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NONCOMMUTING f–CONTRACTION MAPPINGS

Tayyab Kamran1

Abstract. Some fixed and coincidence point theorems for R-weakly com-
muting mappings are obtained. Our results generalize some recent results
of Daffer and Kaneko [2] and many of the others.
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1. Introduction and preliminaries

The study of fixed points of multivalued contraction mappings was initiated
by Nadler [10] in 1969. Since then there has been a lot of activity in this area
and a number of generalization of Nadler’s contraction principle have appeared
(see, for example, the work of Dube and Singh [3], Iseki [5], Ray [12], Itoh
and Takahashi [6], Aubin and siegel [1], Hu [4], Massa [9], Kaneko [7], etc).
Most of the theorems deal with commuting or with noncommuting mappings.
Recently Pant [11] introduced the notion of R-weak commutativity and proved
two common fixed point theorems for a pair of mappings. The purpose of
this paper is to extend the idea of Pant to multivalued mappings and obtain
some coincidence and fixed point theorems for R-weakly commuting multivalued
mappings. These theorems generalize many existing fixed point theorems.

Throughout this paper X denotes a metric space with metric d, f a con-
tinuous self map of X. For x ∈ X and A ⊆ X, d(x, A) = inf{d(x, y) :
y ∈ A}. A subset A of X is said to be proximal [2] if, for each x ∈ X,
there exists an element a ∈ A such that d(x, a) = d(x,A). We denote by
P (X) the class of nonempty proximal subset of X, by F (X) the class of all
nonempty closed subsets of X and by K(X) the class of all nonempty com-
pact subsets of X. Let H be the Hausdorff metric with respect to d, that is,
H(A,B) = max{supx∈A d(x,B), supy∈B d(y,A)} for every A,B ∈ F (X). Let
T : X → F (X) be a mapping. Then a sequence {xn} in X is said to be an f -
orbit of x under T [2] if, f(xn) ∈ Txn−1, x = x0. We assumed that TX ⊆ fX.
An f -orbit of x under T is said to be (i) regular [7] provided that for each
n, d(fxn, fxn+1) ≤ H(Txn−1, Txn), and d(fxn, fxn+1) ≤ d(fxn−1, fxn); (ii)
strongly regular [4] if, T maps x into a proximinal set Tx, and for each n,
d(fxn, fxn+1) = d(fxn, Txn). A point p ∈ X is said to be a fixed point of
T : X → F (X) if p ∈ Tp. The point p is called a coincidence point of f and T
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if fp ∈ Tp. A mapping T : X → F (X) is said to be an f -contraction [2], where
f : X → X is continuous, if for x, y ∈ X, H(Tx, Ty) ≤ d(fx, fy) whenever
fx 6= fy. Note that this definition alone is not sufficient to ensure that T is
continuous [2] (cf. Remark 1).

Definition 1.1. The mappings f : X → X and T : X → F (X) are said to
be R-weakly commuting if, for all x ∈ X, fTx ∈ F (X) and there exists some
positive real number R such that

H(fTx, Tfx) ≤ Rd(fx, Tx).

It is clear that weakly commuting mappings are R-weakly commuting. Never-
theless, R-weakly commuting maps are weakly commuting only when R ≤ 1. If
T is a single valued self mapping of X, this definition of R-weak commutativity
reduces to that of Pant [11].

2. Main results

The following contains generalization of coincidence point theorem of Daffer
and Kaneko [2], and those contain therein.

Theorem 2.1. Let X be a connected metric space, T : X → F (X), f : X → X,
are R-weakly commuting mappings, where T is a point closed mapping which is
an f -contraction, f is continuous such that T (X) ⊆ f(X). If for some x ∈ X
an f -orbit of x is regular and contains a subsequence {xnk

} such that fxnk
→ t0

and fxnk+1 → t1, then t0 = t1 and ft0 ∈ Tt0.

Proof. Suppose that t0 6= t1. Then it follows from Corollary 1, and Lemma 7 of
Daffer and Kaneko [2] that there is a constant h < 1 and a neighborhood U of
f−1t0 × f−1t1 such that, for all (x, y) ∈ U ,

H(Tx, Ty) ≤ hd(fx, fy)

and
d(fx, fy) >

1
2
d(t0, t1).(1)

Since f is continuous, (xnk
, xnk+1) ∈ U for all sufficiently large k; thus for some

N, k ≥ N implies that

d(fxnk
, fxnk+1) >

1
2
d(t0, t1)

and
H(Txnk

, Txnk+1) ≤ hd(fxnk
, fxnk+1).

Since the orbit of x is regular, we get d(fxnk+1, fxnk+2) ≤ hd(fxnk
, fxnk+1).

Again, using regularity, if i > j > N , then

d(fxni , fxni+1) ≤ d(fxni−1, fxni) ≤ d(fxni−1, fxni−1+1).



Noncommuting f–contraction mappings 35

Inductively, we obtain d(fxni
, fxni+1) ≤ hi−jd(fxnj

, fxnj+1), so that upon
fixing j, we get d(fxni , fxni+1) → 0 as i →∞, contradicting (1). Hence t0 = t1.
Since fxnk

∈ Txnk
, T is closed valued, f and T are R-weakly commuting

therefore we have,

d(Tfxnk
, ffxnk+1) ≤ H(Tfxnk

, fTxnk
)

≤ Rd(fxnk, Txnk
) ≤ Rd(fxnk

, fxnk+1) → 0, as n →∞.

Thus d(Tt0, ft0) = 0. This implies ft0 ∈ Tt0. 2

Remark 2.2. [2] Conclusion of Theorem 2.1 remains valid if we replace regular
f -orbit by strongly regular f -orbit, and F (X) by P (X).

Lemma 2.3. [13] If T : X → K(X) is upper semi-continuous, xn → x0 and
yn ∈ Txn for each n, then there exists a subsequence {ynk

} which converges to
a point in Tx0.

Lemma 2.4. [13] If T : X → K(X) is an f -contractive, then T is upper semi-
continuous.

Lemma 2.5. Let f : X → X, T : X → F (X) are R-weakly commuting map-
pings, where T is an f contraction. Suppose given x, s ∈ X, that fnx → s and
fx ∈ TX. Then s ∈ Ts.

Proof. d(s, Ts) ≤ d(s, fnx) + d(fnx, Ts) and d(s, fnx) → 0. Since f is con-
tinuous we have fs = s, and for given x ∈ X, we have fx ∈ Tx this implies,
f2x ∈ fTx. Since f, T are R-weakly commuting we have

d(Tfx, f2x) ≤ H(Tfx, fTx) ≤ Rd(Tx, fx) = 0,

this implies f2x ∈ Tfx. It further implies that,

d(Tf2x, f3x) ≤ H(Tf2x, fTfx) ≤ Rd(Tfx, ffx) = 0,

this gives f3x ∈ Tf2x. Continuing in this manner we have fnx ∈ Tfn−1x, for
all n ∈ N . This yields

d(fnx, Ts) ≤ H(Tfn−1x, Ts) ≤ d(fnx, fs) = d(fnx, s) → 0,

as n →∞. Hence d(s, Ts) = 0. 2

Theorem 2.6. Let X be a connected metric space, T : X → K(X), f : X → X,
are R-weakly commuting mappings, where T is a point compact mapping which
is an f -contraction, f is continuous such that T (X) ⊆ f(X). Assume that
there exists x ∈ X with a strongly regular f -orbit possessing a cluster point.
Moreover, assume that fx ∈ Tx implies that limn→∞ fnx exists. Then T has a
fixed point, which is also a fixed point of f .
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Proof. By assumption, we may choose a strongly regular f -orbit {xn} under
T having a cluster point, say x∗. Then there exist a subsequence {xnk

} such
that limk→∞ xnk

= x∗. By definition of an f -orbit, fxnk
⊆ Txnk

. Using
Lemmas 2.3 and 2.4, we may find a further subsequence fxnkj

⊆ fxnk
such that

limj→∞ fxnkj
+1 ≡ y∗ ∈ Tx∗. Since f is continuous, limk→∞ fxnk

= fx∗ and
consequently limj→∞ fxnkj

= fx∗. By virtue of Remark 2.2, y∗ = fx∗ giving
fx∗ ∈ Tx∗. Since f and T are R-weakly commuting, therefore it follows from
Lemma 2.5, that fnx∗ ∈ Tfn−1x∗, by taking limn→∞, we get limn→∞ fnx∗ =
s ∈ Ts. 2

Remark 2.7. Theorem 2.6 generalizes many important fixed point theorems
(see for instance, Kaneko [7], Daffer and Kaneko [2], Smithson [13]).

Example 2.8. Let X = [1,∞) and d the usual metric on X. Define f : X → X
and T : X → F (X) by fx = 2x3 − 1, Tx = [1, 2x− 1] for all x ∈ X. Then, for
any x ∈ X,

d(fx, Tx) = 2x(x− 1)(x + 1) H(fTx, Tfx) = 12x(x− 1)2;

that is,
H(fTx, Tfx) ≤ 6d(fx, Tx).

Thus the mappings f : X → X and T : X → CB(X) are R-weakly commuting
with R = 6 but they are not weakly commuting (e.g., at x = 2). Now it is easily
seen that f and T satisfy all the conditions of Theorem 2.6 and have a common
fixed point x = 1. Note that f and T do not satisfy the conditions of theorems
in [2], [7], and [13].

Remark 2.9. [2] If T is assumed to be continuous, then the metric space X
need not be connected.
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