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ON A NONEQUDISTANT DIFFERENCE SCHEME OF
CHAWLA TYPE

Dragoslav Herceg!, Djordje Herceg!

Abstract. We present a fourth-order finite difference method for general
second-order nonlinear boundary value problem —y” + f (z,y,y’) = 0 sub-
ject to two-point boundary conditions. We use nonequidistant discretiza-
tion mesh and each discretization of the differential equation at an interior
mesh point is based on just three evaluations of f. The present paper ex-
tends the results given in Chawla (1978) to the case of nonequidistant
mesh. Numerical examples are considered to demonstrate computation-
ally the fourth order of the method.
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1. Introduction

We consider the general second-order nonlinear differential equation

(1.1) -y + f(z,y,y) =0, zeI=10,1],

subject to homogeneous boundary conditions
(1.2) y(0) =y (1) =0.

If we have
—u" + f(x,u,u') =0, z€l=101],

u(0)=A4, u(l) =18,

we can use the usual procedure to homogenize the boundary conditions. If
u is a solution of this problem and if we put y = u — o (z), where o (z) =
Bx+ A(1— ), then y is a solution of the boundary value problem of the form
(1.1), (1.2) with the function f*(z,y,y’) = f (z,y+ 0 (z),y’ + ¢’ (z)) instead
of the function f (z,y).
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Our aim in this paper is to construct the fourth order difference scheme on a
nonequidistant discretization mesh in such a way that discretization of the dif-
ferential equation at each interior mesh point is based on just three evaluations
of f. The idea was developed in the papers [2], [3].

For simplicity, we shall assume that

felC®(IxRxR)
and

of

for some positive constant W.

These conditions assure us of the existence of the unique solution of the
boundary value problem, [6], [1].

In this paper we describe a fourth-order finite difference method for the
boundary value problem (1.1), (1.2), based on Hermitian approximation of
(1.1) on a suitable nonequidistant mesh. For some classes of singularly per-
turbed boundary value problem appropriate meshes one can find in [5] and [8].
In section 2 we describe the finite difference method. In the case where the
differential equation is linear, the method leads to tridiagonal linear system. In
section 3 we obtain local truncation errors. In the fourth section we consider
numerical examples to illustrate the method. Our results show the fourth order
convergence if we use the appropriate discretization mesh.

2. Difference scheme

Let us now introduce the notation. Let n be a positive integer and xj the
mesh points of the mesh I}, such that

O=xp <1 <T9< - <Tp_1<zp=1

and let
hy =x —xp—1, k=1,2,...,n.

In the following, we consider obtaining three-point finite difference approxi-
mations for the differential equation at a fixed point zj, € I, = I;\ {0,1}. For
simplicity, we define for a fixed k

h=x —xr1, H=mTp41 — g

So, we have z;_1 = x, — h and xx41 = v + H.
Let w" be a mesh function. Mesh functions will be defined with the R*+1

column vectors

T

wh = |

WO, W,y -+« y Wy



Scheme of Chawla type 173
(for simplicity, the superscript h is omitted in the components). In particular,

v =y (z0),y (z1),. oy ()] T

In order to form a discretization of the problem (1.1) we approximate the
differential equation of (1.1) by a difference formula of Hermite type in xy € Iy,.
The coefficients in this formula are not constant, i.e. they depend on xx_1, zx
and xpyq forallk =1,2,...,n—1. One can obtain these coefficients in a similar
way as on an equidistant mesh. Let the values of the exact solution y (x) at
mesh points xj, be denoted by yy; similarly v, = v (zx), v = f (Zr, Yr, y},) , ete.

For k € {1,2,...,n— 1} Let

1 1
—/ - - -
e = H T g Yl
o h+2H _h+H n H
Y41 = H(H+h)yk+1 Hh Yk h(H+h)yk_1’

_ h +thH H +2h
Yp—1 = 7H(H+h)yk+l Hh Yk h(H—f—h)yk_l’

Jeer = f (Trat, Yotr, Usr) »
fr=F (@rur, U + K),
K =afi-1+Bfes1 = af (Te—1, Vo1, Th1) + BF (Trt1s Yo, Ugr ) »
_ h?+4hH —4H? | H?+4hH —4h?
10(h+H) 10(h + H)
Then, at each zy, the differential equation (1.1) is discretized by

0 = a1 (k)ye—1+ao (k) yr + a2 (k) Yrgr + b1 (k) f (Th—1, Yr—1, Tk 1)
+bo (k) f (ks Yk Uk + K) + b2 (k) f (Trr1, Yrs1, Urs1) + Ths

where 7, = O <max{h7 H}4) .
Let

Thwy, = a1 (k) wy—1+ag (k) witas (k) wip1+b1 (k) wi_+bo (k) wi+bs (k) w1,

where wy = w(z) and w) = w” (x}) for a function w (x). The coefficients
a; (k) and b; (k), j = 0,1,2 one can obtain as in [5] and [8] from the system

Thz =0, m=0,1,2,3,
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by (k) +bo (k) +ba (k) = 1.
So, we have for k=1,2,...n—1

—2 2 —2
()= ——= ag(k) = ———, as(k) = ,
L) = iy W e 2 e e

2hy — h 5 2h —h

by (k) = k k41 k41 k

= , k)=—-, by(k)= —"———.
G(hk +hk+1) 0( ) 6 2( ) G(hk +hk+1)
For a fixed k, with h = xy — 1, H = )41 — o}, we obtain

—2 2 —2
a®)=5mrm ©W =g 2W=gaimy
2h — H 5 2H — h
b (k) = m7 bo (k) = 6’ by (k)

6(h+H)
In equidistant case, i.e. if h = H, we have the same results as in [2] and [3] :

7. = Ye+1 — Yk—1

ke 2h ’
3k — AYk + Ykt
yk+1 - 2%h )
o TYkt1 T AYs — Yk
yk 1 Qh )
h h
a=—, =——.
20 20
al (k‘) = —h_Q, ap (k) = Qh_z, an (k‘) = —h_2
1 5 1
b1 (k)—ﬁ, bo (k‘)—g, ba (k) o

Let us now describe the method. Let

Qo (yo) =0, @, (yn) =
and for k=1,2,...,n—1

P (Y1, Yk, Yrr1) = b (k) o1 + bo (k) fr + ba (k) frr-
Let D be the tridiagonal matrix
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and let Y = [yo, y1, . . - 7yn]T

DY) = [0, ®1,.... 0,7, YT=[0,71,72,...,70n-1,0]"
Now, our difference scheme can be written in the following form
(2.1) DY +o(Y)+ T =0.
We form a discrete analogue of the problem (1.1) in the form
(2.2) Dw + @ (w) =0.

The solution w of (2.2) is an approximation for Y. The system (2.2) is an
(n+1) x (n+ 1) nonlinear system. In the case when differential equation (1.1)
is linear (2.2) is tridiagonal linear system. The nonlinear system (2.2) can be
solved by the Newton-Raphson method and tridiagonal linear solver.

3. Local truncation errors
A simple Taylor series argument shows:
Lemma 1 Let y € C3(I), zx € I,. Then there exists wy € (xx — h, 2y + H)

such that
h

== P o,
where WL H
— hH +
0 = y®) (wi)

Lemma 2 Let y € C°(I), x € Iy. Then there ewists wy € (v — h,xx + H)
such that

_ H—-h h? - hH + H? (H — h) (h? + H?
Uk = Yr = Y + y® (a4) + ( )yz(f) L
2 6 24
where -
5_ v HH 5
FE o m @)

In a manner similar to previous lemmas we can prove the following results.

Lemma 3 Lety € C3(I), xy € I,. Then there exist 1, € (v — h,xx + H) and
le,o € (zg,xr + H) such that

_/ / _ 3
Y1 — Y1 = 1%,
where

y(3) (1) .

o H?(h+20) (3)< +)_H(h2+3hH+3H2)
T 6 (h+ H) 7,0 6(h+H)



176 D. Herceg, Dj. Herceg

Lemma 4 Lety € C° (1), x), € I,. Then there exist 7y, € (v — h,xx + H) and
TI:’:O € (zk, xx + H) such that

) H(Mh+H) 3 HMh+H)QH=-h) o
Vo1 — Y1 = — B y Y - 51 y + 13,

where

y(5) (1) .

4 4 3 4
TZ:H (h+2H)y(5) (T+>_H(h + 5hH?3 + 5H*)
120 (h + H) k.0 120 (h + H)

Lemma 5 Lety € C3(I), x), € I,. Then there exist 0y € (xx — h,xx + H) and
Or 0 € (xk — hyx)) such that

=/

/ ey
Up—1 — Yp—1 = Of,
where

h? (2h + H)
3 _ (3)
Ok 6(h+H) ¥

2 2
(67,) - LEE LSV o) g,
0 6(h+H)
Lemma 6 Lety € C°(I), x) € I,. Then there exist 7y € (xx — h,xx + H) and
TI::O € (zg,xr + H) such that

. h(h+H)(2h—H) y h(h+H)
Uho1 = Y1 = ( 24( )y;i)— G )yz(f“r@%

where

©

s h*(2h+ H) (5)< _ )_h(H4+5h3H+5h4)

_ (5)
P20+ H)Y Uko om0k

Here and in the following, we have

0 0
F($7yvz):%f(mvyvz)7 G(xvyaz)zaf(xayvz)a

0? dG
= @f(wvyaz)a G' = ) Gm:G(xmvy(xm)ay/ (xm))

H

(z,y,2) .
From (2.1) it follows

7 = a1 (k) yo—1 + ao (k) y + az (k) yeg1 + b1 (k) fr—1 + bo (k) fi + b2 (k) frs1.

For simplicity, we shall write a;, b; instead of a; (k) and b; (k) respectively. So
we have

Th = @1Yk—1 + @Yk + a2ykr1 + b1 fro—1 + bofi + b2 fos1-
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Since

Sor1 = F(Tra1 Y1 Towr) = fror1+Grt1 (Tnwr — Yiwr) VHiwr (T — y;cil)zv

_ ) ) L )
Je=F@run U + K) = fo + Gr (U, —yp + K) + H{ (5, —y, + K)7,
fet1 = Yo fr = vk,

where, for some £_, &, &,

le—l = H(xk:—layk—lag—)7 H;+1 = H(xk+17yk+17§+)’ H]: = H('/Eknykag)?

we have
(3.1) Tk = Ry + Sk + Tk,
with
Ry = a1yk—1 + aoyk + a2yrs1 + bryy 1 + boyy, + bayii 1.
_ ~ 2
Sy = b (Gk—l (y;c—l - l/;c—l) + Hp 4 (y;c—1 - y;g—1) )
_ . 2
+bs (Gk+1 (Trsr — Y1) T Hir (T — Yk )
and

Tic = bo (G (7 — vk + K) + Hi (5} — v + K)°).

For some 7, n— we have

(3.2) Gr+1 =G + HG) + %QGZ+
and )

(3.3) Gr_1 =G — hG), + %G%’,,
where

Gry =G" ey (1) .y (n4), Go=G"(n—,y(n-),y" (n-)).

From Lemma 3.2 and Lemma 3.3 it follows

Sy = Gy (bl (g;cfl - y;cﬂ) + by (gl/chl - y;c+1))
+G (=hby (Gr—1 — Yi—1) + Hb2 (Gh1 — Yis1))
1
3 (h2b1 (G—1 — Y1) G + H?b2 (Y1 — Yir) Gy -

With
Sk = b1 (Ther = Yemr) + b2 (Thr = Yhrr)
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Sk = —hby (Gr1 — Y1) + Hbz (Tosr — Yir1) »

1
S = 5 (h2b1 (G1 — Y1) Go— + H?b2 (Y1 — Yisr) Gyt

we have
Sk = GpSy + G1.Sq + Si.
Since
K =afy_1+ Bfrt1 = ayp_1 + Byr1 + Sk
where

_ « _ 2
Yy = « (Gk—l (y;c—l - y;c—l) + Hj; 4 (1/;@—1 - 1/;@—1) )
_ « _ 2
+06 (Gk+1 (Trt1 = Yrsr) + Hir (Uhpr — Vhsn) )
we can write
Ty = Gy T} + T + T,

with
Ty = bo (Y, — Y + i1 + Byii)

T = boGy Sk,
. /- 2
T = boHj (G, — vk + K)~ .
Now we obtain

T = R + S + T = Ry + GpSE + GL.S2 + S + Gy TH + T2 + T

(3.4) T = Ri + Gi (Sp + Tip) + Gi.Sq + Sp + T + T
3.1 Error term Ry

In [5] one can see that for some ry,ry, 173 € I

R uf—hf(®+(H—h)wm—5nH+7H% ®)
BT Yk 180 Y
__ A HT )
sonem?
+M@h—Hm@Oﬂ+H4QH—mM®Uy
144 (h + H)
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3.2 Error term S,i + Tk1

Using Lemma 6 and Lemma 4 we have

h(h+H) @3y h(h+H
bl<— (L H) oy LS )(2h—H>y,§4)+®2)+

H(h+H) 3 H(h+H)
L S —

st =

(2H — h)y" + TZ)

and after some calculations we have

h+ H) (byh + b H

+b10} + b2 T}

(h+ H)byh (2h — H) — by H (2H — h)
24

4
s

From Lemma 2 it follows
H—h h? — hH + H?
5 Uk 6 yt)

For some n* 5, n* . we have

(H - h) (h? + H?
2(4 Ly +f.

(zx) +

Up — Y =

ah? + ﬁHQ (4)

a1+ Byl = (a+ B)yl + (—ah + BH) y) + 5 Yp + P,

1
o = 5 (—al®y® (o5) + BHY® (1))
Now it follows that

Ty =bo (U — Vi + h—1 + Byis1)

H—h h? — hH + H?
T = b0< 5 +a+6>y;’+bo(6—ah+5H>y(3>(xk)

_ 2 2 2 2
+b0<(H hy (h +H)+ah + BH

21 2 ) u -+ bo (OF + pr) -

H—h
S;i—&-Tkl = by <2+a+ﬂ>y;’

(h+ H) (bih + boH) b h? — hH + H?
(et (2o
(h+H) (b1h (2h — H) — byH (2H — h)) ()

24 Yk
Lo ((H—h) (h? + H?)

+ BH — ah)) y® ()

_|_

2 g2 (4)

+b1@2 + bQTz + bo (Qi + pk) .



180 D. Herceg, Dj. Herceg

Since
h—H
ath="—5=
and
2 2
(h+H)(b1h+b2H):bU h® —hH +H —ah+ BH
6 6
we obtain
h+ H)(bih (2h — H) — by H (2H — h
STl = (h+ H) (b1h( 24) o H ( ))yl(:l)
H —h) (h? + H? h? H?
+b0<< >2(4 ) @ +OH)

+b1®2 + bg'ri =+ bo (QZ + pk) .

3.3 Error term 57

Using Lemma 6 and Lemma 4 we get

S = hby (h 1)y 2O oh iy - @2)
H(h+H H(h+H
+Hby | — (h+ )y,(f’)— (h+ )(QH—h)y,(f)—FTZ
6 24
and
@ (h+ H) (b1h* = byH?) (3
k 6 Y.
(h+ H) (h? (2h — H) by + H? (2H — h) b)

- o y'Y — hby©F + Hby Y5,

3.4 Error term S,i’

By Lemma 5 and Lemma 3

.y / . 3 —/ / _ 3
U1 — Yp—1 = O, Ye+1 = Yk+1 = Ty

1
Si = 3 (P21 (Frr = vh1) G+ Hb2 (Thsr — Yiya) Gt

. 1 . .
Sk =5 (R0 3G + H* b NG, )
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3.5 Error term T}

TZ = boGi Sk,

where
Y = GpZ) + GLEE + 53,

Sk =0 ot = Yier) + 8 (Thsr — Vi) »

Si = —ha (ho1 — Yi—1) + HB (Yhs1 — Yis1) »

(h204 (Uhe1 — Yi1) Gy + H?p (Uhr1 = Yhyr) Glr;/+)

(h?a®}Gy_ + H?BYiG) )

N = N =

Using Lemma 6 and Lemma 4 we find

llc ( ( 6 )yl(CS) ( 2)4( )y](f) Z)
H(h+H H(h+H)@2H —h
ﬁ( ( 6 )yl(j,) ( 2)4( )y](:l) 2)

and after some simplifications we have

h+ H) (ah + H
SR LEY TRV WO

+a©;, + BT}

(h+ H) (ah (2h— H) = BH QH — ) )
24 i

Using Lemma 6 and Lemma 4 we find

Zi _ (ahz(fé-f—H)_ﬁHQ(fﬁl-l-H))y;g)
ah? (h+ H) (2h — H)  BH? (h+ H)(2H — h)\ )
_< 24 * 24 )yk

—ha®j + HBY}

w2 (h+H) (ah® — BH?) 3y (h+H) (h*(2h— H)a+ H? (2H —h) 8) (4
PR 6 Y — 21 Y

—ha®} + HBY;.
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3.6 Error term T,S’

% /— 2
T = boHj; (1, — vk + K)™ .
K =afi_1 4 Bfes1 = ayi_1 + By + 1

Oy = aGj_,4 (g;f—l - y;s—l) + BGr (Q;H-l - Z/;c+1)
= aG_10; + BG 1 T}

where, for some d_, 4,

::71 = G(mkflaykfla(sf)a Glt:+1 = G<xk+1ayk+1,6+)a

ah? BH?
K= (a+pB)yy+ (—ah+ BH)y!¥ + v (o) + =y () + T
B —h
Up — Y = TZ/;CI‘FQi
B H—-h ah?
Uy T K = (2 +a+ﬁ> yil + (—ah+ BH) e + =y (no)
ﬁHQ * *
+Ty(4) (1y) + Q} + aGf 10} + BG T}
Because of H—1h
 —ta+8=0
2
we have
B ah? BH?
Ui~y + K = (—ah+BH)yY + ¥ () + 5y ()

+Q} + aG;_10} + G, Y5

3.7 Truncation error 7y

From now on we shall assume that our mesh has the following properties:
Hpax < Pmin (1 + Mhpgin)
where
Hpox =max{hg:k=1,2,...,n}, hmin = min{h; : k=1,2,...,n}.

Such a mesh is called almost equidistant, see [7].
For simplicity, we have defined for a fixed k

h=zr — o)1, H =111 — x.
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Since our mesh is almost equidistant, it then holds

(3.6) |H — h| < Mh?.

Here and throughout this section M, sometimes subscripted, denotes a generic
constant, independent of the number n of discretization subintervals that will

be used to solve (1.1) numerically.

The truncation error 73 is given by (3.1). Simplification of local truncation
error terms was done using Mathematica. Only final expressions for each of the

terms will be given here.

3.7.1 Error term R,

The error term, given by (3.5), is obviously O(H2

max

2 2 4
12h| M, + T\H fi|8(OH+ h) (H+h) Mg < MH?

My + ——— .
5 + 60 max

H
|Ri| < |

3.7.2 Error term S}

2+ hH — B
Sio= T y +

h (H—2h) (5h* +5h%H + H*)
720 (h+ H)?
4
h* (2h — H) (2h+H)y(5) (9;0)
720 (h+ H)? ’
+H(h72H) (h* +5h H? 45 H*)
720 (h+ H)?
(2H — h) H* (h+2H)y(5) (7_1€+ )
720 (h+ H)? 0

(h—H) (4h% - hH+4H2)y(4)
144 k

y(5) (0%)

y(5) (1)

3.7.3 Error term Tk1

W hH ) (h — H) (h2+24hH+H2)y(4)
k

Te = 18 () + 144
BA_ W3 H + h2H? — h H3 + H4
)
+ 114 Y (wr)
o (h2+4hH74H2)y(5) (e) 3 (—4h2+4hH+H2)y(5
-5

72 (h+ H) 72 (h+ H)

), if |[H — h| < Mh?, since

'

k
M5

).
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3.7.4 Error term S,i + T,i

(h—H) (5h*+23h H +5H?
S+ = S g0

h (H—2h) (5h* +5h3H + H*)
720 (h+ H)?
4
h* (2h—H) 2h+ H) 5 (970>
720 (h+ H)?
H (h—2H) (h*+5hH® +5H*)
720 (h+ H)?
(2H —h) H* (h+2H) (T+)
2 k,0
720 (h+ H)
h*—h3H + h® H? — h H® + H*
N + TH! o)
144
h3 (h* +4h H — 4 H?)
72 (h+ H)
H? (—4h? +4h H + H?) X

_ )
72 (h+ H) y (i) -

y(5) (01)

)

y(5) (1)

(wk)

y® ()

h—H| (h+ H) h+ H)*

1 1
|Sk? +Tk:’ < 12 10 max"*

3.7.5 Error term S,%

) (h—H) (2h*+hH +2H?)
ok = 36 Yk
—2h* +2h3H —h2>H?+2h H® — 2 H*
+
72
+h2 (2h—H) (5h* +5h3 H + H*)
720 (h+ H)?
5 _
_h? (2h—H) (2h2+H) ) (9;0>
720 (h + H) "
H? (2H —h) (h* +5hH® +5H")
720 (h+ H)?
_ 5
(2H—-h) H (h—&2—2H) (5)(7;0)
720 (h + H) i

4
s

y(5) (01)

y(S) (71)
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h— H| (H + h)? H+h)* H+h
\ |(+)M3+(+)M4+(+)

N < 4
18 36 8 Mo = M

57 <

3.7.6 Error term S;

3 (6 Gy

H—2h) 3K +3hH +H?)

72 (h+ H)’ Y

ht (2th) Ch+H) ) (0= \ rn

0.0) G

2 htH? (%0 €

+H3 (h—2H) (h* +3hH +3H?)
72 (h+ H)®

(2H—h) ot (h+2H) 3) [+ "

2 htH)? (i) @5

y® (7k) GZ+

5(H + h)*
6

|Sg| < M5MG < MHmax

3.7.7 Error term T,?

T = boGy (GrZh + G122 +X3)
where

(H — h) (h2+9hH+H2)y(3)
60 k
+2h4+11h3H—24h2H2+11hH3+2H4 (1)
240 Y
h(h+4hH—4H?) (5h*+50° H+H') o )
1200 (h + H)? v
h* 2h+H) (R +4hH —4H?
T e ()
1200 (h + H)
H (—4h?+4hH+ H?) (h* +5h H + 5 H*)
1200 (h + H)*
H* (h+2H) (—4h>+4h H + H?) (5)( )
- T
1200 (h+ H)* w0

y® (14)

2
(ht P TEH

M. .
57 %60 300 max

=k <

|H — h| (h+ H)?
12
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9 h*+4h*H —-8h?H?+4h H3 + H* (3)
DI Y

(h—H) (h*—hH+H?) (2h*+11hH+2H?)
_ Yl

240
+h2 (h>+4hH —4H?) (5h* +5h3H + H*)
1200 (h+ H)?
W (2h+H) (B +4hH —4H?) o
- 2 ) (‘91@,0)
1200 (h + H)
+H2 (—4h*+4hH+ H?) (h*+5hH? +5H*)
1200 (h+ H)?
H® (h+2H) (-4h* +4hH+H?) o0 o
- 2 Y (%0)
1200 (h+ H)

y®) (0r)

y®) (k)

4 4 4
_LZOH) Ms + |h_H|6(0h+H) My + (h—gOH) Ms < MH} ..

™
bl
A

53 h* (W +4hH - 4H?) 5h* +50° H+ HY) o 0\
k 2 Y (k) n—
2400 (h+ H)
hS (2h+ H) (h*+4hH — 4 H? _
S () 6
2400 (h+ H)
H?® (—=4h?>+4hH + H?) (h*+5h H? 4+ 5 H*)
2400 (h+ H)?
H® (h+2H) (—4h®>+4h H + H?)
2400 (h + H)?

+

y® () Gl

y® (TIQL,O) Gt

H +h) (THS + 7h8 — Hh® — H°h + H?h* + H*h?)
600
|TZ| < bo |Gyl |GREk + GLEF + Sh| < MH,

53] < Mas < MHL

x*
1ax”®

3.7.8 Error term T3 = boH; (7}, — v} + K)°.

—h2+hH-H? 5 h? (h*+4hH —4H?)

iy LK = ) (4
Y — Yt 10 Yk 20 (h+ H) Y (u-)
H? (H2—4h®+4hH
- ( >y(4)(ﬂ+)
20 (h+ H)
H(H*~h+H
+ ( )y(3)(wk)

6
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—h (h®+4hH —4H?) (3h? +3h H + H?)

+G5 ®3) (g
e 60 (h+ H)® v (6)
h? (2h+ H) (h*>+4hH —4H?) .
+G5_, ( ) ( . )yw) (9;0)
60 (h+ H) ’
o B (—4h®>+4hH+ H?) (W +3hH +3H?) /()
rH 60 (h+ H)?
. H?>(h+2H) (—4h®>+4hH + H?
Gy ( . )y(3) (leo)
60 (h+ H) 7
h+ H)? H+h)? H H+h)?
Uk — yi + K| < ( +5 YA Jg ) M4+?M3+%MG < MH2,,.

| T3| < bo |H| |54 — v + K|” < MH!

max-*

It can be easily seen that each of the error terms is O(HZ .
given by (3.4), i.e.

). Since 7, is
7 = R + Gy, (Sp + T)}) + GSp + Sp + T + T},
we can see that 7 is also O(H4,,, ), since

17l < |Ri| + |Gr| |Sk + Ti| + |Gl | S7| + [Si| + |T2| + | 12| < MH;,

ax”*

4. Numerical results

Obtained theoretical results are confirmed by numerical experiments. Exact
solutions for both of the tested examples are known. The error is measured by

E, = Hyh —w*

oo’

where w* is the solution of the discrete problem and

y" = (y(@o),y(@1)-y y(wn)),

where y is the exact solution of the observed problem. Also, we define in the
usual way the order of convergence Ord, for two successive values of n with
respective errors F, and FEs, :

InE, —1InF>,

Ord,, =
" In2

The expected value of Ord,, = 4.
Our discrete analogue F' (w) = 0 is a nonlinear system. We solve this system
using the Newton-Raphson method, where a tridiagonal linear system is solved
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in each step. We performed the calculation in Mathematica. The stop criterion
applied is

maxiter > 20 or Hwk - wk_1||oo <1072 or ||F(w]’“)||Oo <1072,

where maxiter is the iteration limit of the Newton-Raphson method and w* is
the k—th approximation of w* obtained by the Newton-Raphson method.
Among the others, we have tested the following two problems:

4.1 Example 1

(4.1) -y’ +r -y =0, y(0)=y(1)=0,
where
(2) . 1\ 1—e%/c s 4 s2
xr) = — — _— — €8 R
Y 2) 1 e 1/ 2

is the exact solution, [7].

In order to obtain a good approximation for the exact solution of the problem
(4.1) we use nonuniform mesh that is dense in the neighborhood of the point
x = 0, where the boundary layer appears. We considered a mesh of Bakhvalov
type, [5], [7], [8]. This mesh satisfies the condition (3.6) and H > h.

The mesh, further on called R—mesh, is generated by the function

t
q“f - telo,7]
(4.2) At) = . ‘_
as (T—I—Q( T)>, ternl]
q—T q—T
with
o 4= Vage(l— g+ ag)
N 1+ ae ’
and the constants a and ¢ satisfy
(4.3) q€(0,1), a€(0,q/e),

so that the transition point has the property 7 € (1 — ¢,1). Mesh points are

given by
k
xk)\(> , k=0,1,...,n.
n

The approximations obtained by the R—mesh with a = 1 and ¢ = 0.96 were
tested for different values of € and n. The results, Table 1, confirmed the order
of convergence of the method.

Newton-Raphson method is used for solving the nonlinear system of equa-
tions F (w) = 0 with initial approximation w® = (yo (o) , %o (1) .-, yo (zn)) ",

where yo (z) = % (x2 — 1) is the solution of the reduced problem z — ¢’ = 0.



Scheme of Chawla type 189

nNE 102 103 1072 107° 10°°

64 3.70x107°  3.70x107°  6.55x107°  1.51x107* 1.16x107™% E,
— — - - — Ord,

128 2.38x107%  2.43x107%  2.43x107%  2.46x107°% 2.79x10°% E,
3.95529 4.03122 4.75120 5.94600 8.70388 Ord,

256  1.50x1077  1.52x1077  1.53x1077  1.53x1077 1.53x107" E,
3.99339 3.99337 3.99361 4.00831 4.19144 Ord,

512 9.36x107°  9.53x107°  9.55x107°  9.55x107° 9.55x107°  E,
3.99888 3.99888 3.99888 3.99889 3.99889 Ordy,

1024  5.85x1071°  5.96x1071° 5.97x107° 5.97107'° 5.96x107'° E,
3.99967 3.99985 3.99980 3.99960 4.00239 Ordy,

Table 1.

The average order of convergence is 4.378. We can see that for n > 128 the
order of convergence does not change much as € changes, and is practically 4.

4.2 Example 2

To illustrate computationally the fourth-order method we solved the follow-
ing nonlinear two-point boundary value problem

1 —x in
y' = (-0 eme—y) . y(0) =y (1) =0,

with the exact solution y (z) = In H%c + 21n2, [4]. In this example we used an
equidistant mesh and a nonequidistant mesh, generated by the following mesh
generating function

(4.4) A(t) = % (1 sin (g cos (m))) .

In the first case the mesh points are

Ty = —, i=O,1,...,n.

2
n

In the second case the mesh points are

mi:/\(z>, i=0,1,....n.
n

Newton-Raphson method is used to solve the nonlinear system of equations
F (w) = 0 with initial approximation w® = (—0.05,—-0.05, ..., —0.05)T. The
numerical results are given in Table 2.



190

the

D. Herceg, Dj. Herceg

n  Equidistant mesh Mesh generated by (4.4)
16  1.01x107" 7.18x1076 E,
_ — Ord,
32 6.32x107° 4.75x10~7 E,
3.99537 3.91787 Ord,
64 3.95x1071° 3.00x1078 E,
3.99884 3.98495 Ordy,
128 2.47x107 1.88%x107° E,
3.99968 3.99624 Ordy,
256 1.54x1071? 1.18x1071° E,
4.00068 3.99905 Ordy,
512 9.24x107 4 7.35%x10712 E,
4.06233 3.99887 Ord,,
Table 2.

The average order of convergence for the equidistant mesh is 4.011 and for
mesh (4.4) it is 3.979.
In this case, when the problem is not singularly perturbed, both the equidis-

tant mesh and the mesh (4.4) give practically the same results.
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