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ON THE PERIODIC SOLUTION OF A CLASS OF
DIFFERENCE EQUATIONS

Mirko Budinčević1

Abstract. Solutions of first-order difference equations are investigated
with respect to their periodicities. A complete answer to one open problem
of Kulenović and Ladas is given.
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1.. Introduction

In the recent book by Kulenović and Ladas [2] a large number of open prob-
lems and conjectures, concerning the dynamics of rational difference equations
were given.

We are focusing our attention on the open problem 3.4.3: Assume that the
difference equation is of the form

(1) xn+1 = f(xn)

where

(2) f ∈ C[(0,∞), (0,∞)].

Obtain necessary and sufficient condition on f so that every positive solution
of (1) is periodic with period k, k ≥ 2.

The sequence
x0, f(x0), . . . , fk(x0), . . . ,

where fn+1 = f(fn); n ∈ N, is called the orbit of x0. We are interested to
describe the dynamics of f, the behaviour of points under iteration of f.

We have periodic orbit or cycle of period k if fk(x0) = x0. f is k-periodic
if fk(x) = x for all x belonging to the domain D of f. It is obvious that
k-periodicity implies k`-periodicity for ` ∈ N, such a k`-periodicity for ` =
2, 3, . . . , we will call trivial.

1Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja
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2.. Results

Let us give some characterizations of the f.

Lemma 1. If k ≥ 2 then k-periodic function f which satisfies (1) and (2) is
monotonously decreasing.

Proof. Suppose, on the contrary, that for different points x0, y0 we have f(x0) =
f(y0). After (k−1) iterations we get x0 = fk(x0) = fk(y0) = y0, a contradiction.

Suppose that f is increasing and f is not 1-periodic (f(x) 6≡ x). If for some
x0 is f(x0) 6= x0 , then the orbit of x0 is monotonically increasing if f(x0) > x0

or monotonically decreasing if f(x0) < x0. In any case f is not periodic.
According to (2) and observation above f(x) is monotonically decreasing

such that lim
x→∞

f(x) = ∞ and lim
x→∞

f(x) = 0. If f is 2-periodic then f(x) ≡
f−1(x) and such a function is uniquely determined if we know it on the interval
(0, xT ) where f(xT ) = xT . 2

Lemma 2. There are no k-periodic functions if k is a prime number greater
than 2.

Proof. It is an immediate consequence of the fact that

(fn(x0)− x0)(fn+1(x0)− x0) < 0

for x0 6= xT . 2

Now, we can prove the following theorem.

Theorem 1. There are only trivial 2n-periodic functions which satisfy (1) and
(2).

Proof. Suppose that f(x) is not a trivial 2n-periodic function i.e. f(x) 6≡
f−1(x). Then there exists an interval I = (a, b) such that xT ≤ a < b ≤ ∞,
f(a) = f−1(a), f(b) = f−1(b) (if b < ∞) and f(x) 6= f−1(x) for x ∈ I. Then
for x0 ∈ I we get

b = f2(b) > f2(x0 > x0 > f2(a) = a if f(x0) < f−1(x0)

or
b = f2(b) > x0 > f2(x0) > f2(a) = a if f(x0) > f−1(x0).

It completes the proof. 2

At the same time we see that for x0 ∈ I solutions of (1) converge to a prime
period-two solutions:

a, f(a), a, . . . if f(x) > f−1(x) on I and a > xT ,
b, f(b), b, . . . if f(x) < f−1(x) on I and b < ∞.
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