ON THE PERIODIC SOLUTION OF A CLASS OF DIFFERENCE EQUATIONS

Mirko Budinčević¹

Abstract. Solutions of first-order difference equations are investigated with respect to their periodicities. A complete answer to one open problem of Kulenović and Ladas is given.

AMS Mathematics Subject Classification (2000): 39A10

Key words and phrases: nonlinear difference equations, periodic solutions

1. Introduction

In the recent book by Kulenović and Ladas [2] a large number of open problems and conjectures, concerning the dynamics of rational difference equations were given.

We are focusing our attention on the open problem 3.4.3: Assume that the difference equation is of the form

$$(1) x_{n+1} = f(x_n)$$

where

(2)
$$f \in C[(0,\infty),(0,\infty)].$$

Obtain necessary and sufficient condition on f so that every positive solution of (1) is periodic with period $k, k \ge 2$.

The sequence

$$x_0, f(x_0), \dots, f^k(x_0), \dots,$$

where $f^{n+1} = f(f^n)$; $n \in \mathbb{N}$, is called the orbit of x_0 . We are interested to describe the dynamics of f, the behaviour of points under iteration of f.

We have periodic orbit or cycle of period k if $f^k(x_0) = x_0$. f is k-periodic if $f^k(x) = x$ for all x belonging to the domain D of f. It is obvious that k-periodicity implies $k\ell$ -periodicity for $\ell \in N$, such a $k\ell$ -periodicity for $\ell = 2, 3, \ldots$, we will call trivial.

¹Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro

132 M. Budinčević

2. Results

Let us give some characterizations of the f.

Lemma 1. If $k \geq 2$ then k-periodic function f which satisfies (1) and (2) is monotonously decreasing.

Proof. Suppose, on the contrary, that for different points x_0, y_0 we have $f(x_0) = f(y_0)$. After (k-1) iterations we get $x_0 = f^k(x_0) = f^k(y_0) = y_0$, a contradiction.

Suppose that f is increasing and f is not 1-periodic $(f(x) \not\equiv x)$. If for some x_0 is $f(x_0) \neq x_0$, then the orbit of x_0 is monotonically increasing if $f(x_0) > x_0$ or monotonically decreasing if $f(x_0) < x_0$. In any case f is not periodic.

According to (2) and observation above f(x) is monotonically decreasing such that $\lim_{x\to\infty} f(x) = \infty$ and $\lim_{x\to\infty} f(x) = 0$. If f is 2-periodic then $f(x) \equiv f^{-1}(x)$ and such a function is uniquely determined if we know it on the interval $(0,x_T)$ where $f(x_T) = x_T$.

Lemma 2. There are no k-periodic functions if k is a prime number greater than 2.

Proof. It is an immediate consequence of the fact that

$$(f^n(x_0) - x_0)(f^{n+1}(x_0) - x_0) < 0$$

for $x_0 \neq x_T$.

Now, we can prove the following theorem.

Theorem 1. There are only trivial 2n-periodic functions which satisfy (1) and (2).

Proof. Suppose that f(x) is not a trivial 2n-periodic function i.e. $f(x) \not\equiv f^{-1}(x)$. Then there exists an interval I=(a,b) such that $x_T \leq a < b \leq \infty$, $f(a)=f^{-1}(a), \ f(b)=f^{-1}(b)$ (if $b<\infty$) and $f(x)\neq f^{-1}(x)$ for $x\in I$. Then for $x_0\in I$ we get

$$b = f^2(b) > f^2(x_0 > x_0 > f^2(a) = a$$
 if $f(x_0) < f^{-1}(x_0)$

or

$$b = f^2(b) > x_0 > f^2(x_0) > f^2(a) = a$$
 if $f(x_0) > f^{-1}(x_0)$.

It completes the proof.

At the same time we see that for $x_0 \in I$ solutions of (1) converge to a prime period-two solutions:

a,
$$f(a), a, ...$$
 if $f(x) > f^{-1}(x)$ on I and $a > x_T$, b, $f(b), b, ...$ if $f(x) < f^{-1}(x)$ on I and $b < \infty$.

References

- [1] Chaos and Fractals, AMS Short Course Lecture Notes, Vol. 39, Rhode Island: Providence, 1988.
- [2] Kulenović, M. R. S., Ladas, G., Dynamics of second order rational difference equations, New York: Chapman and Hall (CRC), 2002.

Received by the editors February 3, 2004.