
107Novi Sad J. Math.
Vol. 34, No. 1, 2004, 107-130

QUALITY CONTROL SYSTEM OF XML
BIBLIOGRAPHIC RECORDS

Gordana Budimir1, Dušan Surla2

Abstract. The aim of this paper was not only to define the XML biblio-
graphic records format, but also to describe the use of different XML stan-
dards and off-the-shelf tools in library automation. The quality control
system of bibliographic records within the BISIS library software system
has been implemented using XML Schema, XSLT and XPath languages,
according to UNIMARC bibliographic format. The paper describes the
possibility of using XML in bibliographic record control. The categoriza-
tion of UNIMARC bibliographic records verifications, that could help to
determine record quality, is discussed. Additionally, it describes XML
schema for XML format used in the BISIS system. The XML schema and
XSLT expressions for additional control of bibliographic records present
the basis of XML bibliographic record quality control system. A proto-
type of this system is implemented in the Java programming environment,
independently from bibliographic format, using XML validation, parsing
and transformation tools. Thus, it may be used for performing XML
bibliographic record quality control, which have different bibliographic
formats, using XML schema and XSLT expressions specified in the paper.

AMS Mathematics Subject Classification (2000):

Key words and phrases: XML Schema, XSLT/XPath, UNIMARC biblio-
graphic records, validation, transformation

1. Introduction

Nowadays, XML (eXtensible Markup Language) is not only a ’new language
on the Web’, but is often referred to as a technology in the maturity phase
that includes many recommendations and their implementations. In addition, a
variety of XML tools are developed that are based on the already standardized
APIs. In library information systems, XML has been used since the introduc-
tion of XML 1.0 specification [1]. At present, however, the use of XML does
not take advantage of all XML possibilities in these systems. An issue that has
been discussed most is the relationship between different bibliographic formats
and XML formats of bibliographic records, in the sense of defining them most
completely by XML language. Although there are intentions of using XML

1Institute of Information Science, Maribor, Slovenia
2Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad,

Trg D. Obradovica 4, Novi Sad 21000, Serbia and Montenegro, E-mail: surla@uns.ns.ac.yu



108 G. Budimir, D. Surla

only as a new bibliographic record format, some recent far-reaching initiatives
intend to use the XML in library information systems as an entirely new tech-
nology, with all its standards, tools and methodologies. The development of
XML-based library information systems includes implementation of different li-
brary functions, such as receiving, saving, searching, presenting or exchanging
bibliographic data. Hence, a variety of XML specifications are used; for exam-
ple, XML Schema [2-4] or XSLT (XSL Transformation) [5], and XPath (XML
Path Language) [6] specifications that are parts of XSL (eXtensible Stylesheet
Language) specification [7].

The BISIS library software system [8] has been developed at the University
of Novi Sad since 1993 and several versions have been introduced so far. For
version 3.0, a text server has been developed for indexing and searching bib-
liographic records according to the UNIMARC (Universal Machine Readable
Cataloguing) [9] bibliographic format. This server has some characteristics that
result in better performance: three-tier architecture, the use of the Java plat-
form and independence from relational database system. Support for Unicode
(The Unicode Standard) [10] is consistently implemented in the whole system
of the BISIS Version 3.0. Detailed instructions for the use of this system are
given in [8], including 140 references to BISIS system development. Part of the
system that refers to user’s search is available from [11]. Some of the references
[12-15] refer to the future development based on XML.

This paper describes a quality control system of XML bibliographic records
according to UNIMARC bibliographic format, that will be a part of the next
version of the BISIS system. The prototype of this system is implemented in
the Java programming environment and may be incorporated into some other
library information systems and library system networks.

2. Bibliographic record control

Quality control of bibliographic records is one of the most important func-
tions of library information systems, as the quality of bibliographic record pro-
cessing in different library functions depends on it. For example, results of bib-
liographic data retrieval depend on the data included in bibliographic records
(title, author, year of publication, publisher, etc.).

Bibliographic data can be entered into a library system through a user inter-
face, by bibliographic record exchange or by the conversion of bibliographic data
from some existing bibliographic database. The quality of received bibliographic
records varies; they may contain deviations from the rules of the bibliographic
format implemented in the system. Thus, errors occurring in records have to
be corrected, to prevent saving syntactically and semantically incorrect records
to local library systems. In this way, error correcting leads to increased record
quality.

With this in view, it is required to accomplish verifications of records, con-
cerning syntax and semantic rules of a bibliographic format. These verifications



Quality control system of XML bibliographic records 109

make it possible to detect errors in cataloguing of library materials, and warn
cataloguers about the missing data or inadequate contents in parts of some
records. However, cataloguers will still be responsible for bibliographic record
quality, as only experienced cataloguers are able to find all the mistakes in a
record. Without their knowledge, errors in a record may be found only if an
algorithm for adequate verification is defined.

The first problem that appears is how to define verifications of bibliographic
records that can discover most of errors in records and enable the best record
control. The second problem is the implementation of a system for bibliographic
record control that should capture all of these verifications. In library systems,
the problem of bibliographic record control is solved in different ways, depend-
ing on the bibliographic format and the system implementation environment.
Usually, the implementation of a particular library function includes some pro-
gramming code for verification of some bibliographic record constraints.

In the BISIS system, the problem of bibliographic record control is generally
solved by the quality control system of XML bibliographic records according to
the UNIMARC bibliographic format. This control system is implemented as a
prototype in the Java programming language, based on XML schema validation
and XSLT expressions that perform additional verification of XML bibliographic
records. The prototype is implemented independently from the bibliographic
format. Thus, it may be used to perform quality control of XML bibliographic
records for some other bibliographic format that has the same XML schema
validation and XSLT expressions defined.

The following sections describe categorization of verifications of UNIMARC
bibliographic records. Also, XML Schema, XSLT and XPath expressions that
have been used for modeling record verifications are given. We believe that
these concepts are applicable to modeling verifications of bibliographic records
for other bibliographic formats, too [16].

3. Systematization of verifications

A bibliographic format is a standard for the representation and exchange
of bibliographic and related information in a machine-readable form. The bib-
liographic record contains three elements: the record structure, the content
designation, and the data content of the record. From the aspect of record
structure, the data in the bibliographic record are organized into fields, each
being identified by a three-character tag, and containing up to two indicators
and set of subfields. Content designation represents the codes and conventions
established to identify and characterize the data elements that comprise a bibli-
ographic record with sufficient precision to support manipulation of the data for
a variety of functions. The content of most data elements is defined by standards
outside the formats, e.g., cataloguing rules, like ISBD (International Standard
Bibliographic Description) [17] or AACR (Anglo-American Cataloguing Rules)
[18].



110 G. Budimir, D. Surla

Bibliographic record control has to verify the record structure and content,
regarding the syntax and semantic rules of a particular bibliographic format and
certain cataloguing rules. Thus, verifications of bibliographic records may be
divided into two groups (1) structure verifications and (2) content verifications.
Both depend on the library material type (monographs, serials, articles, etc.)
in the same way as bibliographic record structure and content depend on them.
Additionally, these verifications could be divided according to the number of
fields, subfields and indicators, into:

• single-element verifications that check the structure or content of one sin-
gle field, subfield or indicator,

• cross-verifications that check the structure or contents of semantically con-
nected fields, subfields or indicators.

3.1 Single-element verifications

The verification of a single field, subfield or indicator checks its structure
or content, independently from the appearance, structure and content of other
fields, subfields and indicators. These verifications check the following levels of
content designation defined by a bibliographic format and check data content
in regard to the following cataloguing rules:

• existence of fields, subfields and indicators in a record,
• appearance of mandatory fields in a record and subfields in a field,
• appearance of repeatable fields in a record and subfields in a field,
• existence of indicator types,
• appearance of secondary fields (fields that appear in subfield $1 of fields
421, 423 or 469),

• appearance of coded-data subfields,
• length of subfields, and
• additional controls of subfield content (for example, correctness of ISBN

or ISSN numbers).

The single-element verifications for records of particular bibliographic format
can be shown in a table that contains descriptions of all fields, subfields and
indicators. For example, Table I shows some single- element verifications for
UNIMARC bibliographic records.

The existence of a field/subfield is indicated in the column field/sbf of Table I
with a field/subfield identifier. The column T contains marks of library material
types (M - monographs, S - serials, C - collections, A - articles, or N non-book
materials) in which this field/subfield may appear. If a field/subfield may appear
in records of all types, column T remains empty.

The existence of an indicator is shown in columns ind1 and ind2 of Table
I with the types of the first and second indicator (for example, T01 for the
first indicator in the field 500). Indicator types are marked with Txy, where xy



Quality control system of XML bibliographic records 111

represents limits of the interval that contains possible values of indicator (for
example, type T01 includes only 0 or 1). This describes typical indicators. If
an indicator has a fixed value, the column contains its value (for example, the
fixed value of the second indicator in the field 500 is 0). If an indicator is not
defined in the bibliographic format, the column contains x.

Whether a field/subfield is mandatory or not is indicated in the column M/N
of Table I, where M stands for mandatory, or N for non-mandatory fields/subfields.
Replication of a field/subfield is indicated in the column R/N, where R stands
for field/subfield that may be repeated, while N stands for those that may not.
The letters in parentheses mark library material types a characteristic relates
to. For example, column M/N contains N(MSN), M(A) for the field 102, which
means that the field 102 is non-mandatory for monographs, serials and non-book
materials, and mandatory for articles.

Subfield length is indicated in the column F/V of Table I, where F stands for
fixed-length subfields and V for variable-length subfields. The fixed length or
maximal variable length of subfield content is added in brackets alongside these
marks. For example, the column F/V contains F (3) for the subfield 102$a,
which means that the subfield has fixed-length content of 3 characters.

Content of subfield coded I (Table I, column C) belongs to the list of internal
codes, whereas the other codes stand for the list of external codes (e.g. 2 denotes
country code). The internal list of codes contains coded values for one subfield,
while the external list of codes contains coded values for varieties of subfields.
For example, for all subfields from field 101, the column C contains number 2,
which represents the external list with language codes.

Additional control of subfield content is indicated in the column Ctrl of
Table I, with the identification number of the control that checks corresponding
correctness of subfield content. Additional controls are numbered and described
as in Table II. For example, for the subfield 010$a, the column Ctrl contains
number 3, which represents additional control of ISBN numbers. Secondary
field is indicated with number 12 in the column Ctrl, which represents additional
control for verifying secondary fields.

Table I. Examples of verifications for UNIMARC bibliographic records.

field ind1 ind2 sbf M/N R/N F/V C Ctrl T
010 x x N R MCAN

a N N F(13) 3 MCAN
b N N MCAN
d N N M
z N R MN

101 T02 x M N
a M R F(3) 2
b N R F(3) 2 MAN
c N R F(3) 2
d N R F(3) 2 MSAN
e N R F(3) 2 MSN
f N R F(3) 2 MSN



112 G. Budimir, D. Surla

g N N F(3) 2 MSAN
h N R F(3) 2 MN
i N R F(3) 2 MAN
j N R F(3) 2 MN

102 x x N(MSN),M(A) N MSAN
a N(MSN),M(A) R F(3) 3 MSAN

105 x x N R
a N N
c N N
d N N
e N R MSCN

500 T01 0 N R MN
a N R MN
b N R MN
h N R MN
i N R MN
l N N MN
m N N F(3) 2 MN

Table II. Examples of additional controls for UNIMARC bibliographic records.

control description
1 control of date format - length 8, form YYYYMMDD, leap-year
3 control of ISBN - length 13, modulus 11
7 control of year - length 4, not less then 1000, if not 9999 or ????

field secondary fields in subfield $1
200abcdefghiz, 205abdfg, 206?, 210abcdefgh,

421
215acde, 225adefhivx, 300?, 500abhilm
200abhi, 500abhi, 503aj, 700abcdef4, 701abcdef4,

12

423, 469
710abcdef4, 711abcdef4

3.2 Cross-verifications

Cross-verifications check the structure and contents of fields, subfields and
indicators that are related to structures or contents of other fields, subfields,
indicators, or library material type. For example, cross- verifications may verify
if the year of publication in the subfield 100$d is greater than or equal to the
year in the subfield 100$c. All such constraints are defined by the bibliographic
format and certain cataloguing rules. Cross-verifications of bibliographic records
may be divided into four groups (Table III).

Table III. Groups of cross-verifications.

group cross-verifications

I verifications that depend on library material type
verifications that depend on appearance order of subfields in a field,

II
and of fields in a record
verifications that depend on the structure or contents of other fields,

III
subfields or indicators in the same record
verifications that depend on the structure or contents of other fields,

IV
subfields or indicators in upper- level records in the same bibliographic database

Record errors that can be found by means of these verifications may be
divided into three levels depending on their importance:



Quality control system of XML bibliographic records 113

• fatal errors that must be corrected before saving a record (F),
• warning errors that may be corrected in some circumstances (W),
• information errors that need not be corrected (I).

Examples of cross-verifications for UNIMARC bibliographic records are de-
scribed in Table IV. For each verification, Table IV contains information about
verification group from Table III (group), the importance level of found error
(level), list of fields, subfields and indicators that have to be verified (fields),
formal description of verification algorithm (verification) and textual descrip-
tion of verification (verification description). For example, third row of Table
IV describes cross-verification from group II (Table III) that verifies order of ap-
pearance for subfields $a and $c of field 210, and that finds error of importance
of level W (warning).

Table IV. Examples of cross-verifications for UNIMARC bibliographic records.

group level fields verification verification description
I F 001$d article ⇒ t(001$d)=’2’ Hierarchical level for articles is 2.

011$a, ∃(t(011$a) ∨ t(464$1)) ⇒ Subfields 011$a and 464$a appear in
I F

464$1 article records for articles only.
∃ (t(210$a)⇒ ∃ t(210$c) If subfield $c exists in field 210, subfield

II W 210$a$c
before t(210$a) a$ has to appear before subfield $c.

t(100$b)=’e’ ⇒ t(100$c)> Year of publication 1 is greater than year of
III F 100$b$c$d

t(100$d) publication 2 in records for reproductions.
∀ t(327 ind1 ind2)= ∀ t(327 All fields 327 must have the same

III F 327
ind1 ind2) values of indicators.

(∃t(700)⇒ ¬t(710))∨ (∃t(7 Fields 700 and 710 cannot appear in
III F 700,710

100⇒ ¬∃ t(700)) the record in the same time.
record with ID from subfield Subfield 464$1 appears only as a link

IV F 464$1
464$1is for monograph to records for monograph publications.

4. Modeling verifications with XML schema

If bibliographic records are represented with XML format, the definition of
this XML format in XML schema can be used for bibliographic record validation.
XML format definition of bibliographic records can be specified in various ways
depending on their use: bibliographic record exchange, bibliographic record val-
idation, or different services - TVS (Transport, Validation and Services) [19,20].
For example, MARC 21 format has two definitions for XML records; MARC
XML [21] and MODS [22]. The characteristics of bibliographic records that can
be checked with XML schema depend on XML element naming and their struc-
ture [23]. Bibliographic data should not be merged into single XML element.
Each field, subfield and indicator should be represented with an XML element,
with a different name and without attributes. That allows validating a bibli-
ographic XML document against specified XML Schema, in accordance with
specified rules. In the BISIS system, the format of XML bibliographic records
is defined in such a way that the root element is record, elements correspond-
ing to fields are fxxx, where xxx is a field identifier, elements corresponding to



114 G. Budimir, D. Surla

subfields are sfx, where x is a subfield identifier, and elements corresponding
to the first and second indicators are ind1 and ind2. Figure 1 shows so-defined
XML elements for a title in a UNIMARC bibliographic record.

<f200>
<ind1>1</ind1>
<sfa>The photosynthetic bacterial reaction center</sfa>
<sfe>structure and dynamics</sfe>
<sfe>[proceedings of NATO Advanced Research Workshop on the Structure

of the Photosynthetic Bacterial Reaction Centre...held September
20-25, 1987, Cadarache, France]</sfe>

<sff>edited by Jacques Breton and AndrVermlio</sff>
</f200>

Figure 1. Example of a title in the BISIS XML format.

For each library material type specific XML schema incorporating corre-
sponding verification rules described in previous chapters has been defined:

• single-element verifications, except leap year control and control of ISBN
and ISSN numbers by modulus 11 (Table II), and

• cross-verifications from I and II group (Table III).

Figure 2 shows a part of the schema definition for XML bibliographic records
of monographs. Definitions of XML schema for XML bibliographic records of
any library material type can be specified in a similar way.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:include schemaLocation="CommonTypes.xsd"/>
<xsd:include schemaLocation="IndicatorTypes.xsd"/>
<xsd:include schemaLocation="InternalCodes.xsd"/>
<xsd:include schemaLocation="ExternalCodes.xsd"/>
<xsd:include schemaLocation="Controls.xsd"/>
<xsd:include schemaLocation="MonographsBlock9.xsd"/>
<xsd:element name="record">

<xsd:complexType>
<xsd:sequence>
...

<xsd:element name="f010" type="f010Type" minOccurs="0"
maxOccurs="unbounded"/>

...
<xsd:element name="f101" type="f101Type"/>
<xsd:element name="f102" type="f102Type" minOccurs="0"/>

...



Quality control system of XML bibliographic records 115

<xsd:element name="f500" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="ind1" type="indType01"/>
<xsd:element name="ind2" type="xsd:byte" fixed="0"/>
<xsd:element name="sfa" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="sfb" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="sfh" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="sfi" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="sfl" type="xsd:string"

minOccurs="0"/>
<xsd:element name="sfm" type="languageCode"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
...
<xsd:group ref="monographsblock9"/>

</xsd:sequence>
</xsd:complexType>
<xsd:unique name="f101aUnique">

<xsd:selector xpath="f101"/>
<xsd:field xpath="sfa"/>

</xsd:unique>
...
<xsd:key name="f327indKey">

<xsd:selector xpath="f327[position()=1]"/>
<xsd:field xpath="ind1"/>
<xsd:field xpath="ind2"/>

</xsd:key>
<xsd:keyref name="f327indKeyref" refer="f327indKey">

<xsd:selector xpath="f327"/>
<xsd:field xpath="ind1"/>
<xsd:field xpath="ind2"/>

</xsd:keyref>
...

</xsd:element>
</xsd:schema>

Figure 2. Part of the schema definition for records of monographs.



116 G. Budimir, D. Surla

XML schema is divided into several schema documents for easier mainte-
nance, access control, and readability:

• CommonTypes.xsd - contains definitions of common types used in declara-
tions of XML elements, corresponding to fields that can appear in records
of different library material types (e.g. 101), or that have the same struc-
ture (e.g. some fields in block 3 contain only subfield $a),

• IndicatorTypes.xsd - contains definitions of types used in declarations
of XML elements corresponding to indicators,

• InternalCodes.xsd - contains definitions of types used in declarations
of XML elements corresponding to subfields with coded values from the
internal list of codes,

• ExternalCodes.xsd - contains definitions of types used in declarations of
XML elements corresponding to subfields with coded values from external
lists of codes,

• Controls.xsd - contains definitions of types used in declarations of XML
elements corresponding to subfields the contents of which have to be ad-
ditionally checked, and

• MonographsBlock9.xsd - contains a definition of group monographsblock9
that contains declarations of XML elements corresponding to fields from
block 9 for national use.

The root element record is declared using the xsd:element element that
is defined as a complex type using the xsd:complexType element. This com-
plex type definition contains the xsd:sequence element with declarations of
fxx elements, corresponding to all fields in a record. The xsd:sequence ele-
ment specifies that the elements must appear in the same sequence (order) in
which they are declared. It contains the xsd:group element with ref attribute
that refers to the named group monographsblock9 defined in schema document
MonographsBlock9. This sequence enables modeling field appearances; their
identifiers always appear in the ascending order.

XML schema can indicate that some XML element value must be unique
within a certain scope using the xsd:unique element. The nested xsd:select ele-
ment selects a set of elements and then one or more nested xsd:field elements
identify the element relative to each selected element that has to be unique
within the scope of the set of selected elements. These elements contain xpath
attributes with XPath expressions that limit the scope of uniqueness. Note
that these expressions are limited to a subset of the full XPath Language spec-
ification. For example, Figure 2 shows the xsd:unique element that defines the
unique sfa element nested in the f101 element, and thus models uniqueness of
the subfield 101$a in the bibliographic record.

The xsd:key and xsd:keyref elements enable identification of XML ele-
ments that must have the same value. The usage of these elements is similar
to xsd:unique element syntax. It is possible to define combinations of element



Quality control system of XML bibliographic records 117

values that must be equal. For example, Figure 2 shows modeling equality of
indicators in all fields 327 (Table IV) with identifying those combinations of
ind1 and ind2 elements from all f327 elements that must have the same value.
The combination of ind1 and ind2 elements in the first f327 element is defined
by the xsd:key element, and in other f327 elements, these combinations are
defined by the corresponding xsd:keyref element.

Thereby, XML elements that are modeled as keys or as unique are required
in an XML document, so the subfields and indicators that correspond to these
XML elements must be mandatory in bibliographic records.

4.1 Modeling fields

Bibliographic fields are modeled with XML elements fxxx, where xxx is a
field identifier. These elements are declared using the xsd:element element
that contains an attribute name with an XML element name, an attribute type
with the name of an XML element type, an attribute minOccurs for modeling
mandatory fields and an attribute maxOccurs for modeling repeatable fields.
fxxx elements are declared as complex types that may be defined as anonymous
complex types (similar to f500 element in Figure 2), or as named complex types
from the included schema document CommonTypes (similar to f010 element in
Figure 2). Names of these complex types are in the form fxxxType, where xxx
is a field identifier. For example, Figure 3 shows definitions of named complex
types used in declarations for f010 and f102 elements.

<xsd:complexType name="f010Type">
<xsd:sequence>

<xsd:element name="sfa" type=" control3Type" minOccurs="0"/>
<xsd:element name="sfb" type="xsd:string" minOccurs="0"/>
<xsd:element name="sfd" type="xsd:string" minOccurs="0"/>
<xsd:element name="sfz" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="f102Type">

<xsd:sequence>
<xsd:element name="sfa" type="countryCode" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="sfb" type="sf102bType" minOccurs="0

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

Figure 3. Definitions of complex types for XML elements corresponding to
fields.



118 G. Budimir, D. Surla

The complex type definition contains an xsd:sequence element with dec-
larations of ind1 and ind2 elements, corresponding to the first and second
indicator in a field, and with declarations of sfx elements, corresponding to
subfields appearing in a field in the same sequence (order) in which they are de-
clared. This element enables modeling of indicators and subfields appearances
in a certain sequence in a field.

However, in some fields (e.g. 200, 210) order of subfield combinations is
important and should be in accordance with particular cataloguing rules. Such
verifications belong to group II of cross-verifications that are described in Table
IV. Modeling of these verifications is performed by using xsd:group elements,
enabling groups of elements to be defined and named. Elements, corresponding
to subfields that can appear in any order in a field, are modeled by using the
xsd:all element. The following example shows modeling of verification that
checks appearance of the subfield $a before the subfield $c in the 210 field:

<xsd:complexType name="f210Type">
<xsd:sequence>

<xsd:group ref="groupf2101" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="sfd" type="var25Type" minOccurs="0"/>
<xsd:group ref="groupf2102" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:group name="groupf2101">

<xsd:all>
<xsd:element name="sfa" type="xsd:string" minOccurs="0"/>
<xsd:group ref="groupf210ac" minOccurs="0"/>
<xsd:element name="sfb" type="xsd:string" minOccurs="0"/>

</xsd:all>
</xsd:group>
<xsd:group name="groupf210ac">

<xsd:sequence>
<xsd:element name="sfa" type="xsd:string">
<xsd:element name="sfc" type="xsd:string">

</xsd:sequence>
</xsd:group>
<xsd:group name="groupf2102">

<xsd:sequence>
<xsd:element name="sfe" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="sff" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="sfg" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="sfh" type="xsd:string" minOccurs="0"



Quality control system of XML bibliographic records 119

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:group>

Figure 4. Definition of complex type for XML element corresponding to field
210.

4.2 Modeling indicators

Indicators in a bibliographic field are modeled with XML elements ind1 and
ind2. These elements are declared using the xsd:element element that con-
tains an attribute name with an XML element name, an attribute type with the
name of an XML element type, an attribute minOccurs for modeling mandatory
indicators, and an attribute fixed for modeling fixed values of indicators (e.g.
definition in the declaration of the XML element f500 in Figure 2). ind1 and
ind2 elements are declared as enumeration simple types that are derived by re-
stricting the built-in simple type xsd:byte. These enumeration simple types are
defined in the schema document IndicatorTypes by using xsd:simpeType ele-
ment definitions that contain the xsd:restriction element with the attribute
base="xsd:byte".

To identify the facets that constrain the defined type’s range of values, this
element contains xsd:enumeration elements that limit the simple type to the
set of distinct values defined in value attributes. Names of these types are in
the form indTypexy, where xy represents limits of the defined type’s range of
values, corresponding to all possible values of indicators. Definitions of these
types enable modeling of indicator type. The following example shows definition
of the indType01 simple type used in modeling of the indicator type T01 that
has possible values 0 and 1:

<xsd:simpleType name="indType01">
<xsd:restriction base="xsd:byte">

<xsd:enumeration value="0"/>
<xsd:enumeration value="1"/>

</xsd:restriction>
</xsd:simpleType>

Figure 5. Definition of simple type for XML element corresponding indicator.

4.3 Modeling subfields

Bibliographic subfields are modeled with XML elements sfx, where x is a
subfield identifier. These elements are declared using the xsd:element element
that contains an attribute name with an XML element name, an attribute type
with the name of an XML element type, an attribute minOccurs for model-
ing mandatory subfields, and an attribute maxOccurs for modeling repetition
subfields. sfx elements are usually declared as the built-in simple types (e.g.



120 G. Budimir, D. Surla

sfb element nested in f010 element in Figure 3) or as named simple types
from the schema documents InternalCodes, ExternalCodes and Controls
(e.g. sfb element nested in f102 element in Figure 3, the type of which is de-
clared to be sf102bType simple type defined in Figure 7). Restriction, extension
and union as built-in simple types are defined by xsd:simpleType element, i.e.
xsd:restriction, xsd:exstension and xsd:union elements, respectively.

Exceptions to the above are sf1 elements, corresponding to subfields $1
that contain secondary fields (Table II). These elements are declared as complex
types, in the same way as sf4211Type complex type is defined in the following
example, that shows the f421 element definition:

<xsd:element name="f421" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="ind2" type="indType01"/>
<xsd:element name="sf1" type="sf4211Type" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name="sf4211Type">

<xsd:choice>
<xsd:element name="f200" type="f200Type" minOccurs="0"/>
<xsd:element name="f205" type="f205Type" minOccurs="0"/>
<xsd:element name="f206" type="f206Type" minOccurs="0"/>
<xsd:element name="f210" type="f210Type" minOccurs="0"/>
<xsd:element name="f215" type="f215Type" minOccurs="0"/>
<xsd:element name="f225" type="f225Type" minOccurs="0"/>
<xsd:element name="f300" type="f300Type" minOccurs="0"/>
<xsd:element name="f500" type="f500Type" minOccurs="0"/>

</xsd:choice>
</xsd:complexType>

Figure 6. Definition of complex type for XML element corresponding to field
421.

The sf1 element contains exactly one of the elements corresponding to the
secondary field. This constraint is defined by using the element xsd:choice in a
complex type definition. The xsd:choice element contains elements declaration
for all possible secondary fields, which are modeled in the same way as all other
bibliographic fields, but only one of its subelements is allowed to appear in an
instance. Elements, corresponding to subfields with coded values from some
list of codes, are declared as named simple types from the included schema
documents InternalCodes and ExternalCodes. The following example shows
definitions of the simple type sf102bType and the simple type countryCode
used in the declaration of such elements.



Quality control system of XML bibliographic records 121

<xsd:simpleType name="sf102bType">
<xsd:restriction base="xsd:string">

<xsd:pattern value="fb|rs|cr|ko|sr|vj"/>
</xsd:restriction>

</xsd:simpleType>
<xsd:simpleType name="countryCode">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="abw"/>
<xsd:enumeration value="afg"/>

.....
</xsd:restriction>

</xsd:simpleType>

Figure 7. Definitions of simple types for lists of codes.

Names of types used in declarations of elements corresponding to subfields
with coded values from internal lists of codes, are in the form sfdddxType,
where dddx is a field and subfield identifier (similar to sf102bType simple type
in Figure 7). These types are usually derived by restricting the built-in simple
types xsd:string that are defined by using the xsd:restriction element,
which constrains the values of the element declared by using the xsd:pattern
element in conjunction with the regular expression in the attribute value. This
expression determines all possible values in elements, and is based on the simple
type definition. For example, the definition of the type sf102bType in Figure 7
gives values fb, rs, cr, ko, sr or vj.

Names of types used in declarations of elements, corresponding to subfields
with coded values from external lists of codes, depend on the meaning of these
codes. These types are usually enumerations that are derived by restricting
the built-in simple type xsd:string. For example, the definition of the type
countryCode in Figure 7 specifies that all elements whose type is declared to be
this simple type, must contain one of country codes defined in value attributes
of xsd:enumaration elements.

Elements, corresponding to subfields whose contents have to be additionally
checked, are declared as named simple types from the included schema document
Controls. The controls comprise the control of subfield content length (Table I)
and additional controls from Table II. The following example shows definitions
of the simple type var25Type and the simple type control7Type used in the
declaration of such elements.

<xsd:simpleType name="var25Type">
<xsd:restriction base="xsd:string">

<xsd:maxLength value="25"/>
</xsd:restriction>

</xsd:simpleType>
<xsd:simpleType name="control7Type">



122 G. Budimir, D. Surla

<xsd:union>
<xsd:simpleType>
<xsd:restriction base="xsd:gYear">

<xsd:minInclusive value="1000"/>
</xsd:restriction>

</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="(\d|[?]){4}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Figure 8. Definitions of simple types for content control.

Names of such types depend on content length of corresponding subfields.
Thus, the simple type fixXType defines string content with fixed length X,
whereas the simple type varXType, defines string content with maximal length
X (as the var25Type simple type). In the same manner, simple types whose
names are in the forms intXType, intmaxXType or decmaxXType define inter-
vals of integer or decimal numbers that the corresponding subfield can con-
tain. All these types represent restriction of the built-in type xsd:string or
xsd:positiveInteger, which has the subelements that determine more specif-
ically the length of the content, defined by using the xsd:restriction ele-
ment that constrains the values of the declared element using xsd:pattern,
xsd:length, xsd:maxLength, xsd:totalDigits, or xsd:maxInclusive.

Names of types used in declarations of elements corresponding to the sub-
fields whose content must be additionally checked by some control from Table
II are given by controlXType, where X is the identification number of the con-
trol. Restriction or union of built-in simple types can be specified by using
the xsd:simpeType element that contains xsd:restriction and xsd:union
elements. For example, the definition of the type control7Type is used in
declarations of elements corresponding to subfields that have to be checked ac-
cording to control 7 from Table II. According to control 3 from Table II for the
verification of ISBN numbers the control3Type simple type is defined on the
basis of the simple type defined in [24], already defined and used, for example,
in the declaration of the element corresponding to the subfield 010$a (Figure
3).

5. Modeling verifications with XSLT

As it has been shown, the majority of bibliographic record characteristics can
be specified with the appropriate XML schema. However, XML schema cannot



Quality control system of XML bibliographic records 123

capture some specific dependences that may exist in bibliographic records. For
example, the constraint which determines that the year of publication in the sfd
element, corresponding to the subfield 100$d, must be greater than or equal to
the year of publication in the sfc element, corresponding to the subfield 100$c
(Table IV).

For checking such constraints we can choose one of the following options
[25]: to use XML schema constraint language (Schematron [26]), to develop
some programming codes that check these constraints (in Java, Perl, C++,
etc.), or to write a stylesheet to check the constraints with XSLT and XPath
languages. Considering advantages and disadvantages of these options, we de-
cided to use XSLT and XPath languages for modeling most of bibliographic
record verifications that cannot be modeled with XML schema. For other con-
straints that cannot be captured by XSLT and Xpath, programming code in
Java should be developed. However, for UNIMARC bibliographic records, all
specific categorized verifications can be modeled with XSLT expressions:

• verification of leap year and ISBN and ISSN numbers by modulus 11
(Table II), and

• cross-verifications from group III and IV (Table III).

When an error occurs, the text with record identification (ID), the level of
error importance (FATAL, WARNING, INFORMATION) and error description will be
shown in output, as in the following example:

ID=123456
FATAL - Subfields 100bcd: for reproductions (100b=’e’) year of
publication 2 must be greater or equal to the year of publication 1.

The XSLT stylesheet for XML bibliographic records is defined with the
xsl:template element that transforms the root element record into the result
tree that contains text nodes with descriptions of errors in an XML bibliographic
record. Figure 9 shows a part of this template definition.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="txt"/>
<xsl:template match="record">

<xsl:variable name="ID" select="f000/sfx"/>
<xsl:text>&#10;&#10;ID=</xsl:text>
<xsl:value-of select="$ID"/>
<xsl:variable name="sf100b" select="f100/sfb"/>
<xsl:variable name="f436ind2" select="f436[1]/ind2"/>
<xsl:variable name="f700" select="f700"/>
<xsl:variable name="f710" select="f710"/>



124 G. Budimir, D. Surla

...
<xsl:if test="string-length(./f071) > 0 and not($sf001b=’c’ or

$sf001b=’i’ or $sf001b=’j’)">
<xsl:text>&#10;WARNING - Field 071: field 071 can be used for
printed music scores and sound recordings
(001b=’c’,’i’,’j’).</xsl:text>

</xsl:if>
...
<xsl:choose>

<xsl:when test="$sf100b=’e’ and not(number($sf100c) &lt;
number($sf100d))">

<xsl:text>&#10;FATAL - Subfields 100bcd: for reproductions
(100b=’e’) year of publication 2 must be greater or equal to the
year of publication 1. </xsl:text>

</xsl:when>
...

</xsl:choose>
...
<xsl:for-each select="f101/sfa">

<xsl:variable name="sf101a" select="."/>
<xsl:for-each select="../sfb|../sfc">
<xsl:if test="$sf101a=.">

<xsl:text>&#10;WARNING - Subfields 101abc: languages codes in
101bc cannot be equal to the language code in
101a.</xsl:text>

</xsl:if>
</xsl:for-each>

</xsl:for-each>
...
<xsl:for-each select="f436[position()>1]">

<xsl:if test="$f436ind2 != ./ind2">
<xsl:text>&#10;WARNING - Field 436: all 436 fields mast have

the same value of second indicator.</xsl:text>
</xsl:if>

</xsl:for-each>
...
<xsl:if test="string-length($f700) > 0 and string-length($f710) >

0">
<xsl:text>&#10;FATAL - Field 700,710: 700 and 710 fields cannot
appear in the same time.</xsl:text>

</xsl:if>
...
</xsl:stylesheet>



Quality control system of XML bibliographic records 125

Figure 9. Part of XSLT template for root XML element record.

The xsl:output element outputs the result tree by producing output con-
taining string-value of every text node in the result tree in the document or-
der. Modeling verifications of XML elements is performed with the xsl:if and
xsl:when elements, nested in the xsl:choose element, with the test attribute.
This attribute specifies XPath expressions that define conditions on which a
text node is to be generated by the nested xsl:text element; the node contains
descriptions of errors, and will be inserted into the result tree.

xsl:variable elements are used to bind variables and have the required
attribute name, which specifies the name of a variable. Variable values can be
inserted into the result tree as text nodes with xsl:value-of elements. Ref-
erences to these variables in select and test attributes are in the form $var,
where var is a variable name. For example, $sf100b refers to the sf100b vari-
able that contains the value of the XML element corresponding to the subfield
100$b.

Repeatable fields and subfields are modeled with repeatable XML elements.
Sometimes, all of these repeatable XML elements must be checked. This can
be defined with the xsl:for-each element that contains a template, which is
instantiated for each node corresponding to repeatable XML elements, selected
by the XPath expression and specified by the select attribute. For example,
Figure 9 shows verification of values for all sfa elements nested in f101 ele-
ments, corresponding to all subfields 101$a. Or, for example, selection of all
repeatable fields 436, except for the first one, is defined with the expression
f436[position()>1] in Figure 9.

An xsl:template element with a name attribute specifies a named tem-
plate. An xsl:call- template element invokes a template by name; it has a
required name attribute that identifies the template to be invoked. xsl:param
elements are allowed as subelements at the beginning of an xsl:template ele-
ment. Parameters are passed to templates using the xsl:with-param element.
The required name attribute specifies the name of the parameter. For example,
the named template date, with two arguments (content and name) is defined to
control the leap year in some subfields. The control of ISBN and ISSN numbers
by modulus 11 is modeled with specific templates based on the template [27]
that has already been defined. In this definition, mathematical functions sum,
dev, mod and floor, operations + and *, and recursion of some template are
used to calculate verification numbers by modulus 11.

Articles and other component parts are connected with upper-level biblio-
graphic records for serial or monograph publications through subfields 011$a
and 464$1. Group IV of cross-verifications (Table IV) describes the constraints
that have to be checked. After verification of all XML elements according to
XML elements from the same XML document, verification of some XML el-
ements according to an XML element from an XML document that contains
upper-level records has to be performed. For example, the XML document



126 G. Budimir, D. Surla

base.xml contains the collection element with nested record elements cor-
responding to upper-level bibliographic records. Elements from this XML doc-
ument can be accessed through the base variable that is defined as presented
in Figure 10.

<xsl:variable name="base"
select="document(’base.xml’)/collection/record"/>

<xsl:for-each select="$base">
<xsl:if test="./f000/sfx=$sf4641">
...
</xsl:if>

</xsl:for-each>

Figure 10. Part of XSLT template for accesing elements from XML document.

The document(’base.xml’) function passes all record elements from the
base.xml document into the nodes of the input tree for XSLT transformations.
These nodes can be transformed in a similar way as other nodes in the input
tree by referring to the base variable.

Controls and listings presented in this paper can be modeled using some of
the existing software tools (e.g. XMLSpy editor).

6. System implementation

The quality control system for UNIMARC bibliographic records based on
specific XML schema and XSLT expressions has been developed within BISIS
library software system. The control system prototype is implemented in the
Java programming environment using the following tools: for validation - MSV
(Sun Multi-Schema XML Validator) [28], for parsing - Xerces [29], and for trans-
formation - Xalan [30]. The characteristics of these tools are:

• they are in the open-source domain,
• they implement standard interfaces: JARV (Java API for RELAX Ver-

ifier) [31] for validation, TrAX (Transformation API for XML) [32] for
transformation and JAXP (Java API for XML Processing 1.2) [33] for
parsing XML documents,

• they support specifications of XML Schema, XSLT, XPath, DOM [34] and
SAX [35],

• MSV enables schema caching that makes validation of XML documents
faster, as schema is parsing into the memory only once,

• MSV is fail-fast and reports all validation errors at once, unlike for exam-
ple, XMLSpy editor [36] that reports only the first validation error,

• Xerces enables caching of XSLT specification,
• MSV and Xerces are thread-safe for useing saved XML schema and XSLT

specification, which is important in developing Web Services for quality
control of XML bibliographic records.



Quality control system of XML bibliographic records 127

Quality control of XML bibliographic records performs as follows. Firstly,
specified XML schema and XSLT expression should be parsed and saved. Sec-
ondly, records should be validated and transformed according to saved speci-
fications. Validation messages and the text that is the result of XML record
transformation are stored in an output file that is followed by error processing
in XML records. GUI (Graphical User Interface) is simple, and is shown in
Figure 11.

Figure 11. GUI for quality control system of XML bibliographic records.

The text field labeled with XML contains the name of the input file that
holds XML bibliographic records. The text field labeled with LOG contains
the name of the output file that contains error messages after quality control
is performed. OK button starts control. If some other bibliographic format is
processed, the text field labeled with XML contains the names of files that hold
the corresponding XML schema and XSLT expressions. In this case INIT button
submits initialization of new quality control system for bibliographic records
according to this bibliographic format. Further controls of XML bibliographic
records will be performed according to the new specifications. Therefore, it is
not necessary to restart the application.

Complete listing of XML Schema and XSLT language, as well as the appli-
cation itself can be obtained electronically from the authors on request.

7. Conclusion

Control of bibliographic record quality encompasses control of their struc-
ture and contents. The records can be mapped into XML documents. In the
proposed system the control of quality of XML bibliographic records is carried
out using XML schema and XSLT languages. The major part of the controls
can be described using XML schema language, and the rest require the applica-
tion of an appropriate algorithm (procedure), and they are described by XSLT
language. Based on this, a prototype of the system for controlling quality of



128 G. Budimir, D. Surla

bibliographic records is implemented in the Java programming environment ac-
cording to UNIMARC format. The controls have been proved and used in the
BISIS library software system.

The advantage of so-defined quality control system is its independence from
bibliographic format. Thus, implemented prototype may be used for biblio-
graphic record control of some other bibliographic format for which equivalent
XML schema and XSLT specification are defined. Concepts presented in this
paper may be used in modeling these XML specifications for validation and
transformation of XML bibliographic records for some other bibliographic for-
mat.

The prototype could be expanded with more sophisticated GUI or with a
different organisation of error messages. Onto this prototype, additional library
system functions may be developed, for example, XML editor of bibliographic
records that does not require user knowledge of XML, or some Web service for
bibliographic record control.

Acknowledgments. This paper is part of the research project ’XML Tech-
nologies and Cooperative Information Systems’, supported by the Ministry of
Science and Environmental Protection of the Republic of Serbia (Project No.
1875). The authors are indebted to one of the referees who performed the
painstaking task of correcting the English of the paper.

References

[1] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Franis, Y., Extensi-
ble Markup Language (XML) 1.0 (Third Edition). W3C Recommendation 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/ [4 February 2004].

[2] Fallside, D. C., XML Schema Part 0: Primer. W3C Recommendation 2001.
http://www.w3.org/TR/xmlschema-0/ [20 January 2002].

[3] Tomphson, H. S., Beech D., Maloney, M., Mendelsohn, N., XML Schema Part 1:
Structures. W3C Recommendation 2001. http://www.w3.org/TR/xmlschema-1/
[5 February 2002].

[4] Biron, P. V., Malhotra, A., XML Schema Part 2: Datatyps. W3C Recommenda-
tion 2001. http://www.w3.org/TR/xmlschema-2/ [5 February 2002].

[5] Clark, J., editor, XSL Transformations (XSLT), Version 1.0. W3C Recommen-
dation 1999. http://www.w3c.org/TR/xslt [2 September 2002].

[6] Clark, J., DeRose, S., editors, XML Path Language. W3C Recommendation 1999.
http://www.w3.org/TR/xpath [2 September 2002].

[7] Adler, S., Berglund, A. Caruso, J., Deach, S., Graham, T., Grosso, P.,
Gutentag, E., Milowski, A., Parnell, S., Richman, J., Zilles, S., Extensi-
ble Stylesheet Language (XSL), Version 1.0. W3C Recommendation 2001.//
http://www.w3c.org/TR/xsl [20 September 2002].

[8] Surla, D., Konjovic, Z., et al., Instruction Manual for Library Software System
BISIS vesion 3. Group for Information Technologies, Novi Sad, 2003 (in Serbian).



Quality control system of XML bibliographic records 129

[9] UNIMARC Manual: bibliographic.format / International Federation of Library
Associations and Institutions. IFLA Universal Bibliographic Control and Inter-
national MARC Programme, New Providence, London, 1994.

[10] The Unicode Consortium. The Unicode Standard, Version 4.0 . Boston, MA,
Addison-Wesley, 2003. ISBN 0- 321-18578-1.
http://www.unicode.org/versions/Unicode4.0.0/ [16 January 2004].

[11] Library information system BISIS, http://libsrv.im.ns.ac.yu [2 February
2004].

[12] Zeremski, M., Modeling of UNIMARC Format in XML Technology, Mater
Thesis, Faculty of Sciences, Novi Sad, 2002 (in Serbian),

http://diglib.ns.ac.yu/ndltd/docs/set1/ndltd64/ZeremskiMMagistarskaTeza.pdf

[20 December 2002].

[13] Mijic, V., XML Editor for UNIMARC format description, Master Thesis, Faculty
of Sciences, Novi Sad, 2003 (in Serbian),

http://diglib.ns.ac.yu/ndltd/docs/set1/ndltd133/MijicVMagistarskaTeza.pdf

[3 September 2003].

[14] Vidakovic, J., Modeling and Implementation of Bibliographical Cataloguing
Cards in XML Technology, Master Thesis, Faculty of Sciences, Novi Sad, 2003
(in Serbian),
http://diglib.ns.ac.yu/ndltd/docs/set2/ndltd335/JovanaMagistarski.pdf

[25 November 2003].

[15] Milosavljevic, B., Extensible Multimedia Information Retrieval System, Ph.D.
Thesis, Faculty of Technical Sciences, Novi Sad, 2003 (in Serbian),

http://diglib.ns.ac.yu/ndltd/docs/set1/ndltd143/xmirs.pdf [30 May 2003].

[16] Budimir, G., Quality Control of XML Bibliographic Records, Master Thesis, Fac-
ulty of Sciences, Novi Sad, 2004 (in Serbian),
http://diglib.ns.ac.yu/ndltd/docs/set3/ndltd409/kontrola kvaliteta.pdf

[15 June 2004]

[17] IFLA, Family of ISBDs : Publication list. International Federation of Library
Associations and Institutions,
http://www.ifla.org/VI/3/nd1/isbdlist.htm [30 September 2003].

[18] Delsey, T., The Logical Structure of the Anglo-American Cataloguing Rules Part
I, The Joint Steering Committee for Revision of AACR 1998.
http://webdoc.gwdg.de/ebook/aw/1999/jsc/aacr.pdf [8 March 2002].

[19] TVS Model, BookMARC, Servis de Informao Bibliogrica, Lda,
http://www.bookmarc.pt/tvs/ [14 January 2003].

[20] Carvalho, J., Cordeiro, M. I., XML and bibliographic data: the TVS (Transport,
Validation, Services) model, IFLA Council and General Conference, vol. 68, 2002.
http://www.ifla.org/IV/ifla68/papers/075-095e.pdf [30 September 2002].

[21] LOC. MARC 21 XML Schema. The Library of Congress,
http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd [18 May
2004].

[22] LOC. Metadata Object Description Schema (MODS), The Library of Congress,
http://www.loc.gov/standards/mods/ [12 December 2003].



130 G. Budimir, D. Surla

[23] Budimir, G., MARC records and XML. INFOTHECA, Journal of Informatics and
Librarianship, 2004; 4(1-2). http://www.unilib.bg.ac.yu/bibliotekarstvo/

infoteka/1 2-2004/MARCXML%20fin%20(2).pdf [18 Jun 2004].

[24] Costello, R., Sperberg, S., XML Schema simpleType Definition of an ISBN,
Xfront 2004. http://www.xfront.com/isbn.xsd [30 January 2004].

[25] Costello, R., et al., XML Schemas: Best Practices, xFront 2003,
http://www.xfront.com/BestPracticesHomepage.html [17 February 2003].

[26] Jelliffe, R., The Schematron: An XML Structure Validation Language us-
ing Patterns in Trees. Academia Sinica Computing Centre, Taibei, 1999-2001,
http://www.ascc.net/xml/resource/schematron/schematron.html#overview

[2 February 2002].

[27] Costello, R., Sperberg, S., XSLT-validation of an ISBN, Xfront,
http://www.xfront.com/isbn.xsl [30 June 2004].

[28] Kawaguchi, K., Sun Multi-Schema XML Validator, Sun Microsystems, Inc. 1994-
2004. http://www.sun.com/software/xml/developers/multischema/ [30 April
2003].

[29] Xerces, The Apache Software Foundation, http://xml.apache.org/xerces-j/

[11 May 2002].

[30] Xalan, The Apache Software Foundation, http://xml.apache.org/xalan-j/ [30
November 2003].

[31] Kawaguchi, K., JARV User’s Guide,
http://iso-relax.sourceforge.net/JARV/JARV.html [15 Jan 2003].

[32] Java API for XML Processing (JAXP), Sun Microsystems, Inc.
http://java.sun.com/xml/jaxp/ [24 May 2004].

[33] Transformation API for XML, The Apache Software Foundation,
http://xml.apache.org/xalan-j/trax.html [15 December 2003].

[34] Le Hors, A., Le Haret, P., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne,
S., editors, Document Object Model (DOM) Level 2 Core Specification, Version
1.0. W3C Recommendation, 2000. http://www.w3.org/TR/DOM-Level-2-Core/
[10 January 2002].

[35] Simple API for XML (SAX), http://www.saxproject.org/ [24 May 2004].

[36] XMLSpy, Altova, http://www.xmlspy.com [30 January 2004].

Received by the editors September 16, 2004


