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Abstract. We define the order ν of an extensive map f from a complete

lattice to itself : ν is the smallest of the ordinals α such that f ◦ fα = fα.

If f is a preclosure, fν is the closure generated by f . We also examine the

case of the extensive map which sends an ∧-closed subset A of a complete

lattice L towards the ∧-closed subset of the A-semi-closed points of L.
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1. The order of an extensive map

In the whole text to follow, the greek letters will designate the ordinal
numbers. Besides, we will work in a complete lattice L. Let us denote by 1
the identity map : L → L.

The map f on L (i.e. L → L) is said to be extensive if and only if 1 ≤ f .
The set E of the extensive maps is an ∧-closed subset of the complete lattice
LL : then it is, for itself, a complete lattice. Note that, if H is a non-empty
subset of E, ∨H is in E (and thus is the induced supremum). Clearly, {0} ∪E

is a ∨-closed subset of LL.

Now, let us define the ordinal power fα of an extensive map f , inductively :
f0 = 1, fα+1 = f ◦ fα and, for a non-null limit ordinal α, fα = ∨{fβ , β < α}.
The sequence f0, f, . . . , fα, . . . is increasing. So, in account of the cardinality,
there exists an ordinal α such that fα+1 = fα. The smallest of these α will be
denoted by n(f) and will be called the order of f . Clearly, n(f) < | L |+ 1.

Proposition 1.1. If f is an extensive map and n(f) = ν, fβfν = fν for all β.

Proof. We will work by transfinite induction. When β = 0, fβfν = fν . Suppose
that, for all γ < β, fγfν = fν . If β is a limit-ordinal, fβfν = (∨{fγ , γ <
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β})fν = ∨{fγfν , γ < β} = fν . Otherwise, β = δ + 1 for a certain δ and
fβfν = ffδfν = ffν = fν . 2

For a given x ∈ L, let τ = r(f, x) be the smallest α such that fα(x) =
fα+1(x) : α ≤ n(f). By induction on γ, we get fγ(x) = fτ (x) for all γ ≥ τ .

2. Application to the preclosures

A preclosure on L is an increasing extensive map. The preclosures consti-
tute an ∧-closed subset P of LL. The closures (i.e. the idempotent preclosures)
constitute an ∧-closed subset F of LL. The closure p generated by the preclo-
sure p is the closure ∧(F∩ ↑ p) (i.e. the smallest closure c such that p ≤ c). Note
that {0}∪P is ∨-closed in LL. Note that P is a semi-group for the composition
of maps.

Proposition 2.1. If ν is the order of the preclosure p, the closure generated by
p is pν .

Proof. Obvious for ν = 0. Suppose ν > 0 (i.e. p > 1). By Prop. 1.1, pν is a
closure. But, by an easy induction on α, pα ≤ p for all α. Then p ≤ pν ≤ p,
and therefore p ≤ pν ≤ p. 2

Clearly (by induction on γ), pγ = pν for all γ ≥ ν. Since, for α > 0, pα ∈ F

implies pα ≤ ppα ≤ pαpα = pα, it results that, for α > 0, pα ∈ F ⇔ α ≥ ν.

Remark 1 – Let Pα = {p ∈ P/n(p) ≥ α}. We get : P0 = P, Pα = {p ∈ P/1 <

p < p2 < . . . < pα} if α ≥ 1 and P1\P2 = F\{1}.
Remark 2 – Let c be a closure. Put H = {p ∈ P/p = c}. The set {0} ∪H is
∨-closed in LL. The map defined, for p ∈ H, by p 7→ n(p), is decreasing [Indeed,
if p ≤ q are elements of H and α = n(p), c = pα ≤ qα ≤ c, then α ≥ n(q)].

3. Application to the semi-closed points

In paragraph 3, we suppose that the complete lattice L is equipped with an
∧-closed subset A of L. Let c be the closure c(t) = ∧(A∩ ↑ t) linked with A.
Let us call c-closed the points of A.

Definition 3.1. A point s of L is said to be A-semi-closed iff it verifies one
of the equivalent properties
1/ A ∪ {s} is ∧-closed in L

2/ ∀a ∈ A, a ∧ s ∈ A ∪ {s}
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Proof of : 2 ⇒ 1. We must prove that, whenever H ⊂ A∪ {s}, ∧H ∈ A∪ {s}.
If s /∈ H, it is obvious. Otherwise, let us put K = H\{s}. Let I = {k ∈
K/k ∧ s = s} and J = {k ∈ K/k ∧ s < s}. We can write ∧H = ∧(K ∪ {s}) =
∧(I ∪ J ∪ {s}) = (∧(I ∪ {s})) ∧ (∧J). But ∧(I ∪ {s}) = s and ∧J ∈ A. Then
∧H = s ∧ (∧J) is in A ∪ {s}. 2

Proposition 3.2. The set B of the A-semi-closed points includes A and it is
also an ∧-subset of L.

Proof. Clearly, each point of A is A-semi-closed. We must prove that, if H ⊂ B,
the membership a ∧ (∧H) ∈ A ∪ {∧H} is insured for each a ∈ A. If ∧H ≤ a,
it is obvious. Otherwise, for each possible h ∈ H, h 6≤ a (h ≤ a would induce
∧H ≤ a). So, for every h ∈ H, a ∧ h 6= h. Since h ∈ B, a ∧ h ∈ A ∪ {h}, and
then a ∧ h ∈ A. So, a ∧ (∧H) = ∧{a ∧ h, h ∈ H} ∈ A. 2

Consequence. Let us apply paragraph 1 to the extensive map which sends A

towards B.

Let F be the ∩-closed subset of 2L constituted by the ∧-closed subset of L :
F is a complete lattice. We can define an extensive map k from F to itself by
k(A) = B. Let σ be the order of k. Put kα(A) = Aα. Put Aσ = S.

Now we can define a map m : S →↓ σ, by m(t) = ∧{α/t ∈ Aα}. It is easily
seen that Aα = {t ∈ L/m(t) ≤ α}. We get the following Galois connection

2S À
r

A
(↓ σ)∗, in which r(X) =

∨{m(t), t ∈ X}, A is the map α 7→ Aα and

(↓ σ)∗ is the dual of ↓ σ.

If cα is the closure associated with Aα, it may be said that cα is the α-
weakening of c. (c = c0 ≥ c1 ≥ c2 . . . ≥ cσ).

Let τ = r(m,A) (≤ σ) (Cf. the end of paragraph 1). If τ = 0, cα = c for
all α. Otherwise, c0 > . . . > cτ = . . . = cσ.

4. Questions

What are the bases of a given closure c (i.e. the minimal preclosures which
generate c)? What are the A such that k(A) = A? Is it possible that A = k(A)
for all A ?

Thanks to N. Polat for his remarks.
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