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ON THE IMPLEMENTATION OF SET–VALUED
NON–BOOLEAN FUNCTIONS

Lidija Čomić1, Ratko Tošić2

Abstract. In the set of functions F : Pn(r) → P(r) the subset of Boolean
functions is not complete. We study the ways of partitioning the definition
domain Pn(r) of a set–valued function F into equivalence classes with
respect to equivalence relations generated by F so that on these classes a
Boolean function f equal to F exists.
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1. Introduction

Let r = {0, 1, ..., r− 1}, r ≥ 1, and let P(r) be the set of subsets of r. Then
(P(r), ∅, r,∪,∩,̄ ) is a Boolean algebra. There are 2r2rn

set-valued functions
F : Pn(r) → P(r), and only 2r2n

of them are Boolean. (More on set-valued
functions and their applications can be found in [1], [2], [6].)

Let ⊕ denote the symmetric difference over P(r). It is well known that a
function F : Pn(r) → P(r) is Boolean if and only if it can be represented in the
form

F (X1, . . . , Xn) = A0 ⊕
n∑

m=1

1,2,...,n∑

i1,...,im

Ai1,...,imXi1 . . . Xim

for all X1, . . . , Xn ∈ P(r), where A0 and Ai1,...,im are constants of P(r), and
the sum is extended over all

(
n
m

)
subsets {i1, . . . , im} of m distinct indices from

the set {1, . . . , n}. The coefficients A0 and Ai1,...,im are uniquely determined by
F .

The following property of Boolean functions, given in [4], is the generalization
of the results of McKinsey and Scognamiglio.

Theorem 1.1. If f : Pn(r) → P(r) is a Boolean function then

f(X1, . . . , Xn)⊕ f(Y1, . . . , Yn)⊆
n⋃

i=1

(Xi ⊕ Yi)

for all X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) ∈ Pn(r).
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The next theorem describes the partitions of Pn(r) into classes on which it
is possible to approximate the given function F by a Boolean function f .

Theorem 1.2. Let F : Pn(r) → P(r), and let ∼ be an equivalence relation on
Pn(r) such that for (X1, . . . , Xn) ∼ (Y1, . . . , Yn),

F (X1, . . . , Xn)⊕ F (Y1, . . . , Yn)⊆
n⋃

i=1

(Xi ⊕ Yi)

holds. Then for every element X = (X1, . . . , Xn) ∈ Pn(r) there exists a Boolean
function fX : Pn(r) → P(r) which coincides with F on [X], where [X] is the
equivalence class of X. This Boolean function is given by

fX(U1, . . . , Un) =
⋃

Y ∈[X]

F (Y1, . . . , Yn)
n⋂

i=1

(Yi ⊕ Ui ⊕ r)

for every U = (U1, . . . , Un) ∈ Pn(r).

2. The Equivalence Relations Generated by a Set–Valued
Function

Definition 2.1. Let X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) ∈ Pn(r). We say
that (X1, . . . , Xn) ∼1 (Y1, . . . , Yn) if

F (X1, . . . , Xn)⊕ F (W1, . . . , Wn) ⊆
n⋃

i=1

(Xi ⊕Wi)

is equivalent to

F (Y1, . . . , Yn)⊕ F (W1, . . . ,Wn) ⊆
n⋃

i=1

(Yi ⊕Wi)

for every W = (W1, . . . , Wn) ∈ Pn(r).

Theorem 2.1. Relation ∼1 is an equivalence relation on Pn(r), and on the
equivalence classes of ∼1 it is possible to approximate the function F by a
Boolean function.

Proof. Relation ∼1 is obviously reflexive, symmetric and transitive.
For X = (X1, . . . , Xn) ∈ Pn(r) we introduce the collection of sets QF (X) =

{(W1, . . . , Wn) ∈ Pn(r)|F (X1, . . . , Xn)⊕F (W1, . . . ,Wn) ⊆
n⋃

i=1

(Xi⊕Wi)}. Then

X ∼1 Y if and only if QF (X) = QF (Y ). Since X ∈ QF (X), we have that for

X ∼1 Y , F (X1, . . . , Xn)⊕F (Y1, . . . , Yn) ⊆
n⋃

i=1

(Xi⊕Yi) holds, i.e., it is possible
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to approximate F by Boolean functions on the equivalence classes of the relation
∼1. 2

Next we give some properties of the relation ∼1 for some values of n and r.

Case r = 1

In this case the set P(r) is isomorphic to the two-element Boolean algebra
B2, Pn(r) is isomorphic to Bn

2 so that every function F : Pn(1) → P(1) is
Boolean and has one equivalence class.

Case n = 1, r = 2

This case is studied in [3], and the following results are obtained:

k − number of classes number of functions with k classes
1 16
2 16
3 128
4 96

In [5] we obtained the following results for the relation ∼1:

Case n = 1, r = 3

k − number of classes number of functions with k classes
1 64
2 1024
3 5504
4 34880
5 165888
6 779520
7 3386880
8 12403456

Case n = 2, r = 2

Theorem 2.2. There is no function F : P2(2) → P(2) such that the relation
∼1 has four classes.

Case n ≥ 2, r ≥ 2

Theorem 2.3. There is no function F : Pn(r) → P(r), n ≥ 2 such that the
relation ∼1 has two classes.

Another partition of Pn(r), independent of the values of the function F :
Pn(r) → P(r), can be obtained in the following way:
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Definition 2.2. Let F : Pn(r) → P(r) and let X = (X1, . . . , Xn), Y =
(Y1, . . . , Yn) ∈ Pn(r). We say that (X1, . . . , Xn) ∼2 (Y1, . . . , Yn) if and only
if Yi = Xi or Yi = Xi, i = 1, . . . , n.

Theorem 2.4. Relation ∼2 is an equivalence relation on Pn(r) which induces
the partition of Pn(r) into equivalence classes such that on these classes the
function F can be approximated by a Boolean function.

Proof. Relation ∼2 is obviously reflexive, symmetric and transitive.
For any two distinct elements (X1, . . . , Xn), (Y1, . . . , Yn) from the same equi-

valence class there exists a j ∈ {1, . . . , n} such that Yj = Xj , so that

F (X1, . . . , Xn)⊕ F (Y1, . . . , Yn) ⊆
n⋃

i=1

(Xi ⊕ Yi) =

= (X1 ⊕ Y1) ∪ . . . ∪ (Xj ⊕ Yj) ∪ . . . ∪ (Xn ⊕ Yn) = r,

and also

F (X1, . . . , Xn)⊕ F (X1, . . . , Xn) = ∅ ⊆
n⋃

i=1

(Xi ⊕Xi),

i.e., the function F can be approximated by a Boolean function on the equiva-
lence classes generated by the relation ∼2.

The set Pn(r), which has 2rn elements, is divided by ∼2 into 2(r−1)n equi-
valence classes, each containing 2n elements of the form

{(X1, X2, . . . , Xn), (X1, X2, . . . , Xn), . . . (X1, X2, . . . , Xn) . . . (X1, X2, . . . , Xn)},
so that every non–Boolean function F : Pn(r) → P(r) can be approximated by
2(r−1)n Boolean functions. 2

Function F : Pn(r) → P(r) induces another equivalence relation on Pn(r)
in the following way:

Definition 2.3. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two elements
from Pn(r) and F : Pn(r) → P(r). We say that X ∼3 Y if and only if
F (X) = F (Y ).

Theorem 2.5. Relation ∼3 is an equivalence relation on Pn(r). On each equi-
valence class of ∼3, the function F can be approximated by a Boolean function.

Proof. Relation ∼3 is obviously reflexive, symmetric and transitive.
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two elements from the same

equivalence class. Then

F (X1, . . . , Xn)⊕ F (Y1, . . . , Yn) = ∅ ⊆
n⋃

i=1

(Xi ⊕ Yi),

and on the equivalence classes of ∼3 function F can be approximated by (con-
stant) Boolean functions. 2
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Theorem 2.6. The number Nk,r,n of functions F : Pn(r) → P(r) with k equi-
valence classes with respect to the relation ∼3 is given by

Nk,r,n =
(

2r

k

)
(−1)k

k∑

j=1

(−1)j

(
k

j

)
j2rn

=
(

2r

k

)
(−1)k((1− et)k)(2

rn)|t=0.

Proof. The set–valued function F : Pn(r) → P(r) is completely determined by
its table of values, i.e., by the array of 2rn elements from P(r). We can choose
k values out of 2r values in

(
2r

k

)
ways, and the number of ways we can arrange

those k values in 2rn places is given by

k2rn −
(

k

k − 1

)
(k − 1)2

rn

+ . . . + (−1)k−1

(
k

1

)
12rn

=

=
k−1∑

i=0

(−1)i

(
k

k − i

)
(k − i)2

rn

=
k∑

j=1

(−1)k−j

(
k

j

)
j2rn

.

(From the k2rn

variations of k elements of order 2rn we subtract those that have
less than k different elements.)

On the other hand, for

g(t) = (1− et)k =
k∑

j=0

(−1)j

(
k

j

)
ejt

we have

g(2rn)(t) =
d2rn

dt2rn g(t) =
k∑

j=1

(−1)j

(
k

j

)
j2rn

ejt

and

g(2rn)(0) =
k∑

j=1

(−1)j

(
k

j

)
j2rn

.

2

For the relation ∼3 we have the following results:

Case n = 1, r = 2

k − number of classes number of functions with k classes
1 4
2 84
3 144
4 24

Case n = 1, r = 3
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k − number of classes number of functions with k classes
1 8
2 7112
3 324576
4 2857680
5 7056000
6 5362560
7 1128960
8 40320

It can be shown that for r > 1 there exist functions such that the relation
∼3 partitions the set Pn(r) into more classes than the relation ∼1.

Theorem 2.7. For every r > 1 and n ∈ N there exists a function F : Pn(r) →
P(r) such that the relation ∼1 partitions the set Pn in three classes, while the
relation ∼3 partitions it in 2r classes.

Proof. Let the function F : Pn(r) → P(r), r > 1 be given by

F (X1, X2, . . . , Xn) =





n⋂
i=1

Xi for (X1, X2, . . . , Xn) 6= (∅, ∅, . . . , ∅)
r for (X1, X2, . . . , Xn) = (∅, ∅, . . . , ∅)

First, we show that this function is not Boolean. Let us suppose on the
contrary that it is. Then there exist A0, Ai1,...,im ∈ P (r) such that

F (X1, X2, . . . , Xn) = A0 ⊕
n∑

m=1

1,2,...,n∑

i1,...,im

Ai1,...,imXi1 . . . Xim .

We have
F (∅, ∅, . . . , ∅) = A0 = r, so A0 = r;

F (r, ∅, . . . , ∅) = A0 ⊕A1 = r⊕A1 = ∅,
so

A1 = r and similarly A2 = . . . = An = r;

F (r, r, ∅, . . . , ∅) = A0 ⊕A1 ⊕A2 ⊕A1,2 = r⊕ r⊕ r⊕A1,2 = r⊕A1,2 = ∅,
so

A1,2 = r and similarly A1,3 = . . . = An−1,n = r;

. . .

F (r, r, . . . , r, ∅) = r⊕ r⊕ . . .⊕ r︸ ︷︷ ︸
2n−1−1

⊕A1,2,...,n−1 = r⊕A1,2,...,n−1 = ∅,
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so
A1,2,...,n−1 = r and similarly A1,2,...,n−2,n = . . . = A2,3,...n = r;

F (r, r, . . . , r) = r⊕ r⊕ . . .⊕ r︸ ︷︷ ︸
2n−1

⊕A1,2,...,n = r⊕A1,2,...,n = r, A1,2,...,n = ∅.

As r > 1, {0} 6= r and

F ({0}, ∅, . . . , ∅) = A0 ⊕A1{0} = r⊕ r{0} = r⊕ {0} = {0}.

On the other hand, by definition of the function F , we have

F ({0}, ∅, . . . , ∅) = ∅,

a contradiction, so F is not Boolean.
Function F obviously takes all the values from P(r), that is im(F ) = P(r),

so the relation ∼3 partitions the set Pn(r) into 2r equivalence classes.
Relation ∼2 partitions the set Pn(r) into 2(r−1)n equivalence classes.
We shall show that the relation ∼1 partitions the set Pn(r) into three equiv-

alence classes by determining the collection QF for every element from Pn(r).
Since, for every (X1, X2, . . . , Xn) ∈ Pn(r), (X1, X2, . . . , Xn) 6= (∅, ∅, . . . , ∅),

we have

F (∅, ∅, . . . , ∅)⊕ F (X1, X2, . . . , Xn) =

= r⊕X1X2 . . . Xn = X1X2 . . . Xn = X1 ∪X2 ∪ . . . ∪Xn,

and
n⋃

i=1

(∅ ⊕Xi) =
n⋃

i=1

Xi,

then

F (∅, ∅, . . . , ∅)⊕ F (X1, X2, . . . , Xn) ⊆
n⋃

i=1

Xi

if and only if
n⋃

i=1

Xi = r. (If
n⋃

i=1

Xi = r, then surely

F (∅, ∅, . . . , ∅)⊕ F (X1, X2, . . . , Xn) ⊆
n⋃

i=1

Xi .

If, on the other hand, there is a k ∈ {0, 1, . . . , r − 1} such that k /∈
n⋃

i=1

Xi,

then k ∈
n⋃

i=1

Xi =
n⋂

i=1

Xi ⊆
n⋃

i=1

Xi, that is F (∅, ∅, . . . , ∅)⊕ F (X1, X2, . . . , Xn) 6⊆
n⋃

i=1

Xi.)
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So QF (∅, ∅, . . . , ∅) = {(∅, ∅, . . . , ∅)}∪{(X1, X2, . . . , Xn) ∈ Pn(r)|
n⋃

i=1

Xi = r}.
Further, for any two elements (X1, X2, . . . , Xn), (Y1, Y2, . . . , Yn) from Pn(r),

distinct from (∅, ∅, . . . , ∅), we have

F (X1, X2, . . . , Xn)⊕ F (Y1, Y2, . . . , Yn) =

= X1X2 . . . Xn ⊕ Y1Y2 . . . Yn

= X1X2 . . . XnY1Y2 . . . Yn ∪X1X2 . . . XnY1Y2 . . . Yn

= (X1 ∪X2 ∪ . . . ∪Xn)Y1Y2 . . . Yn ∪X1X2 . . . Xn(Y1 ∪ Y2 ∪ . . . ∪ Yn)

= X1Y1Y2 . . . Yn ∪X2Y1Y2 . . . Yn ∪ . . . ∪XnY1Y2 . . . Yn

∪X1X2 . . . XnY1 ∪X1X2 . . . XnY2 ∪ . . . ∪X1X2 . . . XnYn

⊆ X1Y1 ∪X2Y2 ∪ . . . ∪XnYn ∪X1Y1 ∪X2Y2 ∪ . . . ∪XnYn

= (X1 ⊕ Y1) ∪ (X2 ⊕ Y2) ∪ . . . ∪ (Xn ⊕ Yn)

and for any (X1, X2, . . . , Xn) 6= (∅, ∅, . . . , ∅),

QF (X1, X2, . . . , Xn) = r if
n⋃

i=1

Xi = r,

QF (X1, X2, . . . , Xn) = r− {(∅, ∅, . . . , ∅)} if
n⋃

i=1

Xi 6= r.

So we have shown that the relation ∼1 partitions the set Pn(r) in three equi-
valence classes, one of which contains only the element (∅, ∅, . . . , ∅), the sec-
ond contains all the elements (X1, X2, . . . , Xn) from Pn(r)− {(∅, ∅, . . . , ∅)} for

which
n⋃

i=1

Xi = r, and the third contains all the elements (X1, X2, . . . , Xn) from

Pn(r)− {(∅, ∅, . . . , ∅)} for which
n⋃

i=1

Xi 6= r. 2

Example 2.1. Let the function F : P2(r) → P(r) be given by

F (X,Y ) =
{

X ∪ Y if X = ∅
X ∩ Y otherwise

for r ≥ 2.

This function is not Boolean. Let us suppose, on the contrary, that it is.
Then there exist A0, A1, A2, A12 ∈ P2(r) such that F can be written in the form
F (X,Y ) = A0 ⊕A1X ⊕A2Y ⊕A12XY. Then

F (∅, ∅) = A0 = ∅,

F (∅, r) = A2 = r,
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F (r, ∅) = A1 = ∅,
F (r, r) = r⊕A12 = r, A12 = ∅,

so that F (X,Y ) = Y. Since r > 1, we have {0} 6= r, and

F ({0}, {0}) = {0} 6= ∅

which is a contradiction.
The number of equivalence classes with respect to ∼2 is four, while the

number of classes with respect to ∼1 is six, which can be verified using the
program given in Appendix. 2

Appendix

program n2r2;
type skup = set of 0..15;
var n,n2,k,l,broj,brojac,i,j : integer;

f : array [0..3,0..3] of 0..3;
x : array [0..3] of 0..3;
g : array [0..15] of skup;
xx : array [0..3,0..3] of 0..15;
novaklasa : boolean;
ul,iz : text;

begin
n:=4; n2:=16;
assign (ul,’ulazn2r2.txt’);
assign (iz,’izlazn2r2.txt’);
reset(ul);
rewrite(iz);
k:=0;
for i:=0 to n-1 do begin

x[i]:=i;
for j:=0 to n-1 do begin

xx[i,j]:=k;
k:=k+1;

end;
end;

for i:=0 to n-1 do begin
for j:=0 to n-1 do begin

read(ul,f[i,j]);
end;
end;

brojac:=1;
for i:=0 to n-1 do begin
for j:=0 to n-1 do begin

g[brojac]:=[];
for k:=0 to n-1 do begin
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for l:=0 to n-1 do begin
if (((f[i,j] xor f[k,l]) and ((x[i] xor x[k]) or (x[j] xor x[l])))
= (f[i,j] xor f[k,l]))
then begin

g[brojac] :=g[brojac] + [xx[k,l]];
end;

end;
end;
brojac:=brojac+1;

end;
end;
broj := 1;
for i:=1 to n2-1 do begin

novaklasa := true;
for j:=0 to i-1 do begin

if g[j] = g[i] then novaklasa := false;
end;
if novaklasa then broj := broj + 1;

end;
writeln (’ ’,broj);
close(ul);
close(iz);

end.
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[6] Tošić, R., Stojmenović, I., Simovici, D. A., Reischer, C., On Set–Valued Functions
and Boolean Collections. Proc. of the 22nd Int. Symp. on Multiple–Valued Logic
(1992), 250–254.

Received by the editors April 14, 2003


