Novi Sad J. Math. Vol. 34, No. 2, 2004, 1-3 Proc. Novi Sad Algebraic Conf. 2003 (eds. I. Dolinka, A. Tepavčević)

A NOTE ABOUT THE ORDER OF AN EXTENSIVE MAP

Achille Achache¹

Abstract. We define the order ν of an extensive map f from a complete lattice to itself : ν is the smallest of the ordinals α such that $f \circ f^{\alpha} = f^{\alpha}$. If f is a preclosure, f^{ν} is the closure generated by f. We also examine the case of the extensive map which sends an \wedge -closed subset A of a complete lattice L towards the \wedge -closed subset of the A-semi-closed points of L.

AMS Mathematics Subject Classification (2000): 03, 06, 08 Key words and phrases: complete lattices, closures, ordinals

1. The order of an extensive map

In the whole text to follow, the **greek letters** will designate the **ordinal numbers**. Besides, we will work in a **complete lattice L**. Let us denote by 1 the identity map : $L \rightarrow L$.

The map f on L (i.e. $L \to L$) is said to be **extensive** if and only if $1 \leq f$. The set E of the extensive maps is an \wedge -closed subset of the complete lattice L^L : then it is, for itself, a complete lattice. Note that, if H is a non-empty subset of E, $\vee H$ is in E (and thus is the induced supremum). Clearly, $\{0\} \cup E$ is a \vee -closed subset of L^L .

Now, let us define the ordinal power f^{α} of an extensive map f, inductively : $f^0 = 1, f^{\alpha+1} = f \circ f^{\alpha}$ and, for a non-null limit ordinal $\alpha, f^{\alpha} = \lor \{f^{\beta}, \beta < \alpha\}$. The sequence $f^0, f, \ldots, f^{\alpha}, \ldots$ is increasing. So, in account of the cardinality, there exists an ordinal α such that $f^{\alpha+1} = f^{\alpha}$. The smallest of these α will be denoted by $\mathbf{n}(\mathbf{f})$ and will be called the **order** of f. Clearly, n(f) < |L| + 1.

Proposition 1.1. If f is an extensive map and $n(f) = \nu$, $f^{\beta}f^{\nu} = f^{\nu}$ for all β .

Proof. We will work by transfinite induction. When $\beta = 0$, $f^{\beta}f^{\nu} = f^{\nu}$. Suppose that, for all $\gamma < \beta$, $f^{\gamma}f^{\nu} = f^{\nu}$. If β is a limit-ordinal, $f^{\beta}f^{\nu} = (\vee \{f^{\gamma}, \gamma < \gamma\})$

¹140 rue Dedieu, 69100 Villeurbanne (France), e-mail: achile20tele2.fr

 $\begin{array}{l} \beta \} f^{\nu} = \vee \{ f^{\gamma} f^{\nu}, \gamma < \beta \} = f^{\nu}. \end{array}$ Otherwise, $\beta = \delta + 1$ for a certain δ and $f^{\beta} f^{\nu} = f f^{\delta} f^{\nu} = f f^{\nu} = f^{\nu}.$

For a given $x \in L$, let $\tau = r(f, x)$ be the smallest α such that $f^{\alpha}(x) = f^{\alpha+1}(x) : \alpha \leq n(f)$. By induction on γ , we get $f^{\gamma}(x) = f^{\tau}(x)$ for all $\gamma \geq \tau$.

2. Application to the preclosures

A **preclosure** on L is an increasing extensive map. The preclosures constitute an \wedge -closed subset P of L^L . The **closures** (i.e. the idempotent preclosures) constitute an \wedge -closed subset F of L^L . The closure $\overline{\mathbf{p}}$ generated by the preclosure p is the closure $\wedge (F \cap \uparrow p)$ (i.e. the smallest closure c such that $p \leq c$). Note that $\{0\} \cup P$ is \vee -closed in L^L . Note that P is a semi-group for the composition of maps.

Proposition 2.1. If ν is the order of the preclosure p, the closure generated by p is p^{ν} .

Proof. Obvious for $\nu = 0$. Suppose $\nu > 0$ (i.e. p > 1). By Prop. 1.1, p^{ν} is a closure. But, by an easy induction on α , $p^{\alpha} \leq \overline{p}$ for all α . Then $p \leq p^{\nu} \leq \overline{p}$, and therefore $\overline{p} \leq p^{\nu} \leq \overline{p}$.

Clearly (by induction on γ), $p^{\gamma} = p^{\nu}$ for all $\gamma \geq \nu$. Since, for $\alpha > 0$, $p^{\alpha} \in F$ implies $p^{\alpha} \leq pp^{\alpha} \leq p^{\alpha}p^{\alpha} = p^{\alpha}$, it results that, for $\alpha > 0$, $p^{\alpha} \in F \Leftrightarrow \alpha \geq \nu$. **Remark 1** – Let $P_{\alpha} = \{p \in P/n(p) \geq \alpha\}$. We get : $P_0 = P, P_{\alpha} = \{p \in P/1 if <math>\alpha \geq 1$ and $P_1 \setminus P_2 = F \setminus \{1\}$.

Remark 2 – Let *c* be a closure. Put $H = \{p \in P/\overline{p} = c\}$. The set $\{0\} \cup H$ is \vee -closed in L^L . The map defined, for $p \in H$, by $p \mapsto n(p)$, is decreasing [Indeed, if $p \leq q$ are elements of *H* and $\alpha = n(p), c = p^{\alpha} \leq q^{\alpha} \leq c$, then $\alpha \geq n(q)$].

3. Application to the semi-closed points

In paragraph 3, we suppose that the complete lattice L is equipped with an \wedge -closed subset A of L. Let c be the closure $c(t) = \wedge (A \cap \uparrow t)$ linked with A. Let us call c-closed the points of A.

Definition 3.1. A point s of L is said to be A-semi-closed iff it verifies one of the equivalent properties $1/A \cup \{s\}$ is \land -closed in L $2/\forall a \in A, a \land s \in A \cup \{s\}$

 $\mathbf{2}$

Proof of : $2 \Rightarrow 1$. We must prove that, whenever $H \subset A \cup \{s\}$, $\land H \in A \cup \{s\}$. If $s \notin H$, it is obvious. Otherwise, let us put $K = H \setminus \{s\}$. Let $I = \{k \in K/k \land s = s\}$ and $J = \{k \in K/k \land s < s\}$. We can write $\land H = \land (K \cup \{s\}) = \land (I \cup J \cup \{s\}) = (\land (I \cup \{s\})) \land (\land J)$. But $\land (I \cup \{s\}) = s$ and $\land J \in A$. Then $\land H = s \land (\land J)$ is in $A \cup \{s\}$.

Proposition 3.2. The set B of the A-semi-closed points includes A and it is also an \wedge -subset of L.

Proof. Clearly, each point of A is A-semi-closed. We must prove that, if $H \subset B$, the membership $a \land (\land H) \in A \cup \{\land H\}$ is insured for each $a \in A$. If $\land H \leq a$, it is obvious. Otherwise, for each possible $h \in H$, $h \not\leq a$ ($h \leq a$ would induce $\land H \leq a$). So, for every $h \in H$, $a \land h \neq h$. Since $h \in B$, $a \land h \in A \cup \{h\}$, and then $a \land h \in A$. So, $a \land (\land H) = \land \{a \land h, h \in H\} \in A$.

Consequence. Let us apply paragraph 1 to the extensive map which sends A towards B.

Let \mathcal{F} be the \cap -closed subset of 2^L constituted by the \wedge -closed subset of L: \mathcal{F} is a complete lattice. We can define an extensive map k from \mathcal{F} to itself by k(A) = B. Let σ be the order of k. Put $k^{\alpha}(A) = A_{\alpha}$. Put $A_{\sigma} = S$.

Now we can define a map $m: S \to \downarrow \sigma$, by $m(t) = \land \{\alpha/t \in A_{\alpha}\}$. It is easily seen that $A_{\alpha} = \{t \in L/m(t) \leq \alpha\}$. We get the following Galois connection $2^{S} \xrightarrow[\overline{A}]{} (\downarrow \sigma)^{*}$, in which $r(X) = \bigvee \{m(t), t \in X\}$, A is the map $\alpha \mapsto A_{\alpha}$ and $(\downarrow \sigma)^{*}$ is the dual of $\downarrow \sigma$.

If c_{α} is the closure associated with A_{α} , it may be said that c_{α} is the α -weakening of c. $(c = c_0 \ge c_1 \ge c_2 \ldots \ge c_{\sigma})$.

Let $\tau = r(m, A) \quad (\leq \sigma)$ (Cf. the end of paragraph 1). If $\tau = 0$, $c_{\alpha} = c$ for all α . Otherwise, $c_0 > \ldots > c_{\tau} = \ldots = c_{\sigma}$.

4. Questions

What are the bases of a given closure c (i.e. the minimal preclosures which generate c)? What are the A such that k(A) = A? Is it possible that A = k(A) for all A?

Thanks to N. Polat for his remarks.

References

- Caspard, N., Monjardet, B., The lattice of closure systems, closure operators and implicational systems on a finite set : a survey, Discr. Appl. Math., vol. 127, 2, 241-269, 2003.
- [2] Cohn, P.M., Universal Algebra (Reidel), 1981.