Novi Sad J. Math. Vol. 34, No. 2, 2004, 87-98 Proc. Novi Sad Algebraic Conf. 2003 (eds. I. Dolinka, A. Tepavčević)

THE ALGEBRA OF STRONGLY FULL TERMS

K. Denecke,¹, L. Freiberg¹

Abstract. The well-known connection between hyperidentities of an algebra and identities satisfied by the clone of this algebra is studied here in a restricted setting, that of *n*-ary strongly full hyperidentities and identities of the *n*-ary clone of term operations of an algebra induced by strongly full terms, both of a type consisting only of *n*-ary operation symbols. We call such a type an *n*-ary type. Using the concept of a weakly invariant congruence relation we characterize varieties of *n*-ary type whose identities consist of strongly full terms which are closed under taking of isomorphic copies of their clones of all strongly full *n*-ary term operations. Finally, we show that a variety of *n*-ary type defined by identities consisting of strongly full terms has this property if and only if it is \mathcal{O}_{SF} -solid for the monoid \mathcal{O}_{SF} of all strongly full hypersubstitutions which have surjective extensions.

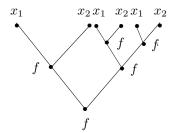
AMS Mathematics Subject Classification (2000): 08A40, 08A60, 08A02 Key words and phrases: n-ary type, strongly full terms, clone identities, hyperidentities, weakly invariant congruence relations

1. Preliminaries

In this paper we consider algebras whose fundamental operations have the same arities n. The type τ_n of such an algebra is a sequence (n, \ldots, n, \ldots) . Let $(f_i)_{i \in I}$ be an indexed set of operation symbols of arity n. We denote by $X := \{x_1, \ldots, x_n, \ldots\}$ a countably infinite set of individual variables, and for each $m \geq 1$ let $X_m := \{x_1, \ldots, x_m\}$. Then the union $W_{\tau_n}(X) = \bigcup_{m \geq 1} W_{\tau_n}(X_m)$ is the set of all (finitary) terms of type τ_n . The set $W_{\tau_n}(X)$ of all terms is the universe of the absolutely free algebra $\mathcal{F}_{\tau_n}(X) := (W_{\tau_n}(X); (\overline{f}_i)_{i \in I})$ of type τ_n on the alphabet X where the operations are defined by $\overline{f}_i(t_1, t_2, \ldots, t_n)$ $:= f_i(t_1, t_2, \ldots, t_n)$ for every n-tuple (t_1, t_2, \ldots, t_n) of terms. Similarly, the set $W_{\tau_n}(X_m)$ of m-ary terms is the universe of the free algebra $\mathcal{F}_{\tau_n}(X_m)$ is the set $W_{\tau_n}(X_m)$ on the alphabet X_m . Terms can be visualized as trees,

 $^{^1 \}rm University$ of Potsdam, Institute of Mathematics, Am Neuen Palais, 14415 Potsdam, Germany, kdenecke@rz.uni-potsdam.de

where the vertices are labelled by operation symbols and the leaves are labelled by variables. For instance, the following tree corresponds to the term $f(f(x_1, x_2), f(f(x_1, x_2), f(x_1, x_2)))$.



Now we consider the concept of a term in a restricted setting. *Strongly full* terms are inductively defined by the following steps:

- (i) $f_i(x_1, \ldots, x_n), i \in I$, is a strongly full term,
- (ii) If t_1, \ldots, t_n are strongly full terms, then $f_i(t_1, \ldots, t_n)$ is strongly full.

The set $W_{\tau_n}^{SF}(X_n)$ of strongly full *n*-ary terms is the universe of an algebra $\mathcal{F}_{\tau_n}^{SF}(X_n) := (W_{\tau_n}^{SF}(X_n); (\overline{f}_i)_{i \in I})$ of our type τ_n . This algebra is generated by the set $F_n := \{f_i(x_1, \ldots x_n) \mid i \in I\}$. It is clearly a subalgebra of the absolutely free algebra $\mathcal{F}_{\tau_n}(X) := (W_{\tau_n}(X); (\overline{f}_i)_{i \in I})$ of type τ_n generated by the alphabet X. On the set $W_{\tau_n}^{SF}(X_n)$ we define an (n+1)-ary operation S_n^n as follows:

- (i) $S_n^n(f_i(x_1, \dots, x_n), t_1, \dots, t_n) := f_i(t_1, \dots, t_n),$
- (ii) $S_n^n(f_i(s_1,\ldots,s_n),t_1,\ldots,t_n) := f_i(S_n^n(s_1,t_1,\ldots,t_n),\ldots, S_n^n(s_n,t_1,\ldots,t_n))$ for $s_1,\ldots,s_n,t_1,\ldots,t_n \in W_{\tau_n}^{SF}(X_n)$.

Then $clone_{SF}\tau_n := (W_{\tau_n}^{SF}(X_n); S_n^n)$ is an algebra of type $\tau = (n+1)$ with F_n as a generating system. The algebra $clone_{SF}\tau_n$ is called *the clone of strongly full terms* of type τ_n .

If $\mathcal{A} = (A; (f_i^{\mathcal{A}})_{i \in I})$ is an algebra of type τ_n (*n*-ary algebra), then every strongly full term *t* of type τ_n induces a term operation $t^{\mathcal{A}}$ on \mathcal{A} via the following steps:

- (i) $[f_i(x_1,\ldots,x_n)]^{\mathcal{A}} := f_i^{\mathcal{A}}$
- (ii) If $t_1^{\mathcal{A}}, \ldots, t_n^{\mathcal{A}}$ are the *n*-ary term operations which are induced by the strongly full terms $t_1, \ldots, t_n \in W_{\tau_n}^{SF}(X_n)$, then $(f_i(t_1, \ldots, t_n))^{\mathcal{A}} := f_i^{\mathcal{A}}(t_1^{\mathcal{A}}, \ldots, t_n^{\mathcal{A}})$ is the *n*-ary term operation induced by $f_i(t_1, \ldots, t_n)$.

Here the right hand side of the equation in (ii) means the *n*-ary operation defined by $f_i^{\mathcal{A}}(t_1^{\mathcal{A}},\ldots,t_n^{\mathcal{A}})(a_1,\ldots,a_n) := f_i^{\mathcal{A}}(t_1^{\mathcal{A}}(a_1,\ldots,a_n),\ldots,t_n^{\mathcal{A}}(a_1,\ldots,a_n))$

for every $(a_1, \ldots, a_n) \in A^n$. Let $T_{SF}^{(n)}(\mathcal{A})$ be the set of all these term operations. On the set $T_{SF}^{(n)}(\mathcal{A})$ we define inductively an (n+1)-ary superposition operation $S_n^{n,A}$, by

(i)
$$S_n^{n,A}(f_i^{\mathcal{A}}, t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}}) := f_i^{\mathcal{A}}(t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}}) \text{ for } t_1, \dots, t_n \in W_{\tau_n}^{SF}(X_n),$$

(ii)
$$S_n^{n,A}(f_i^{\mathcal{A}}(s_1^{\mathcal{A}}, \dots, s_n^{\mathcal{A}}), t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}}) := f_i^{\mathcal{A}}(S_n^{n,A}(s_1^{\mathcal{A}}, t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}}), \dots S_n^{n,A}(s_n^{\mathcal{A}}, t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}})).$$

This gives an algebra $\mathcal{T}_{SF}^{(n)}(\mathcal{A}) := (T_{SF}^{(n)}(\mathcal{A}); S_n^{n,A})$, called the *n*-ary strongly full (term) clone of the *n*-ary algebra \mathcal{A} .

In the case n = 1, this unary strongly full term clone forms a semigroup called the transition semigroup of \mathcal{A} , which has been intensively studied; see for instance [3]. In the next section we will find out that the clone of strongly full *n*-ary terms of type τ_n and the *n*-ary strongly full (term) clone of the *n*-ary algebra \mathcal{A} belong to the same variety.

2. The Variety of Strongly Full Clones

Using a new set of variables $\mathcal{X} = (Y_i)_{i \in I}$ indexed by I, and an (n+1)-ary operation symbol \widetilde{S}_n^n we define a new language of type $\tau = (n+1)$ and consider equations formulated in this new language.

Proposition 2.1 The algebra $clone_{SF}\tau_n$ satisfies the following identity (C) $\widetilde{S}_n^n(X_0, \widetilde{S}_n^n(X_{i_1}, X_2, \dots, X_{n+1}), \dots, \widetilde{S}_n^n(X_{i_n}, X_2, \dots, X_{n+1})) \approx \widetilde{S}_n^n(\widetilde{S}_n^n(X_0, X_{i_1}, \dots, X_{i_n}), X_2, \dots, X_{n+1}).$

Proof. We will give a proof by induction on the complexity of the strongly full term which is substituted for X_0 . If we substitute for X_0 the strongly full term $f_i(x_1, \ldots, x_n)$ and for $X_{i_1}, \ldots, X_{i_n}, X_2, \ldots, X_{n+1}$ the *n*-ary terms $t_{i_1}, \ldots, t_{i_n}, t_2, \ldots, t_{n+1}$, then we obtain

$$\begin{split} S_n^n(f_i(x_1, \dots, x_n), S_n^n(t_{i_1}, t_2, \dots, t_{n+1}), \dots, S_n^n(t_{i_n}, t_2, \dots, t_{n+1})) \\ &= f_i(S_n^n(t_{i_1}, t_2, \dots, t_{n+1}), \dots, S_n^n(t_{i_n}, t_2, \dots, t_{n+1})) \\ &= S_n^n(f_i(t_{i_1}, \dots, t_{i_n}), t_2, \dots, t_{n+1}) \\ &= S_n^n(S_n^n(f_i(x_1, \dots, x_n), t_{i_1}, \dots, t_{i_n}), t_2, \dots, t_{n+1}) \\ \text{using the definition of } S_n^n. \end{split}$$

If we substitute for X_0 the term $t = f_i(s_1, \ldots, s_n)$ and assume inductively that (C) is satisfied for s_1, \ldots, s_n , then

 $S_n^n(f_i(s_1,\ldots,s_n),S_n^n(t_{i_1},t_2,\ldots,t_{n+1}),\ldots,S_n^n(t_{i_n},t_2,\ldots,t_{n+1}))$

$$= f_i(S_n^n(s_1, S_n^n(t_{i_1}, t_2, \dots, t_{n+1}), \dots, S_n^n(t_{i_n}, t_2, \dots, t_{n+1})), \dots, S_n^n(s_n, S_n^n(t_{i_1}, t_2, \dots, t_{n+1}), \dots, S_n^n(t_{i_n}, t_2, \dots, t_{n+1})))$$

$$= f_i(S_n^n(S_n^n(s_1, t_{i_1}, \dots, t_{i_n}), t_2, \dots, t_{n+1}), \dots, S_n^n(S_n^n(s_n, t_{i_1}, \dots, t_{i_n}), t_2, \dots, t_{n+1})))$$

$$= S_n^n(f_i(S_n^n(s_1, t_{i_1}, \dots, t_{i_n}), \dots, S_n^n(s_n, t_{i_1}, \dots, t_{i_n})), t_2, \dots, t_{n+1}))$$

$$= S_n^n(S_n^n(f_i(s_1, \dots, s_n), t_{i_1}, \dots, t_{i_n}), t_2, \dots, t_{n+1})$$

$$= S_n^n(S_n^n(t, t_{i_1}, \dots, t_{i_n}), t_2, \dots, t_{n+1}).$$
is shown that the algorithm of the approximation of the set of the set

This shows that the algebra $clone_{SF}\tau_n$ satisfies (C).

Algebras (M; S) of type n + 1 which satisfy (C) are called Menger algebras of rank n; see in [8], [4].

In a similar way one shows that also $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$ satisfies (C). Let $V_{\tau_n}^{SFC}$ be the variety of type (n+1) generated by the identity (C). Both algebras belong to this variety.

Now we consider the free algebra $\mathcal{F}_{V_{\tau_n}^{SFC}}(\{Y_i \mid i \in I\})$ in the variety $V_{\tau_n}^{SFC}$, generated by a special alphabet $\{Y_i \mid i \in I\}$. The fact that this alphabet is in bijection with the set of fundamental operations $(f_i)_{i \in I}$ of type τ_n , and hence with the set F_{τ_n} of fundamental terms which generates $clone_{SF}\tau_n$, will give us an isomorphism between this free algebra and the $clone_{SF}\tau_n$.

Theorem 2.2 The algebra $clone_{SF}\tau_n$ is isomorphic to $\mathcal{F}_{V_{\tau_n}^{SFC}}(\{Y_i \mid i \in I\})$, and therefore free with respect to the variety $V_{\tau_n}^{SFC}$, and freely generated by the set

 $\{f_i(x_1,\ldots,x_n)\mid i\in I\}.$

Proof. We define a mapping $\varphi : W_{\tau_n}^{SF}(X_n) \to F_{V_{\tau_n}^{SFC}}(\{Y_i \mid i \in I\})$ inductively as follows:

(i) $\varphi(f_i(x_1 \dots x_n)) := Y_i$ for every $i \in I$,

(ii)
$$\varphi(f_i(t_1,\ldots,t_n)) := \tilde{S}_n^n(Y_i,\varphi(t_1),\ldots,\varphi(t_n))$$

Since φ maps the generating system of $clone_{SF}\tau_n$ onto the generating system of $\mathcal{F}_{V_{\tau_n}^{SFC}}(\{Y_i \mid i \in I\})$ it is surjective. We prove the homomorphism property $\varphi(S_n^n(t_0, t_1, \dots, t_n)) = \widetilde{S}_n^n(\varphi(t_0), \dots, \varphi(t_n))$ by induction on the complexity of the term t_0 . If $t_0 = f_i(x_1, \dots, x_n)$, then $\varphi(S_n^n(f_i(x_1, \dots, x_n), t_1, \dots, t_n))$ $= \varphi(f_i(t_1, \dots, t_n)) = \widetilde{S}_n^n(Y_i, \varphi(t_1), \dots, \varphi(t_n)) = \widetilde{S}_n^n(\varphi(f_i(x_1, \dots, x_n)), \varphi(t_1), \dots, \varphi(t_n))$. Inductively, assume that $t_0 = f_i(s_1, \dots, s_n)$ and that $\varphi(S_n^n(s_j, t_1, \dots, t_n))$ $= \widetilde{S}_n^n(\varphi(s_j), \dots, \varphi(t_n))$ for all $1 \leq j \leq n$. Then $\varphi(S_n^n(f_i(s_1, \dots, s_n), t_1, \dots, t_n))$ $= \varphi(f_i(S_n^n(s_1, t_1, \dots, t_n), S_n^n(s_2, t_1, \dots, t_n), \dots, S_n^n(s_n, t_1, \dots, t_n)))$ $= \widetilde{S}_n^n(Y_i, \varphi(S_n^n(s_1, t_1, \dots, t_n)), \varphi(S_n^n(s_2, t_1, \dots, t_n)), \dots, \varphi(S_n^n(s_n, t_1, \dots, t_n))))$ $= \widetilde{S}_n^n(Y_i, \widetilde{S}_n^n(\varphi(s_1), \varphi(t_1), \dots, \varphi(t_n)), \dots, \widetilde{S}_n^n(\varphi(s_n), \varphi(t_1), \dots, \varphi(t_n)))$

90

The algebra of strongly full terms

$$= \widetilde{S}_n^n(\varphi(f_i(s_1,\ldots,s_n)),\varphi(t_1),\ldots,\varphi(t_n)))$$

= $\widetilde{S}_n^n(\varphi(t_0),\varphi(t_1),\ldots,\varphi(t_n)).$

Thus φ is a homomorphism. The mapping φ is bijective since $\{Y_i \mid i \in I\}$ is a free independent set and therefore we have

$$Y_i = Y_j \Rightarrow i = j \Rightarrow f_i(x_1, \dots, x_n) = f_j(x_1, \dots, x_n)$$

Thus φ is a bijection between the generating sets of $clone_{SF}\tau_n$ and $\mathcal{F}_{V_{\tau_n}^{SFC}}(\mathcal{X})$, and hence it is bijective on $W_{\tau_n}^{SF}(X_n)$. Altogether, φ is an isomorphism.

3. Strongly full Hypersubstitutions and Substitutions of $clone_{SF}\tau_n$

Since $clone_{SF}\tau_n = (W_{\tau_n}^{SF}(X_n); S_n^n)$ is free, freely generated by the set F_{τ_n} , any mapping η from this generating set into $W_{\tau_n}^{SF}(X_n)$ can be uniquely extended to an endomorphism $\overline{\eta}$ from $clone_{SF}\tau_n$. Such mappings are called substitutions. We will denote by $Subst_{SF}$ the set of all such clone substitutions. We introduce a binary composition operation \odot on this set, by setting $\eta_1 \odot \eta_2 := \overline{\eta_1} \circ \eta_2$, where \circ denotes the usual composition of functions. Denoting by id the identity mapping on $\{f_i(x_1, \ldots, x_n) \mid i \in I\}$, we see that $(Subst_{SF}; \odot, id)$ is a monoid. In order to examine the connection between this monoid and the monoid of hypersubstitutions of type τ_n , we introduce some basic concepts about hyperidentities and hypersubstitutions. Note that although these concepts can be defined for arbitrary type, we define them here only for type τ_n and for strongly full terms.

Definition 3.1 A strongly full hypersubstitution of n-ary type τ_n is a mapping from the set $\{f_i \mid i \in I\}$ of n-ary operation symbols of the type τ_n to the set $W_{\tau_n}^{SF}(X_n)$ of all strongly full n-ary terms of type τ_n .

Any strongly full hypersubstitution σ induces a mapping $\hat{\sigma}$ defined on the set $W_{\tau_n}^{SF}(X_n)$ of all *n*-ary terms of the type τ_n , as follows.

Definition 3.2 Let σ be a strongly full hypersubstitution of type τ_n . Then σ induces a mapping $\hat{\sigma} : W_{\tau_n}^{SF}(X_n) \longrightarrow W_{\tau_n}^{SF}(X_n)$, by setting

- (i) $\hat{\sigma}[f_i(x_1,\ldots,x_n)] := \sigma(f_i), i \in I,$
- (*ii*) $\hat{\sigma}[f_i(t_1,\ldots,t_n)] := \sigma(f_i)(\hat{\sigma}[t_1],\ldots,\hat{\sigma}[t_n]) := S_n^n(\sigma(f_i),\hat{\sigma}[t_1],\ldots,\hat{\sigma}[t_n]).$

Let $Hyp^{SF}(\tau_n)$ be the set of all strongly full hypersubstitutions of type τ_n . By setting $\sigma_1 \circ_h \sigma_2 := \hat{\sigma}_1 \circ \sigma_2$, we define a binary operation \circ_h on $Hyp^{SF}(\tau_n)$. This operation is associative, and together with the identity hypersubstitution σ_{id} defined by $\sigma_{id}(f_i) = f_i(x_1, \ldots, x_n)$ we have a monoid $(Hyp^{SF}(\tau_n); \circ_h, \sigma_{id})$. Let \mathcal{M} be any submonoid of $Hyp^{SF}(\tau_n)$. If $\mathcal{A} = (A; (f_i^{\mathcal{A}})_{i \in I})$ is an *n*-ary algebra, then an identity $s \approx t$ in \mathcal{A} is said to be an M-hyperidentity in \mathcal{A} if $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ is an identity in \mathcal{A} for every hypersubstitution $\sigma \in M$. In the special case that M is all of $Hyp^{SF}(\tau_n)$, an M-hyperidentity is usually called a strongly full hyperidentity. An identity is an M-hyperidentity of a variety V if it is an M-hyperidentity of every algebra in V. A variety in which every identity of the variety holds as an M-hyperidentity is called an M-solid variety, or a SF-solid variety in the special case $M = Hyp^{SF}(\tau_n)$. For more detailed information on hyperidentities we refer the reader to [1].

Between strongly full hypersubstitutions and substitutions of $clone_{SF}\tau_n$ there is a close interconnection.

Proposition 3.3 The monoids (Subst_{SF}; \odot , id) and (Hyp^{SF}(τ_n); \circ_h , σ_{id}) are isomorphic.

Proof. We define a mapping ψ : $Subst_{SF} \longrightarrow Hyp^{SF}(\tau_n)$ by $\psi(\eta) := \eta \circ \sigma_{id}$. This gives a well-defined mapping between $Subst_{SF}$ and $Hyp^{SF}(\tau_n)$. The mapping ψ is surjective, since any strongly full hypersubstitution σ can be obtained as $\psi(\eta)$ for $\eta = \sigma \circ \sigma_{id}^{-1}$. The mapping ψ is also injective, since

$$\psi(\eta_1) = \psi(\eta_2) \quad \Rightarrow \quad \eta_1 \circ \sigma_{id} = \eta_2 \circ \sigma_{id} \quad \Rightarrow \quad \eta_1 = \eta_2,$$

since σ_{id} is a bijection. To show that ψ is a homomorphism, we first verify the following additional property:

$$(\eta \circ \sigma_{id})^{\hat{}}[t] = \overline{\eta}(t), \qquad (*)$$

where $\overline{\eta}$ is the unique extension of η . For the fundamental terms $t = f_i(x_1, \ldots, x_n)$ we have

 $(\eta \circ \sigma_{id})^{\hat{}} [f_i(x_1, \dots, x_n)] = (\eta \circ \sigma_{id})(f_i)$ $= \eta (f_i(x_1, \dots, x_n)) = \overline{\eta} (f_i(x_1, \dots, x_n)),$

by (C) and the definition of the extension of a hypersubstitution. The claimed property then follows by induction. Now for the homomorphism property for ψ we have

$$\begin{aligned} \psi(\eta_1) & \circ_h \ \psi(\eta_2) &= (\eta_1 \circ \sigma_{id}) \circ_h \ (\eta_2 \circ \sigma_{id}) \\ &= (\eta_1 \circ \sigma_{id})^{\hat{}} \circ (\eta_2 \circ \sigma_{id}) \\ &= \overline{\eta}_1 \circ (\eta_2 \circ \sigma_{id}), \qquad \text{by property (*) above,} \\ &= (\overline{\eta_1} \circ \eta_2) \circ \sigma_{id}, \qquad \text{by associativity} \\ &= (\eta_1 \odot \eta_2) \circ \sigma_{id}, \qquad \text{by definition of } \odot, \\ &= \psi(\eta_1 \odot \eta_2). \qquad \Box \end{aligned}$$

The condition (*) shows that extensions of hypersubstitutions are endomorphisms of $clone_{SF}\tau_n$. Further it is clear that the monoid $End(clone_{SF}\tau_n)$ of all endomorphisms of $clone_{SF}\tau_n$ is isomorphic to $(Hyp^{SF}(\tau_n); \circ_h, \sigma_{id})$.

For the next proof we will need the following mapping g. Let \mathcal{A} be any n-ary algebra. We define $g : \{f_i(x_1, \ldots, x_n) \mid i \in I\} \to \{f_i^{\mathcal{A}} \mid i \in I\}$, by letting $g(f_i(x_1, \ldots, x_n)) = f_i^{\mathcal{A}}$, for each $i \in I$. Since $clone_{SF}\tau_n$ is free with respect to the variety $V_{\tau_n}^{SFC}$ and since $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$ is an element of this variety, this mapping g has a unique extension to a surjective homomorphism \overline{g} . It is clear that the mapping \overline{g} assigns to each term $t \in W_{\tau_n}^{SF}(X_n)$ the induced term operation $t^{\mathcal{A}}$. We denote by $Id_n^{SF}(\mathcal{A})$ the set of all identities $s \approx t$ in \mathcal{A} with $s, t \in W_{\tau_n}^{SF}(X_n)$. Such identities are called strongly full identities. Then we have:

Theorem 3.4 Let \mathcal{A} be an algebra of type τ_n , and let $s \approx t \in Id_n^{SF}\mathcal{A}$. Then $s \approx t$ is a strongly full hyperidentity in \mathcal{A} iff $s \approx t$ is an identity in $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$.

Proof. We first assume that $s \approx t$ is a strongly full hyperidentity of \mathcal{A} . This means that for every $\sigma \in Hyp^{SF}(\tau_n)$ we have $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in Id_n^{SF}\mathcal{A}$, i.e. $\hat{\sigma}[s]^{\mathcal{A}} = \hat{\sigma}[t]^{\mathcal{A}}$, and hence that $\overline{g}(\hat{\sigma}[s]) = \overline{g}(\hat{\sigma}[t])$. To show that $s \approx t$ holds in $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$, we will show that $\overline{v}(s) = \overline{v}(t)$ for every valuation $v : \{f_i(x_1, \ldots, x_n\} \mid i \in I\} \to T_{SF}^{(n)}(\mathcal{A})$. Since \overline{g} is surjective, there exists a clone substitution η_v such that $v = \overline{g} \circ \eta_v$, using the axiom of choice. Then $\eta_v \circ \sigma_{id}$ is a hypersubstitution, which we shall denote by σ_v . Then we have

$$\overline{v}(s) = (\overline{g} \circ \overline{\eta}_v)(s) = (\overline{g} \circ (\eta_v \circ \sigma_{id})^{\hat{}})(s) = \overline{g}(\hat{\sigma}_v[s]).$$

Similarly, we have $\overline{v}(t) = \overline{g}(\hat{\sigma}_v[t])$. Since by our assumption we have $\overline{g}(\hat{\sigma}_v[s]) = \overline{g}(\hat{\sigma}_v[t])$, we get $\overline{v}(s) = \overline{v}(t)$, as required. Conversely, let $s \approx t \in Id T_{SF}^{(n)}(\mathcal{A})$, so that $s, t \in W_{\tau_n}^{SF}(X_n)$ and for every valuation mapping v we have $\overline{v}(s) = \overline{v}(t)$. Let σ be any SF-hypersubstitution. By the surjectivity from Proposition 3.3, there is a clone substitution η_{σ} such that $\eta_{\sigma} \circ \sigma_{id} = \sigma$. We take v to be the valuation $\overline{g} \circ \overline{\eta_{\sigma}}$. Then

$$\hat{\sigma}[s]^{\mathcal{A}} = \overline{g}(\hat{\sigma}[s]) = (\overline{g} \circ (\eta_{\sigma} \circ \sigma_{id})^{\hat{}})(s) = (\overline{g} \circ \overline{\eta}_{\sigma})(s) = \overline{v}(s),$$

again using Property (*). Similarly, we have $\hat{\sigma}[t]^{\mathcal{A}} = \overline{v}(t)$, and our assumption that $\overline{v}(s) = \overline{v}(t)$ gives the desired equality.

Let $\mathcal{L}(tau_n)$ be the lattice of all varieties of type τ_n . For any variety V of type τ_n we can form the variety $SF_n^A(V)$ of type τ_n , determined by all *n*-ary strongly full identities of V. More precisely, if $SF_n^E(\tau_n) := W_{\tau_n}^{SF}(X_n)^2 \cup \{s \approx s \mid s \in W_{\tau_n}(X_n)\}$, then $SF_n^A(V) := Mod(SF_n^E(\tau_n) \cap IdV)$, where $SF_n^E(V) := SF_n^E(\tau_n) \cap IdV$ is a congruence relation on $\mathcal{F}_{\tau_n}(X_n)$ (and on the subalgebra $\mathcal{F}_{\tau_n}^{SF}(X_n)$). In general, $SF_n^E(V)$ is not fully invariant since it is not closed under substitutions and therefore $SF_n^E(V)$ is not an equational theory. It is easy to see that the operator

$$SF_n^E : \mathcal{P}(W_{\tau_n}(X_n) \times W_{\tau_n}(X_n)) \to \mathcal{P}(W_{\tau_n}(X_n) \times W_{\tau_n}(X_n))$$

(where \mathcal{P} denotes the formation of the power set) is a kernel operator. The variety V is a subvariety of $SF_n^A(V)$. The operator $SF_n^A : \mathcal{L}(\tau_n) \to \mathcal{L}(\tau_n)$ defined by $V \mapsto SF_n^A(V)$ is a closure operator. Indeed, extensivity and monotonicity are clear. From $SF_n^E(V) \subseteq IdModSF_n^E(V)$ there follows $SF_n^E(V) \subseteq IdModSF_n^E(V) \supseteq Mod(IdModSF_n^E(V) \cap W_{\tau_n}^{SF}(X_n)^2)$ and $ModSF_n^E(V) \supseteq Mod(IdModSF_n^E(V) \cap W_{\tau_n}^{SF}(X_n)^2)$ and therefore, $SF_n^A(V) \supseteq Mod(SF_n^E(SF_n^A(V))) = SF_n^A(SF_n^A(V))$. The converse inclusion follows from extensivity. Therefore SF_n^A is idempotent and thus it is a closure operator. As a consequence, the class of all varieties V with $V = SF_n^A(V)$ forms a sublattice $\mathcal{L}_{SF}(\tau_n)$ of the lattice $\mathcal{L}(\tau_n)$ of all varieties of type τ_n .

We recall that a variety V of type τ_n is called M-solid if every identity in V is satisfied as an M-hyperidentity. For $M = Hyp^{SF}(\tau_n)$ we speak of SF-solid varieties. Then we have

Corollary 3.5 Let \mathcal{A} be an algebra of type τ_n . Then the variety $SF_n^A(V(\mathcal{A}))$ is SF-solid iff $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$ is free with respect to itself, freely generated by the set $\{f_i^{\mathcal{A}} \mid i \in I\}$, meaning that every mapping from $\{f_i^{\mathcal{A}} \mid i \in I\}$ to $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$ can be extended to an endomorphism of $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$.

Proof. Using the equivalence from Theorem 3.4, we will show that $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$ is free iff every identity $s \approx t \in IdSF_n^A(V(\mathcal{A}))$ is also an identity in $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$. Suppose first that $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$ is free with respect to itself, freely generated by the set $\{f_i^{\mathcal{A}} \mid i \in I\}$. Let $s \approx t$ be any identity in $Id_n^{SF}(SF_n^{\mathcal{A}}(V(\mathcal{A})))$, so that $\overline{g}(s) = \overline{g}(t)$. To show that $s \approx t$ is an identity in $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$, we will show that $\overline{v}(s) = \overline{v}(t)$ for any valuation mapping $v: F_{\tau_n} \longrightarrow \mathcal{T}_{SF}^{(n)}(\mathcal{A})$. Given v, we define a mapping $\alpha_v: \{f_i^{\mathcal{A}} \mid i \in I\} \longrightarrow \mathcal{T}_{SF}^{(n)}(\mathcal{A})$ by $\alpha_v(f_i^{\mathcal{A}}) = v(f_i(x_1, \ldots, x_n))$. Since $f_i^{\mathcal{A}} = f_j^{\mathcal{A}} \implies i = j \implies f_i(x_1, \ldots, x_n) = f_j(x_1, \ldots, x_n)$ $\implies v(f_i(x_1, \ldots, x_n)) = v(f_j(x_1, \ldots, x_n))$, the mapping α_v is well-defined. Since the set F_v concretes the alreader of v.

the mapping α_v is well-defined. Since the set F_{τ_n} generates the algebra $clone_{SF}\tau_n$, the mapping v can be uniquely extended to \overline{v} on the set $W^{SF}_{\tau_n}(X_n)$. Then we have

$$\overline{g}(s) = \overline{g}(t) \Longrightarrow \overline{\alpha}_v(\overline{g}(s)) = \overline{\alpha}_v(\overline{g}(t)) \Longrightarrow \overline{v}(s) = \overline{v}(t),$$

showing that $s \approx t \in IdT_{SF}^{(n)}(\mathcal{A}).$

For the converse direction, we show that when $SF_n^A(V(\mathcal{A}))$ is SF-solid, any mapping $\alpha : \{f_i^{\mathcal{A}} \mid i \in I\} \longrightarrow T_{SF}^{(n)}(\mathcal{A})$ can be extended to an endomorphism of $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$. We consider the mapping $\overline{\alpha} = \overline{\alpha \circ g} : W_{\tau_n}^{SF}(X_n) \longrightarrow T_{SF}^{(n)}(\mathcal{A})$ with $\overline{\alpha}(t^{\mathcal{A}}) = \overline{\alpha \circ g}(t)$, which is a valuation of terms. Then for any terms $s, t \in W_{\tau_n}^{SF}(X_n)$, it follows from $s^{\mathcal{A}} = t^{\mathcal{A}}$ that $\overline{g}(s) = \overline{g}(t)$ and hence that $\overline{\alpha}(s^{\mathcal{A}}) = \overline{\alpha}(\overline{g}(s)) = \overline{\alpha}(\overline{g}(t)) = \overline{\alpha}(t^{\mathcal{A}})$, since $\overline{\alpha} \circ \overline{g}$ is a valuation and every identity of $SF_n^{\mathcal{A}}(V(\mathcal{A}))$ is a $clone_{SF}\tau_n$ -identity. This shows that $\overline{\alpha}$ is well-defined. It is The algebra of strongly full terms

also an endomorphism since $\overline{\alpha}(S_n^{n,\mathcal{A}}(s^{\mathcal{A}}, t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}})) = \overline{\alpha}(\overline{g}(S_n^n(s, t_1, \dots, t_n))) = (\overline{\alpha \circ g})(S_n^n(s, t_1, \dots, t_n)) = S_n^{n,\mathcal{A}}(\overline{\alpha \circ g}(s), \overline{\alpha \circ g}(t_1), \dots, \overline{\alpha \circ g}(t_n)) = S_n^{n,\mathcal{A}}(\overline{\alpha}(s^{\mathcal{A}}), \overline{\alpha}(t_1^{\mathcal{A}}), \dots, \overline{\alpha}(t_n^{\mathcal{A}})))$, using the fact that $\overline{\alpha \circ g}$ is the homomorphism extending the valuation $\alpha \circ g$ defined on the generating set of the free algebra $clone_{SF}\tau_n$. Finally, $\overline{\alpha}$ extends α since $\overline{\alpha}(f_i^{\mathcal{A}}) = \overline{\alpha \circ g}(f_i(x_1, \dots, x_n)) = (\alpha \circ g)(f_i(x_1, \dots, x_n)) = \alpha(g(f_i(x_1, \dots, x_n))) = \alpha(f_i^{\mathcal{A}})$, for each $i \in I$.

Proposition 3.6 Let \mathcal{A} be an *n*-ary algebra. Then the set $SF_n^E(\mathcal{A}) := SF_n^E(V(\mathcal{A}))$ is a congruence on $clone_{SF}\tau_n$ and the quotient algebra $clone_{SF}\tau_n/SF_n^E(\mathcal{A})$ is isomorphic to $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$.

Proof. The set $SF_n^E(V(\mathcal{A}))$ is an equivalence relation on $W_{\tau_n}^{SF}(X_n)$. It is easy to see that the operation S_n^n preserves the relation $SF_n^E(V(\mathcal{A}))$. Thus $SF_n^E(V(\mathcal{A}))$ is a congruence relation. The surjective homomorphism \bar{g} maps $clone_{SF}\tau_n$ onto $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$. By the homomorphism theorem we have $\mathcal{T}_{SF}^{(n)}(\mathcal{A}) \cong clone_{SF}\tau_n/ker\bar{g}$. Further we have $ker\bar{g} = SF_n^E(V(\mathcal{A}))$. \Box

For any congruence θ on $clone_{SF}\tau_n$ we may consider the quotient algebra $\mathcal{M}^{SF}(\theta) := (W_{\tau_n}^{SF}(X_n)/\theta; (f_i^*)_{i\in I})$ since θ is also a congruence on $\mathcal{F}_{\tau_n}^{SF}(X_n)$. This algebra is called SF-Myhill algebra of θ . The congruence $SF_n^{E}(V(\mathcal{A}))$ is called the SF-Myhill congruence ([5]) on \mathcal{A} and the corresponding quotient algebra is called SF-Myhill algebra $\mathcal{M}^{SF}(\mathcal{A})$. For any variety V we introduce $\mathcal{M}^{SF}(V)$ as quotient algebra $(W_{\tau_n}^{SF}(X_n)/Id_n^{SF}; (f_i^*)_{i\in I})$.

Proposition 3.7 For every congruence θ on $clone_{SF}\tau_n$ we have $\mathcal{T}_{SF}^{(n)}(\mathcal{M}^{SF}(\theta))$ $\cong clone_{SF}\tau_n/\theta$, in particular $\mathcal{T}_{SF}^{(n)}(\mathcal{M}^{SF}(\mathcal{A})) \cong \mathcal{T}_{SF}^{(n)}(\mathcal{A})$.

Proof. $\mathcal{T}_{SF}^{(n)}(\mathcal{M}^{SF}(\theta))$ is the strongly full clone generated by $\{f_i^* \mid i \in I\}$. We consider a mapping $\varphi : \{f_i(x_1, \ldots, x_n) \mid i \in I\} \rightarrow \{f_i^* \mid i \in I\}$ defined by $\varphi(f_i(x_1, \ldots, x_n)) = f_i^*$ for all $i \in I$. Since $clone_{SF}\tau_n$ is free in the variety $V_{\tau_n}^{SFC}$, freely generated by the set $\{f_i(x_1, \ldots, x_n) \mid i \in I\}$, the mapping φ can be extended to a homomorphism $\bar{\varphi}$ which is surjective, since φ maps the generating sets to each other. By definition $T_{SF}^{(n)}(\mathcal{M}^{SF}(\theta)) = clone_{SF}/ker\varphi$. It is easy to see that $ker\varphi = \theta$. Then the special case follows from the previous definition. \Box

4. I_{SF} -Closed Varieties of Type τ_n

In this section we examine the connection between a variety V of type τ_n and the class of all strongly full clones $\{T_{SF}^{(n)}(\mathcal{A}) \mid \mathcal{A} \in V\}$ of its algebras.

Definition 4.1 Let V be a variety of type τ_n . Then $SF_n^A(V)$ is called I_{SF} closed if whenever $\mathcal{A} \in SF_n^A(V)$ and $\mathcal{T}_{SF}^{(n)}(\mathcal{A}) \cong \mathcal{T}_{SF}^{(n)}(\mathcal{B})$, then also $\mathcal{B} \in SF_n^A(V)$. We consider the following set of hypersubstitutions of type τ_n :

$$\mathcal{O}_{SF} := \{ \sigma \mid \sigma \in Hyp^{SF}(\tau_n) \text{ and } \hat{\sigma} \text{ is surjective} \}.$$

It is easy to see that \mathcal{O}_{SF} is a submonoid of $Hyp_{SF}(\tau_n)$. Our aim is to show that I_{SF} -closedness is closely related to certain congruence relations. We recall the concept of a weekly invariant congruence relation.

Definition 4.2 Let \mathcal{A} be an algebra of arbitrary type. A congruence $\theta \in Con\mathcal{A}$ is said to be weakly invariant if for every $\rho \in Con\mathcal{A}$, the following condition is satisfied: if there exists a homomorphism from \mathcal{A}/θ onto \mathcal{A}/ρ , then $\theta \subseteq \rho$.

Let \mathcal{A} be an algebra, and let θ and ρ be any congruences on \mathcal{A} . By the second isomorphism theorem, it always follows from $\theta \subseteq \rho$ that there exists a surjective homomorphism $\mathcal{A}/\theta \longrightarrow \mathcal{A}/\rho$, but the converse is in general not true. Weakly invariant congruences were introduced in [6] and used for semigroup varieties in [5]. They are related to isomorpically closed principal filters in the congruence lattice.

Definition 4.3 A set C of congruences of an algebra \mathcal{A} of arbitrary type τ is said to be isomorphically closed if whenever $\theta \in C$ and $\mathcal{A}/\theta \cong \mathcal{A}/\rho$ it follows that $\rho \in C$.

The following theorem was proved for semigroups in [5] and for algebras of arbitrary type in [2].

Theorem 4.4 Let \mathcal{A} be an algebra of arbitrary type τ , let V be a variety of type τ and let $\mathcal{F}_V(X)$ be the free algebra with respect to V, freely generated by X. Then

(i) A congruence θ on \mathcal{A} is weakly invariant iff the principal filter [θ) generated by θ in Con \mathcal{A} is isomorphically closed.

(ii) Every weakly invariant congruence on \mathcal{A} is invariant under all surjective endomorphisms of \mathcal{A} .

Now we can characterize I_{SF} -closed varieties of type τ_n , generalizing the characterization of σ -closed varieties given in [5] for the unary case and for the *n*-ary case in [2].

Theorem 4.5 Let V be a variety of type τ_n . Then $SF_n^A(V)$ is I_{SF} -closed iff $SF_n^A(V)$ satisfies the following two properties:

- (i) $SF_n^E(V)$ is weakly invariant.
- (ii) $\mathcal{A} \in SF_n^A(V)$ iff $\mathcal{M}^{SF}(\mathcal{A}) \in SF_n^A(V)$.

Proof. Suppose first that $SF_n^A(V)$ is I_{SF} -closed. Property (*ii*) follows from I_{SF} closure and the result from Proposition 3.7 that for any algebra \mathcal{A} in $SF_n^A(V)$ we have $\mathcal{T}_{SF}^{(n)}(\mathcal{M}^{SF}(\mathcal{A})) \cong \mathcal{T}_{SF}^{(n)}(\mathcal{A})$. By Theorem 4.4, we can prove that (*i*) holds by showing that $[SF_n^E(V))$ is isomorphically closed. For this, let $\alpha \supseteq SF_n^E(V)$, and let θ be a congruence on $clone_{SF}\tau_n$ such that $clone_{SF}\tau_n/\alpha \cong clone_{SF}\tau_n/\theta$. Since $SF_n^E(V) = \cap \{SF_n^E(\mathcal{A}) \mid \mathcal{A} \in V\}$, the algebra $\mathcal{M}^{SF}(V)$ is isomorphic to a subdirect product of the algebras $\mathcal{M}^{SF}(\mathcal{A})$ with $\mathcal{A} \in SF_n^A(V)(\mathcal{M}^{SF}(\mathcal{A}) \in$ $SF_n^A(V)$ by (ii)), and thus $\mathcal{M}^{SF}(V) \in SF_n^A(V)$. The inclusion $\alpha \supseteq SF_n^E(V)$ implies that there is a surjective homomorphism from $\mathcal{M}^{SF}(V)$ onto $\mathcal{M}^{SF}(\alpha)$. Combining these two facts gives $\mathcal{M}^{SF}(\alpha) \in SF_n^A(V)$. Furthermore by Proposition 3.7 we have $\mathcal{T}_{SF}^{(n)}(\mathcal{M}^{SF}(\alpha)) \cong clone_{SF}\tau_n/\alpha \cong clone_{SF}\tau_n/\theta \cong \mathcal{T}_{SF}^{(n)}(\mathcal{M}^{SF}(\theta))$, and since $SF_n^A(V)$ is I_{SF} -closed this gives $\mathcal{M}^{SF}(\theta) \in SF_n^A(V)$. This means that $SF_n^E(\mathcal{M}^{SF}(\theta)) = \theta$, so that $\theta \in [SF_n^E(V))$. This equality $SF_n^E(\mathcal{M}^{SF}(\theta)) = \theta$ holds because

$$s \approx t \in SF_n^E(\mathcal{M}^{SF}(\theta)) \quad \Leftrightarrow \quad [s]_\theta = [t]_\theta \quad \Leftrightarrow \quad (s,t) \in \theta.$$

Conversely, we assume that the variety V of type τ_n satisfies (i) and (ii). From (ii) we get $\mathcal{M}^{SF}(\mathcal{A}) \in SF_n^A(V)$, for all $\mathcal{A} \in SF_n^A(V)$, and since $\mathcal{M}^{SF}(V) \in$ isomorphic to a subdirect product of all these algebras, we also have $\mathcal{M}^{SF}(V) \in$ $SF_n^A(V)$. To establish that $SF_n^A(V)$ is I_{SF} -closed, let \mathcal{B} and \mathcal{C} be any two *n*ary algebras, and suppose that $\mathcal{T}_{SF}^{(n)}(\mathcal{B}) \cong \mathcal{T}_{SF}^{(n)}(\mathcal{C})$ and $\mathcal{B} \in SF_n^A(V)$. It follows from Proposition 3.7 that $clone_{SF}\tau_n/SF_n^E(\mathcal{B}) \cong clone_{SF}\tau_n/SF_n^E(\mathcal{C})$, and since $\mathcal{B} \in SF_n^A(V)$ we have $SF_n^E(V) \subseteq SF_n^E(\mathcal{B})$. By (ii) $SF_n^E(V)$ is weakly invariant, so we get $SF_n^E(V) \subseteq SF_n^E(\mathcal{C})$. But then $\mathcal{M}^{SF}(\mathcal{C})$ is a homomorphic image of $\mathcal{M}^{SF}(V)$, and hence $\mathcal{M}^{SF}(\mathcal{C}) \in SF_n^A(V)$. By (ii) we have $\mathcal{C} \in SF_n^A(V)$, establishing that $SF_n^A(V)$ is I_{SF} -closed. \Box

The next Theorem characterizes I_{SF} -closure for SF-varieties in terms of SF-solidity.

Theorem 4.6 A SF-variety $SF_n^A(V)$ of type τ_n is I_{SF} -closed iff it is \mathcal{O}_{SF} -solid.

Proof. First assume that $SF_n^A(V)$ is \mathcal{O}_{SF} -solid, so that every $s \approx t \in SF_n^E(V)$ is an \mathcal{O}_{SF} -hyperidentity in $SF_n^A(V)$. We claim that in fact $\mathcal{A} \in SF_n^A(V)$ iff \mathcal{A} satisfies as an \mathcal{O}_{SF} -hyperidentity every identity $s \approx t$ in $SF_n^E(V)$. From the \mathcal{O}_{SF} -solidity of $SF_n^A(V)$ follows at first that from $\mathcal{A} \in SF_n^A(V) = ModSF_n^E(V)$ the algebra \mathcal{A} satisfies every identity $s \approx t \in SF_n^E(V)$ as an \mathcal{O}_{SF} -hyperidentity. For the other direction we note that any \mathcal{O}_{SF} -hyperidentity of an algebra is also an identity, so \mathcal{A} satisfies the basis identities $SF_n^E(V)$ of $SF_n^A(V)$. By Theorem 3.4 from $\mathcal{A} \models SF_n^E(V)$ there follows $\mathcal{T}_{SF}^{(n)}(\mathcal{A}) \models SF_n^E(V)$. If $\mathcal{A} \in SF_n^A(V)$ and $\mathcal{T}_{SF}^{(n)}(\mathcal{B})$ is isomorphic to $\mathcal{T}_{SF}^{(n)}(\mathcal{A})$ then $\mathcal{B} \in SF_n^A(V)$ and thus $SF_n^A(V)$ is I_{SF} -closed.

Conversely, assume that $SF_n^A(V)$ is I_{SF} -closed. Then by Theorem 4.5 we know that $SF_n^E(V)$ is both, weakly invariant and invariant under all surjective endomorphisms of $clone_{SF}\tau_n$. Then for any identity $s \approx t \in SF_n^E(V)$, any algebra $\mathcal{A} \in SF_n^A(V)$ and any surjective endomorphism η , we have $\eta(s) \approx$ $\eta(t) \in Id\mathcal{T}_{SF}^{(n)}(\mathcal{A})$. Using the isomorphism from Proposition 3.3 this means $\hat{\sigma}[s] \approx \hat{\sigma}[t] \in SF_n^E(V)$ for every $\sigma \in \mathcal{O}_{SF}$ and $SF_n^A(V)$ is \mathcal{O}_{SF} - solid. \Box

References

- Denecke, K., Wismath, S.L., Hyperidentities and Clones, Gordon and Breach Science Publishers (2000).
- [2] Denecke, K., Jampachon, P., Wismath, S. L., Clones of n-ary algebras, Journal of Applied Algebra and Discrete Structures, Vol 1 (2003), No.2pp, 141-150.
- [3] Eilenberg, S., Automata, Languages and Machines, Academic Press, Vol. A (1974), Vol. B (1976).
- [4] Menger, K. The algebra of functions: past, present, future, Rend., Math. 20 (1961), 409-430.
- [5] Petković, T., Ćirić, M., Bogdanović, St., Unary Algebras, Semigroups and Congruences on Free Semigroups, preprint 2002.
- [6] Tamura, T. Maximal or greatest homomorphic images of given type, Canad. J. Math. 20 (1968), 264-271.
- [7] Taylor, W., Hyperidentities and Hypervarieties, Aequationes Mathematicae 23 (1981), 111-127.
- [8] Schein, B.M., Trohimenko, V.S., Algebras of multiplace functions, Semigroup Forum Volume 17 (1979), 1-64.