ON THE IMPLEMENTATION OF SET–VALUED NON–BOOLEAN FUNCTIONS

Lidija Čomić¹, Ratko Tošić²

Abstract. In the set of functions $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ the subset of Boolean functions is not complete. We study the ways of partitioning the definition domain $\mathcal{P}^n(\mathbf{r})$ of a set-valued function F into equivalence classes with respect to equivalence relations generated by F so that on these classes a Boolean function f equal to F exists.

AMS Mathematics Subject Classification (2000): 26E25

Key words and phrases: set-valued logic, set-valued functions

1. Introduction

Let $\mathbf{r} = \{0, 1, ..., r-1\}, r \geq 1$, and let $\mathcal{P}(\mathbf{r})$ be the set of subsets of \mathbf{r} . Then $(\mathcal{P}(\mathbf{r}), \emptyset, \mathbf{r}, \cup, \cap, \bar{})$ is a Boolean algebra. There are $2^{r2^{rn}}$ set-valued functions $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$, and only 2^{r2^n} of them are Boolean. (More on set-valued functions and their applications can be found in [1], [2], [6].)

Let \oplus denote the symmetric difference over $\mathcal{P}(\mathbf{r})$. It is well known that a function $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ is Boolean if and only if it can be represented in the form

$$F(X_1, \dots, X_n) = A_0 \oplus \sum_{m=1}^n \sum_{i_1, \dots, i_m}^{1, 2, \dots, n} A_{i_1, \dots, i_m} X_{i_1} \dots X_{i_m}$$

for all $X_1, \ldots, X_n \in \mathcal{P}(\mathbf{r})$, where A_0 and A_{i_1,\ldots,i_m} are constants of $\mathcal{P}(\mathbf{r})$, and the sum is extended over all $\binom{n}{m}$ subsets $\{i_1, \ldots, i_m\}$ of *m* distinct indices from the set $\{1, \ldots, n\}$. The coefficients A_0 and A_{i_1,\ldots,i_m} are uniquely determined by *F*.

The following property of Boolean functions, given in [4], is the generalization of the results of McKinsey and Scognamiglio.

Theorem 1.1. If $f : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ is a Boolean function then

$$f(X_1,\ldots,X_n) \oplus f(Y_1,\ldots,Y_n) \subseteq \bigcup_{i=1}^n (X_i \oplus Y_i)$$

for all $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n) \in \mathcal{P}^n(\mathbf{r}).$

 $^{^1\}mathrm{Faculty}$ of Engineering, University of Novi Sad, Tr
g D. Obradovića 6, 21000 Novi Sad, Serbia and Montenegro

 $^{^2 \}rm Department$ of Mathematics and Informatics, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia and Montenegro

The next theorem describes the partitions of $\mathcal{P}^{n}(\mathbf{r})$ into classes on which it is possible to approximate the given function F by a Boolean function f.

Theorem 1.2. Let $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$, and let \sim be an equivalence relation on $\mathcal{P}^n(\mathbf{r})$ such that for $(X_1, \ldots, X_n) \sim (Y_1, \ldots, Y_n)$,

$$F(X_1,\ldots,X_n)\oplus F(Y_1,\ldots,Y_n)\subseteq \bigcup_{i=1}^n (X_i\oplus Y_i)$$

holds. Then for every element $X = (X_1, \ldots, X_n) \in \mathcal{P}^n(\mathbf{r})$ there exists a Boolean function $f_X : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ which coincides with F on [X], where [X] is the equivalence class of X. This Boolean function is given by

$$f_X(U_1,\ldots,U_n) = \bigcup_{Y \in [X]} F(Y_1,\ldots,Y_n) \bigcap_{i=1}^n (Y_i \oplus U_i \oplus \mathbf{r})$$

for every $U = (U_1, \ldots, U_n) \in \mathcal{P}^n(\mathbf{r}).$

2. The Equivalence Relations Generated by a Set–Valued Function

Definition 2.1. Let $X = (X_1, ..., X_n)$, $Y = (Y_1, ..., Y_n) \in \mathcal{P}^n(\mathbf{r})$. We say that $(X_1, ..., X_n) \sim_1 (Y_1, ..., Y_n)$ if

$$F(X_1,\ldots,X_n)\oplus F(W_1,\ldots,W_n)\subseteq \bigcup_{i=1}^n (X_i\oplus W_i)$$

is equivalent to

$$F(Y_1,\ldots,Y_n)\oplus F(W_1,\ldots,W_n)\subseteq \bigcup_{i=1}^n (Y_i\oplus W_i)$$

for every $W = (W_1, \ldots, W_n) \in \mathcal{P}^n(\mathbf{r}).$

Theorem 2.1. Relation \sim_1 is an equivalence relation on $\mathcal{P}^n(\mathbf{r})$, and on the equivalence classes of \sim_1 it is possible to approximate the function F by a Boolean function.

Proof. Relation \sim_1 is obviously reflexive, symmetric and transitive.

For $X = (X_1, \ldots, X_n) \in \mathcal{P}^n(\mathbf{r})$ we introduce the collection of sets $Q_F(X) = \{(W_1, \ldots, W_n) \in \mathcal{P}^n(\mathbf{r}) | F(X_1, \ldots, X_n) \oplus F(W_1, \ldots, W_n) \subseteq \bigcup_{i=1}^n (X_i \oplus W_i)\}$. Then $X \sim_1 Y$ if and only if $Q_F(X) = Q_F(Y)$. Since $X \in Q_F(X)$, we have that for $X \sim_1 Y, F(X_1, \ldots, X_n) \oplus F(Y_1, \ldots, Y_n) \subseteq \bigcup_{i=1}^n (X_i \oplus Y_i)$ holds, i.e., it is possible

to approximate F by Boolean functions on the equivalence classes of the relation \sim_1 .

Next we give some properties of the relation \sim_1 for some values of n and r.

Case r = 1

In this case the set $\mathcal{P}(\mathbf{r})$ is isomorphic to the two-element Boolean algebra \mathbf{B}_2 , $\mathcal{P}^n(\mathbf{r})$ is isomorphic to \mathbf{B}_2^n so that every function $F : \mathcal{P}^n(\mathbf{1}) \to \mathcal{P}(\mathbf{1})$ is Boolean and has one equivalence class.

Case n = 1, r = 2

This case is studied in [3], and the following results are obtained:

k – number of classes	number of functions with k classes
1	16
2	16
3	128
4	96

In [5] we obtained the following results for the relation \sim_1 :

Case n = 1, r = 3

k – number of classes	number of functions with k classes
1	64
2	1024
3	5504
4	34880
5	165888
6	779520
7	3386880
8	12403456

Case n = 2, r = 2

Theorem 2.2. There is no function $F : \mathcal{P}^2(2) \to \mathcal{P}(2)$ such that the relation \sim_1 has four classes.

Case $n \ge 2, r \ge 2$

Theorem 2.3. There is no function $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r}), n \geq 2$ such that the relation \sim_1 has two classes.

Another partition of $\mathcal{P}^n(\mathbf{r})$, independent of the values of the function $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$, can be obtained in the following way:

Definition 2.2. Let $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ and let $X = (X_1, \ldots, X_n)$, $Y = (Y_1, \ldots, Y_n) \in \mathcal{P}^n(\mathbf{r})$. We say that $(X_1, \ldots, X_n) \sim_2 (Y_1, \ldots, Y_n)$ if and only if $Y_i = X_i$ or $Y_i = \overline{X_i}$, $i = 1, \ldots, n$.

Theorem 2.4. Relation \sim_2 is an equivalence relation on $\mathcal{P}^n(\mathbf{r})$ which induces the partition of $\mathcal{P}^n(\mathbf{r})$ into equivalence classes such that on these classes the function F can be approximated by a Boolean function.

Proof. Relation \sim_2 is obviously reflexive, symmetric and transitive.

For any two distinct elements $(X_1, \ldots, X_n), (Y_1, \ldots, Y_n)$ from the same equivalence class there exists a $j \in \{1, \ldots, n\}$ such that $Y_j = \overline{X_j}$, so that

$$F(X_1, \dots, X_n) \oplus F(Y_1, \dots, Y_n) \subseteq \bigcup_{i=1}^n (X_i \oplus Y_i) =$$
$$= (X_1 \oplus Y_1) \cup \dots \cup (X_j \oplus Y_j) \cup \dots \cup (X_n \oplus Y_n) = \mathbf{r},$$

and also

$$F(X_1,\ldots,X_n)\oplus F(X_1,\ldots,X_n)=\emptyset\subseteq\bigcup_{i=1}^n(X_i\oplus X_i)$$

i.e., the function F can be approximated by a Boolean function on the equivalence classes generated by the relation \sim_2 .

The set $\mathcal{P}^n(\mathbf{r})$, which has 2^{rn} elements, is divided by \sim_2 into $2^{(r-1)n}$ equivalence classes, each containing 2^n elements of the form

$$\{(X_1, X_2, \dots, X_n), (X_1, X_2, \dots, \overline{X_n}), \dots, (\overline{X_1}, X_2, \dots, X_n), \dots, (\overline{X_1}, \overline{X_2}, \dots, \overline{X_n})\},\$$

so that every non–Boolean function $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ can be approximated by $2^{(r-1)n}$ Boolean functions.

Function $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ induces another equivalence relation on $\mathcal{P}^n(\mathbf{r})$ in the following way:

Definition 2.3. Let $X = (X_1, ..., X_n)$ and $Y = (Y_1, ..., Y_n)$ be two elements from $\mathcal{P}^n(\mathbf{r})$ and $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$. We say that $X \sim_3 Y$ if and only if F(X) = F(Y).

Theorem 2.5. Relation \sim_3 is an equivalence relation on $\mathcal{P}^n(\mathbf{r})$. On each equivalence class of \sim_3 , the function F can be approximated by a Boolean function.

Proof. Relation \sim_3 is obviously reflexive, symmetric and transitive.

Let $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$ be two elements from the same equivalence class. Then

$$F(X_1,\ldots,X_n)\oplus F(Y_1,\ldots,Y_n)=\emptyset\subseteq \bigcup_{i=1}^n (X_i\oplus Y_i),$$

and on the equivalence classes of \sim_3 function F can be approximated by (constant) Boolean functions.

Theorem 2.6. The number $N_{k,r,n}$ of functions $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ with k equivalence classes with respect to the relation \sim_3 is given by

$$N_{k,r,n} = \binom{2^r}{k} (-1)^k \sum_{j=1}^k (-1)^j \binom{k}{j} j^{2^{rn}} = \binom{2^r}{k} (-1)^k ((1-e^t)^k)^{(2^{rn})}|_{t=0}.$$

Proof. The set-valued function $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ is completely determined by its table of values, i.e., by the array of 2^{rn} elements from $\mathcal{P}(\mathbf{r})$. We can choose k values out of 2^r values in $\binom{2^r}{k}$ ways, and the number of ways we can arrange those k values in 2^{rn} places is given by

$$k^{2^{rn}} - \binom{k}{k-1} (k-1)^{2^{rn}} + \dots + (-1)^{k-1} \binom{k}{1} 1^{2^{rn}} = \sum_{i=0}^{k-1} (-1)^i \binom{k}{k-i} (k-i)^{2^{rn}} = \sum_{j=1}^k (-1)^{k-j} \binom{k}{j} j^{2^{rn}}.$$

(From the $k^{2^{rn}}$ variations of k elements of order 2^{rn} we subtract those that have less than k different elements.)

On the other hand, for

$$g(t) = (1 - e^t)^k = \sum_{j=0}^k (-1)^j \binom{k}{j} e^{jt}$$

we have

$$g^{(2^{rn})}(t) = \frac{d^{2^{rn}}}{dt^{2^{rn}}}g(t) = \sum_{j=1}^{k} (-1)^j \binom{k}{j} j^{2^{rn}} e^{jt}$$

and

$$g^{(2^{rn})}(0) = \sum_{j=1}^{k} (-1)^j \binom{k}{j} j^{2^{rn}}.$$

For the relation \sim_3 we have the following results:

Case n = 1, r = 2

k – number of classes | number of functions with k classes

1	4
2	84
3	144
4	24

Case n = 1, r = 3

number of functions with k classes
8
7112
324576
2857680
7056000
5362560
1128960
40320

It can be shown that for r > 1 there exist functions such that the relation \sim_3 partitions the set $\mathcal{P}^n(\mathbf{r})$ into more classes than the relation \sim_1 .

Theorem 2.7. For every r > 1 and $n \in N$ there exists a function $F : \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ such that the relation \sim_1 partitions the set \mathcal{P}^n in three classes, while the relation \sim_3 partitions it in 2^r classes.

Proof. Let the function $F: \mathcal{P}^n(\mathbf{r}) \to \mathcal{P}(\mathbf{r}), \ r > 1$ be given by

$$F(X_1, X_2, \dots, X_n) = \begin{cases} \bigcap_{i=1}^n X_i & \text{for } (X_1, X_2, \dots, X_n) \neq (\emptyset, \emptyset, \dots, \emptyset) \\ \mathbf{r} & \text{for } (X_1, X_2, \dots, X_n) = (\emptyset, \emptyset, \dots, \emptyset) \end{cases}$$

First, we show that this function is not Boolean. Let us suppose on the contrary that it is. Then there exist A_0 , $A_{i_1,\ldots,i_m} \in P(\mathbf{r})$ such that

$$F(X_1, X_2, \dots, X_n) = A_0 \oplus \sum_{m=1}^n \sum_{i_1, \dots, i_m}^{1, 2, \dots, n} A_{i_1, \dots, i_m} X_{i_1} \dots X_{i_m}.$$

We have

$$F(\emptyset, \emptyset, \dots, \emptyset) = A_0 = \mathbf{r}, \text{ so } A_0 = \mathbf{r};$$
$$F(\mathbf{r}, \emptyset, \dots, \emptyset) = A_0 \oplus A_1 = \mathbf{r} \oplus A_1 = \emptyset,$$

 \mathbf{SO}

$$A_1 = \mathbf{r}$$
 and similarly $A_2 = \ldots = A_n = \mathbf{r};$

$$F(\mathbf{r},\mathbf{r},\emptyset,\ldots,\emptyset) = A_0 \oplus A_1 \oplus A_2 \oplus A_{1,2} = \mathbf{r} \oplus \mathbf{r} \oplus \mathbf{r} \oplus A_{1,2} = \mathbf{r} \oplus A_{1,2} = \emptyset,$$

 \mathbf{SO}

$$A_{1,2} = \mathbf{r}$$
 and similarly $A_{1,3} = \ldots = A_{n-1,n} = \mathbf{r};$
...

$$F(\mathbf{r},\mathbf{r},\ldots,\mathbf{r},\emptyset) = \underbrace{\mathbf{r} \oplus \mathbf{r} \oplus \ldots \oplus \mathbf{r}}_{2^{n-1}-1} \oplus A_{1,2,\ldots,n-1} = \mathbf{r} \oplus A_{1,2,\ldots,n-1} = \emptyset,$$

 \mathbf{SO}

$$A_{1,2,\dots,n-1} = \mathbf{r} \text{ and similarly } A_{1,2,\dots,n-2,n} = \dots = A_{2,3,\dots,n} = \mathbf{r};$$
$$F(\mathbf{r},\mathbf{r},\dots,\mathbf{r}) = \underbrace{\mathbf{r} \oplus \mathbf{r} \oplus \dots \oplus \mathbf{r}}_{2n-1} \oplus A_{1,2,\dots,n} = \mathbf{r} \oplus A_{1,2,\dots,n} = \mathbf{r}, \ A_{1,2,\dots,n} = \emptyset.$$

As r > 1, $\{0\} \neq \mathbf{r}$ and

$$F(\{0\}, \emptyset, \dots, \emptyset) = A_0 \oplus A_1\{0\} = \mathbf{r} \oplus \mathbf{r}\{0\} = \overline{\mathbf{r}} \oplus \{0\} = \overline{\{0\}}.$$

On the other hand, by definition of the function F, we have

$$F(\{0\}, \emptyset, \dots, \emptyset) = \emptyset,$$

a contradiction, so F is not Boolean.

Function F obviously takes all the values from $\mathcal{P}(\mathbf{r})$, that is $im(F) = \mathcal{P}(\mathbf{r})$, so the relation \sim_3 partitions the set $\mathcal{P}^n(\mathbf{r})$ into 2^r equivalence classes.

Relation \sim_2 partitions the set $\mathcal{P}^n(\mathbf{r})$ into $2^{(r-1)n}$ equivalence classes.

We shall show that the relation \sim_1 partitions the set $\mathcal{P}^n(\mathbf{r})$ into three equivalence classes by determining the collection Q_F for every element from $\mathcal{P}^n(\mathbf{r})$.

Since, for every $(X_1, X_2, \ldots, X_n) \in \mathcal{P}^n(\mathbf{r}), (X_1, X_2, \ldots, X_n) \neq (\emptyset, \emptyset, \ldots, \emptyset)$, we have

$$F(\emptyset, \emptyset, \dots, \emptyset) \oplus F(X_1, X_2, \dots, X_n) =$$

= $\mathbf{r} \oplus X_1 X_2 \dots X_n = \overline{X_1 X_2 \dots X_n} = \overline{X_1} \cup \overline{X_2} \cup \dots \cup \overline{X_n},$

and

$$\bigcup_{i=1}^{n} (\emptyset \oplus X_i) = \bigcup_{i=1}^{n} X_i,$$

then

$$F(\emptyset, \emptyset, \dots, \emptyset) \oplus F(X_1, X_2, \dots, X_n) \subseteq \bigcup_{i=1}^n X_i$$

if and only if $\bigcup_{i=1}^{n} X_i = \mathbf{r}$. (If $\bigcup_{i=1}^{n} X_i = \mathbf{r}$, then surely

$$F(\emptyset, \emptyset, \dots, \emptyset) \oplus F(X_1, X_2, \dots, X_n) \subseteq \bigcup_{i=1}^n X_i.$$

If, on the other hand, there is a $k \in \{0, 1, ..., r-1\}$ such that $k \notin \bigcup_{i=1}^{n} X_i$, then $k \in \overline{\bigcup_{i=1}^{n} X_i} = \bigcap_{i=1}^{n} \overline{X_i} \subseteq \bigcup_{i=1}^{n} \overline{X_i}$, that is $F(\emptyset, \emptyset, ..., \emptyset) \oplus F(X_1, X_2, ..., X_n) \not\subseteq \bigcup_{i=1}^{n} X_i$.)

L. Čomić, R. Tošić

So $Q_F(\emptyset, \emptyset, \dots, \emptyset) = \{(\emptyset, \emptyset, \dots, \emptyset)\} \cup \{(X_1, X_2, \dots, X_n) \in \mathcal{P}^n(\mathbf{r}) | \bigcup_{i=1}^n X_i = \mathbf{r}\}.$ Further, for any two elements $(X_1, X_2, \dots, X_n), (Y_1, Y_2, \dots, Y_n)$ from $\mathcal{P}^n(\mathbf{r}),$ distinct from $(\emptyset, \emptyset, \dots, \emptyset)$, we have

$$\begin{split} F(X_1, X_2, \dots, X_n) \oplus F(Y_1, Y_2, \dots, Y_n) &= \\ &= X_1 X_2 \dots X_n \oplus Y_1 Y_2 \dots Y_n \\ &= \overline{X_1 X_2 \dots X_n} Y_1 Y_2 \dots Y_n \cup X_1 X_2 \dots X_n \overline{Y_1 Y_2 \dots Y_n} \\ &= (\overline{X_1} \cup \overline{X_2} \cup \dots \cup \overline{X_n}) Y_1 Y_2 \dots Y_n \cup X_1 X_2 \dots X_n (\overline{Y_1} \cup \overline{Y_2} \cup \dots \cup \overline{Y_n}) \\ &= \overline{X_1} Y_1 Y_2 \dots Y_n \cup \overline{X_2} Y_1 Y_2 \dots Y_n \cup \dots \cup \overline{X_n} Y_1 Y_2 \dots Y_n \\ &\cup X_1 X_2 \dots X_n \overline{Y_1} \cup X_1 X_2 \dots X_n \overline{Y_2} \cup \dots \cup X_1 X_2 \dots X_n \overline{Y_n} \\ &\subseteq \overline{X_1} Y_1 \cup \overline{X_2} Y_2 \cup \dots \cup \overline{X_n} Y_n \cup X_1 \overline{Y_1} \cup X_2 \overline{Y_2} \cup \dots \cup X_n \overline{Y_n} \\ &= (X_1 \oplus Y_1) \cup (X_2 \oplus Y_2) \cup \dots \cup (X_n \oplus Y_n) \end{split}$$

and for any $(X_1, X_2, \ldots, X_n) \neq (\emptyset, \emptyset, \ldots, \emptyset)$,

$$Q_F(X_1, X_2, \dots, X_n) = \mathbf{r} \qquad \text{if } \bigcup_{\substack{i=1\\n}}^n X_i = \mathbf{r},$$
$$Q_F(X_1, X_2, \dots, X_n) = \mathbf{r} - \{(\emptyset, \emptyset, \dots, \emptyset)\} \quad \text{if } \bigcup_{i=1}^n X_i \neq \mathbf{r}.$$

So we have shown that the relation \sim_1 partitions the set $\mathcal{P}^n(\mathbf{r})$ in three equivalence classes, one of which contains only the element $(\emptyset, \emptyset, \dots, \emptyset)$, the second contains all the elements (X_1, X_2, \dots, X_n) from $\mathcal{P}^n(\mathbf{r}) - \{(\emptyset, \emptyset, \dots, \emptyset)\}$ for which $\bigcup_{i=1}^n X_i = \mathbf{r}$, and the third contains all the elements (X_1, X_2, \dots, X_n) from $\mathcal{P}^n(\mathbf{r}) - \{(\emptyset, \emptyset, \dots, \emptyset)\}$ for which $\bigcup_{i=1}^n X_i \neq \mathbf{r}$. \Box

Example 2.1. Let the function $F : \mathcal{P}^2(\mathbf{r}) \to \mathcal{P}(\mathbf{r})$ be given by

$$F(X,Y) = \begin{cases} X \cup Y & \text{if } X = \emptyset \\ X \cap Y & \text{otherwise} \end{cases}$$

for $r \geq 2$.

This function is not Boolean. Let us suppose, on the contrary, that it is. Then there exist $A_0, A_1, A_2, A_{12} \in \mathcal{P}^2(\mathbf{r})$ such that F can be written in the form $F(X, Y) = A_0 \oplus A_1 X \oplus A_2 Y \oplus A_{12} X Y$. Then

$$F(\emptyset, \emptyset) = A_0 = \emptyset,$$

$$F(\emptyset, \mathbf{r}) = A_2 = \mathbf{r},$$

On the implementation of set-valued non-Boolean functions

$$F(\mathbf{r}, \emptyset) = A_1 = \emptyset,$$

$$F(\mathbf{r}, \mathbf{r}) = \mathbf{r} \oplus A_{12} = \mathbf{r}, \ A_{12} = \emptyset,$$

so that F(X, Y) = Y. Since r > 1, we have $\{0\} \neq \mathbf{r}$, and

$$F(\{0\},\{0\}) = \{0\} \neq \emptyset$$

which is a contradiction.

The number of equivalence classes with respect to \sim_2 is four, while the number of classes with respect to \sim_1 is six, which can be verified using the program given in Appendix.

Appendix

```
program n2r2;
type skup = set of 0..15;
var n,n2,k,l,broj,brojac,i,j : integer;
    f: array [0..3, 0..3] of 0..3;
    x : array [0..3] of 0..3;
    g: array [0..15] of skup;
    xx : array [0..3, 0..3] of 0..15;
    novaklasa : boolean;
    ul,iz : text;
begin
n:=4; n2:=16;
assign (ul,'ulazn2r2.txt');
assign (iz,'izlazn2r2.txt');
reset(ul);
rewrite(iz);
k := 0;
for i:=0 to n-1 do begin
                      x[i]:=i;
for j:=0 to n-1 do begin
                      xx[i,j]:=k;
                      k := k + 1;
                   end;
                   end;
for i:=0 to n-1 do begin
for j:=0 to n-1 do begin
                      read(ul, f[i, j]);
                   end;
                   end;
brojac:=1;
for i:=0 to n-1 do begin
for j:=0 to n-1 do begin
       g[brojac]:=[];
       for k:=0 to n-1 do begin
```

```
for l:=0 to n-1 do begin
           if (((f[i,j] xor f[k,l]) and ((x[i] xor x[k]) or (x[j] xor x[l])))
           = (f[i,j] \text{ xor } f[k,l]))
           then begin
                   g[brojac] := g[brojac] + [xx[k,l]];
                 end;
       end;
       end:
       brojac:=brojac+1;
end;
end;
broj := 1;
for i:=1 to n2-1 do begin
    novaklasa := true;
    for j:=0 to i-1 do begin
         if g[j] = g[i] then novaklasa := false;
     end;
     if novaklasa then broj := broj + 1;
end;
writeln ('',broj);
close(ul);
close(iz);
end.
```

References

- Ngom, A., Reicher, C., Simovici, D. A., Stojmenović, I., Set-Valued Logic Algebra: A Carrier Computing Foundation. Multi. Val. Logic 2(1997), 183–216.
- [2] Reicher, C., Simovici, D. A., Bio–Algebras. Proc. of the 20th Int. Symp. on Multiple–Valued Logic (1990), 48–53.
- [3] Reischer, C., Simovici, D. A., On the Implementation of Set-Valued Non-Boolean Switching Functions. Proc. of the 21st Int. Symp. on Multiple-Valued Logic (1991), 166–172.
- [4] Rudeanu, S., Boolean Functions and Equations. Amsterdam: North-Holland, 1974.
- [5] Tošić, R., Čomić, L., On Set Valued Non-Boolean Functions. Novi Sad J. Math. (2000), 79–88.
- [6] Tošić, R., Stojmenović, I., Simovici, D. A., Reischer, C., On Set–Valued Functions and Boolean Collections. Proc. of the 22nd Int. Symp. on Multiple–Valued Logic (1992), 250–254.

Received by the editors April 14, 2003