∗

′
is a primitive ideal of S.

Proof. Suppose that Q is a primitive ideal of R. Then R/Q is a primitive
semiring. So, there exists a faithful irreducible R/Q-semimodule M. Then by
Proposition 3.11, M is a faithful irreducible Γ(S/Q∗)-semimodule (noting the
fact that R(S/Q∗) and R/(Q∗)∗

′
, i.e. R/Q are isomorphic). So, S/Q∗ is a

primitive Γ-semiring, whence Q∗ is a primitive ideal of the Γ-semiring S. 2

From the above two propositions and Theorem 6.6 ([1]) the following theorem
follows easily:

Theorem 3.16. Let S be a Γ-semiring and R be its right operator semiring.
Then there exists an inclusion preserving bijection between the set of all primi-
tive ideals of S and the set of all primitive ideals of R via the mapping P → P ∗

′
,

where P is an ideal of S.

Theorem 3.17. A Γ-semiring S is primitive if and only if its right operator
semiring R is primitive.

Proof. Let S be a primitive Γ-semiring. Then there is a faithful irreducible
ΓS-semimodule M(say). Then, by Proposition 3.11, M is a faithful irreducible
R-semimodule. So, R is a primitive semiring ([6]). Converse follows by reversing
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the above argument. 2

Lastly, we have the following characterization of primitive h-ideal of a Γ-
semiring which is analogous to that of a primitive ideal of a ring.

Theorem 3.18. An h-ideal P of a Γ-semiring S is primitive if and only if
P = AS(M) for some irreducible ΓS-semimodule M.

Proof. Let the h-ideal P of the Γ-semiring S be primitive. Then by Proposition
6.11 ([1]) and Proposition 3.14, P ∗

′
is a primitive h-ideal of R. Hence P ∗

′
=

AR(M) ([6]), where M is an irreducible R-semimodule (Proposition 3.8). Then
(P ∗

′
)∗ = AR(M)∗, which implies that P = AS(M) (Proposition 3.10). Converse

follows by reversing the above argument. 2
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