
87
Novi Sad J. Math.
Vol. 34, No. 2, 2004, 87-98
Proc. Novi Sad Algebraic Conf. 2003

(eds. I. Dolinka, A. Tepavčević)

THE ALGEBRA OF STRONGLY FULL TERMS
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Abstract. The well-known connection between hyperidentities of an al-
gebra and identities satisfied by the clone of this algebra is studied here in
a restricted setting, that of n-ary strongly full hyperidentities and identi-
ties of the n-ary clone of term operations of an algebra induced by strongly
full terms, both of a type consisting only of n-ary operation symbols. We
call such a type an n-ary type. Using the concept of a weakly invariant
congruence relation we characterize varieties of n-ary type whose identities
consist of strongly full terms which are closed under taking of isomorphic
copies of their clones of all strongly full n-ary term operations. Finally,
we show that a variety of n-ary type defined by identities consisting of
strongly full terms has this property if and only if it is OSF -solid for the
monoid OSF of all strongly full hypersubstitutions which have surjective
extensions.
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1. Preliminaries

In this paper we consider algebras whose fundamental operations have the
same arities n. The type τn of such an algebra is a sequence (n, . . . , n, . . .).
Let (fi)i∈I be an indexed set of operation symbols of arity n. We denote by
X := {x1, . . . , xn, . . .} a countably infinite set of individual variables, and for
each m ≥ 1 let Xm := {x1, . . . , xm}. Then the union Wτn(X) = ∪m≥1Wτn(Xm)
is the set of all (finitary) terms of type τn. The set Wτn(X) of all terms is the
universe of the absolutely free algebra Fτn(X) := (Wτn(X); (f i)i∈I) of type
τn on the alphabet X where the operations are defined by f i(t1, t2, . . . , tn)
:= fi(t1, t2, . . . , tn) for every n-tuple (t1, t2, . . . , tn) of terms. Similarly, the
set Wτn(Xm) of m-ary terms is the universe of the free algebra Fτn(Xm) :=
(Wτn(Xm); (f i)i∈I) on the alphabet Xm. Terms can be visualized as trees,
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where the vertices are labelled by operation symbols and the leaves are la-
belled by variables. For instance, the following tree corresponds to the term
f(f(x1, x2), f(f(x1, x2), f(x1, x2))).
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Now we consider the concept of a term in a restricted setting. Strongly full
terms are inductively defined by the following steps:

(i) fi(x1, . . . , xn), i ∈ I, is a strongly full term,

(ii) If t1, . . . , tn are strongly full terms, then fi(t1, . . . , tn) is strongly full.

The set WSF
τn

(Xn) of strongly full n-ary terms is the universe of an algebra
FSF

τn
(Xn) := (WSF

τn
(Xn); (f i)i∈I) of our type τn. This algebra is generated by

the set Fn := {fi(x1, . . . xn) | i ∈ I}. It is clearly a subalgebra of the absolutely
free algebra Fτn(X) := (Wτn(X); (f i)i∈I) of type τn generated by the alphabet
X. On the set WSF

τn
(Xn) we define an (n + 1)-ary operation Sn

n as follows:

(i) Sn
n(fi(x1, . . . , xn), t1, . . . , tn) := fi(t1, . . . , tn),

(ii) Sn
n(fi(s1, . . . , sn), t1, . . . , tn) := fi(Sn

n(s1, t1, . . . , tn), . . . ,
Sn

n(sn, t1, . . . , tn)) for s1, . . . , sn, t1, . . . , tn ∈ WSF
τn

(Xn).

Then cloneSF τn := (WSF
τn

(Xn); Sn
n) is an algebra of type τ = (n + 1) with Fn

as a generating system. The algebra cloneSF τn is called the clone of strongly
full terms of type τn.
If A = (A; (fAi )i∈I) is an algebra of type τn (n-ary algebra), then every strongly
full term t of type τn induces a term operation tA on A via the following steps:

(i) [fi(x1, . . . , xn)]A := fAi

(ii) If tA1 , . . . , tAn are the n-ary term operations which are induced by the
strongly full terms t1, . . . , tn ∈ WSF

τn
(Xn), then (fi(t1, . . . , tn))A :=

fAi (tA1 , . . . , tAn ) is the n-ary term operation induced by fi(t1, . . . , tn).

Here the right hand side of the equation in (ii) means the n-ary operation
defined by fAi (tA1 , . . . , tAn )(a1, . . . , an) := fAi (tA1 (a1, . . . , an), . . . , tAn (a1, . . . , an))
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for every (a1, . . . , an) ∈ An. Let T
(n)
SF (A) be the set of all these term operations.

On the set T
(n)
SF (A) we define inductively an (n+1)-ary superposition operation

Sn,A
n , by

(i) Sn,A
n (fAi , tA1 , . . . , tAn ) := fAi (tA1 , . . . , tAn ) for t1, . . . , tn ∈ WSF

τn
(Xn),

(ii) Sn,A
n (fAi (sA1 , . . . , sAn ), tA1 , . . . , tAn ) := fAi (Sn,A

n (sA1 , tA1 , . . . , tAn ), . . . ,
Sn,A

n (sAn , tA1 , . . . , tAn )).

This gives an algebra T (n)
SF (A) := (T (n)

SF (A); Sn,A
n ), called the n-ary strongly full

(term) clone of the n-ary algebra A.
In the case n = 1, this unary strongly full term clone forms a semigroup called
the transition semigroup of A, which has been intensively studied; see for in-
stance [3]. In the next section we will find out that the clone of strongly full
n-ary terms of type τn and the n-ary strongly full (term) clone of the n-ary
algebra A belong to the same variety.

2. The Variety of Strongly Full Clones

Using a new set of variables X = (Yi)i∈I indexed by I, and an (n + 1)−ary
operation symbol S̃n

n we define a new language of type τ = (n+1) and consider
equations formulated in this new language.

Proposition 2.1 The algebra cloneSF τn satisfies the following identity
(C) S̃n

n(X0, S̃
n
n(Xi1 , X2, . . . , Xn+1), . . . , S̃n

n(Xin , X2, . . . , Xn+1)) ≈
S̃n

n(S̃n
n(X0, Xi1 , . . . , Xin), X2, . . . , Xn+1).

Proof. We will give a proof by induction on the complexity of the strongly
full term which is substituted for X0. If we substitute for X0 the strongly
full term fi(x1, . . . , xn) and for Xi1 , . . . , Xin , X2, . . . , Xn+1 the n-ary terms
ti1 , . . . , tin , t2, . . . , tn+1, then we obtain
Sn

n(fi(x1, . . . , xn), Sn
n(ti1 , t2, . . . , tn+1), . . . , Sn

n(tin , t2, . . . , tn+1))
= fi(Sn

n(ti1 , t2, . . . , tn+1), . . . , Sn
n(tin , t2, . . . , tn+1))

= Sn
n(fi(ti1 , . . . , tin), t2, . . . , tn+1)

= Sn
n(Sn

n(fi(x1, . . . , xn), ti1 , . . . , tin), t2, . . . , tn+1)
using the definition of Sn

n .
If we substitute for X0 the term t = fi(s1, . . . , sn) and assume inductively that
(C) is satisfied for s1, . . . , sn, then
Sn

n(fi(s1, . . . , sn), Sn
n(ti1 , t2, . . . , tn+1), . . . , Sn

n(tin , t2 . . . , tn+1))
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= fi(Sn
n(s1, S

n
n(ti1 , t2, . . . , tn+1), . . . , Sn

n(tin , t2 . . . , tn+1)), . . .,
Sn

n(sn, Sn
n(ti1 , t2, . . . , tn+1), . . . , Sn

n(tin
, t2 . . . , tn+1)))

= fi(Sn
n(Sn

n(s1, ti1 , . . . , tin), t2, . . . , tn+1), . . . ,
Sn

n(Sn
n(sn, ti1 , . . . , tin

), t2, . . . , tn+1))
= Sn

n(fi(Sn
n(s1, ti1 , . . . , tin), . . . , Sn

n(sn, ti1 , . . . , tin)), t2, . . . , tn+1))
= Sn

n(Sn
n(fi(s1, . . . , sn), ti1 , . . . , tin

), t2, . . . , tn+1)
= Sn

n(Sn
n(t, ti1 , . . . , tin

), t2, . . . , tn+1).
This shows that the algebra cloneSF τn satisfies (C). 2

Algebras (M ;S) of type n + 1 which satisfy (C) are called Menger algebras of
rank n; see in [8], [4].
In a similar way one shows that also T (n)

SF (A) satisfies (C). Let V SFC
τn

be the
variety of type (n + 1) generated by the identity (C). Both algebras belong to
this variety.
Now we consider the free algebra FV SF C

τn
({Yi | i ∈ I}) in the variety V SFC

τn
,

generated by a special alphabet {Yi | i ∈ I}. The fact that this alphabet is in
bijection with the set of fundamental operations (fi)i∈I of type τn, and hence
with the set Fτn of fundamental terms which generates cloneSF τn, will give us
an isomorphism between this free algebra and the cloneSF τn.

Theorem 2.2 The algebra cloneSF τn is isomorphic to FV SF C
τn

({Yi | i ∈ I}),
and therefore free with respect to the variety V SFC

τn
, and freely generated by the

set
{fi(x1, . . . , xn) | i ∈ I}.

Proof. We define a mapping ϕ : WSF
τn

(Xn) → FV SF C
τn

({Yi | i ∈ I}) inductively
as follows:

(i) ϕ(fi(x1 . . . xn)) := Yi for every i ∈ I,

(ii) ϕ(fi(t1, . . . , tn)) := S̃n
n(Yi, ϕ(t1), . . . , ϕ(tn)).

Since ϕ maps the generating system of cloneSF τn onto the generating system
of FV SF C

τn
({Yi | i ∈ I}) it is surjective. We prove the homomorphism prop-

erty ϕ(Sn
n(t0, t1, . . . , tn)) = S̃n

n(ϕ(t0), . . . , ϕ(tn)) by induction on the complex-
ity of the term t0. If t0 = fi(x1, . . . , xn), then ϕ(Sn

n(fi(x1, . . . , xn), t1, . . . , tn))
= ϕ(fi(t1, . . . , tn)) = S̃n

n(Yi, ϕ(t1), . . . , ϕ(tn)) = S̃n
n(ϕ(fi(x1, . . . , xn)), ϕ(t1), . . . ,

ϕ(tn)). Inductively, assume that t0 = fi(s1, . . . , sn) and that ϕ(Sn
n(sj , t1, . . . , tn))

= S̃n
n(ϕ(sj), . . . , ϕ(tn)) for all 1 ≤ j ≤ n. Then

ϕ(Sn
n(fi(s1, . . . , sn), t1, . . . , tn))

= ϕ(fi(Sn
n(s1, t1, . . . , tn), Sn

n(s2, t1, . . . , tn), . . . , Sn
n(sn, t1, . . . , tn))

= S̃n
n(Yi, ϕ(Sn

n(s1, t1, . . . , tn)), ϕ(Sn
n(s2, t1, . . . , tn)), . . . , ϕ(Sn

n(sn, t1, . . . , tn)))
= S̃n

n(Yi, S̃
n
n(ϕ(s1), ϕ(t1), . . . , ϕ(tn)), . . . , S̃n

n(ϕ(sn), ϕ(t1), . . . , ϕ(tn)))
= S̃n

n(S̃n
n(Yi, ϕ(s1), . . . , ϕ(sn)), ϕ(t1), . . . , ϕ(tn)))
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= S̃n
n(ϕ(fi(s1, . . . , sn)), ϕ(t1), . . . , ϕ(tn)))

= S̃n
n(ϕ(t0), ϕ(t1), . . . , ϕ(tn)).

Thus ϕ is a homomorphism. The mapping ϕ is bijective since {Yi | i ∈ I} is a
free independent set and therefore we have

Yi = Yj ⇒ i = j ⇒ fi(x1, . . . , xn) = fj(x1, . . . , xn).

Thus ϕ is a bijection between the generating sets of cloneSF τn and FV SF C
τn

(X ),
and hence it is bijective on WSF

τn
(Xn). Altogether, ϕ is an isomorphism. 2

3. Strongly full Hypersubstitutions and Substitutions of
cloneSF τn

Since cloneSF τn = (WSF
τn

(Xn); Sn
n) is free, freely generated by the set Fτn ,

any mapping η from this generating set into WSF
τn

(Xn) can be uniquely extended
to an endomorphism η from cloneSF τn. Such mappings are called substitutions.
We will denote by SubstSF the set of all such clone substitutions. We introduce
a binary composition operation ¯ on this set, by setting η1 ¯ η2 := η1 ◦ η2,
where ◦ denotes the usual composition of functions. Denoting by id the identity
mapping on {fi(x1, . . . , xn) | i ∈ I}, we see that (SubstSF ;¯, id) is a monoid.
In order to examine the connection between this monoid and the monoid of
hypersubstitutions of type τn, we introduce some basic concepts about hyper-
identities and hypersubstitutions. Note that although these concepts can be
defined for arbitrary type, we define them here only for type τn and for strongly
full terms.

Definition 3.1 A strongly full hypersubstitution of n-ary type τn is a mapping
from the set {fi | i ∈ I} of n-ary operation symbols of the type τn to the set
WSF

τn
(Xn) of all strongly full n-ary terms of type τn.

Any strongly full hypersubstitution σ induces a mapping σ̂ defined on the set
WSF

τn
(Xn) of all n-ary terms of the type τn, as follows.

Definition 3.2 Let σ be a strongly full hypersubstitution of type τn. Then σ
induces a mapping σ̂ : WSF

τn
(Xn) −→ WSF

τn
(Xn), by setting

(i) σ̂[fi(x1, . . . , xn)] := σ(fi), i ∈ I,

(ii) σ̂[fi(t1, . . . , tn)] := σ(fi)(σ̂[t1], . . . , σ̂[tn]) := Sn
n(σ(fi), σ̂[t1], . . . , σ̂[tn]).

Let HypSF (τn) be the set of all strongly full hypersubstitutions of type τn. By
setting σ1 ◦h σ2 := σ̂1 ◦σ2, we define a binary operation ◦h on HypSF (τn). This
operation is associative, and together with the identity hypersubstitution σid
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defined by σid(fi) = fi(x1, . . . , xn) we have a monoid (HypSF (τn); ◦h, σid). Let
M be any submonoid of HypSF (τn). If A = (A; (fAi )i∈I) is an n-ary algebra,
then an identity s ≈ t in A is said to be an M -hyperidentity in A if σ̂[s] ≈ σ̂[t]
is an identity in A for every hypersubstitution σ ∈ M . In the special case
that M is all of HypSF (τn), an M -hyperidentity is usually called a strongly
full hyperidentity. An identity is an M -hyperidentity of a variety V if it is an
M -hyperidentity of every algebra in V . A variety in which every identity of the
variety holds as an M -hyperidentity is called an M -solid variety, or a SF -solid
variety in the special case M = HypSF (τn). For more detailed information on
hyperidentities we refer the reader to [1].
Between strongly full hypersubstitutions and substitutions of cloneSF τn there
is a close interconnection.

Proposition 3.3 The monoids (SubstSF ;¯, id) and (HypSF (τn); ◦h, σid) are
isomorphic.

Proof. We define a mapping ψ : SubstSF −→ HypSF (τn) by ψ(η) := η ◦
σid. This gives a well-defined mapping between SubstSF and HypSF (τn). The
mapping ψ is surjective, since any strongly full hypersubstitution σ can be
obtained as ψ(η) for η = σ ◦ σ−1

id . The mapping ψ is also injective, since

ψ(η1) = ψ(η2) ⇒ η1 ◦ σid = η2 ◦ σid ⇒ η1 = η2,

since σid is a bijection. To show that ψ is a homomorphism, we first verify the
following additional property:

(η ◦ σid)ˆ[t] = η(t), (∗)

where η is the unique extension of η. For the fundamental terms t = fi(x1, . . . , xn)
we have
(η ◦ σid)ˆ[fi(x1, . . . , xn)] = (η ◦ σid)(fi)

= η(fi(x1, . . . , xn)) = η(fi(x1, . . . , xn)),
by (C) and the definition of the extension of a hypersubstitution. The claimed
property then follows by induction. Now for the homomorphism property for ψ
we have
ψ(η1) ◦h ψ(η2) = (η1 ◦ σid) ◦h (η2 ◦ σid)

= (η1 ◦ σid)ˆ ◦ (η2 ◦ σid)
= η1 ◦ (η2 ◦ σid), by property (*) above,
= (η1 ◦ η2) ◦ σid, by associativity
= (η1 ¯ η2) ◦ σid, by definition of ¯,
= ψ(η1 ¯ η2). 2

The condition (*) shows that extensions of hypersubstitutions are endomor-
phisms of cloneSF τn. Further it is clear that the monoid End(cloneSF τn) of all
endomorphisms of cloneSF τn is isomorphic to (HypSF (τn); ◦h, σid).
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For the next proof we will need the following mapping g. Let A be any n-ary
algebra. We define g : {fi(x1, . . . , xn) | i ∈ I} → {fAi | i ∈ I}, by letting
g(fi(x1, . . . , xn)) = fA

i , for each i ∈ I. Since cloneSF τn is free with respect to
the variety V SFC

τn
and since T (n)

SF (A) is an element of this variety, this mapping
g has a unique extension to a surjective homomorphism g. It is clear that the
mapping g assigns to each term t ∈ WSF

τn
(Xn) the induced term operation tA.

We denote by IdSF
n (A) the set of all identities s ≈ t in A with s, t ∈ WSF

τn
(Xn).

Such identities are called strongly full identities. Then we have:

Theorem 3.4 Let A be an algebra of type τn, and let s ≈ t ∈ IdSF
n A. Then

s ≈ t is a strongly full hyperidentity in A iff s ≈ t is an identity in T (n)
SF (A).

Proof. We first assume that s ≈ t is a strongly full hyperidentity of A. This
means that for every σ ∈ HypSF (τn) we have σ̂[s] ≈ σ̂[t] ∈ IdSF

n A, i.e. σ̂[s]A =
σ̂[t]A, and hence that g(σ̂[s]) = g(σ̂[t]). To show that s ≈ t holds in T (n)

SF (A),
we will show that v(s) = v(t) for every valuation v : {fi(x1, . . . , xn} | i ∈ I} →
T

(n)
SF (A). Since g is surjective, there exists a clone substitution ηv such that v

= g ◦ ηv, using the axiom of choice. Then ηv ◦ σid is a hypersubstitution, which
we shall denote by σv. Then we have

v(s) = (g ◦ ηv)(s) = (g ◦ (ηv ◦ σid)ˆ)(s) = g(σ̂v[s]).

Similarly, we have v(t) = g(σ̂v[t]). Since by our assumption we have g(σ̂v[s]) =
g(σ̂v[t]), we get v(s) = v(t), as required. Conversely, let s ≈ t ∈ Id T

(n)
SF (A), so

that s, t ∈ WSF
τn

(Xn) and for every valuation mapping v we have v(s) = v(t).
Let σ be any SF-hypersubstitution. By the surjectivity from Proposition 3.3,
there is a clone substitution ησ such that ησ ◦ σid = σ. We take v to be the
valuation g ◦ ησ. Then

σ̂[s]A = g(σ̂[s]) = (g ◦ (ησ ◦ σid)ˆ)(s) = (g ◦ ησ)(s) = v(s),

again using Property (*). Similarly, we have σ̂[t]A = v(t), and our assumption
that v(s) = v(t) gives the desired equality. 2

Let L(taun) be the lattice of all varieties of type τn. For any variety V of
type τn we can form the variety SFA

n (V ) of type τn, determined by all n-ary
strongly full identities of V . More precisely, if SFE

n (τn) := WSF
τn

(Xn)2 ∪ {s ≈
s | s ∈ Wτn(Xn)}, then SFA

n (V ) := Mod(SFE
n (τn) ∩ IdV ), where SFE

n (V ) :=
SFE

n (τn) ∩ IdV is a congruence relation on Fτn(Xn) (and on the subalgebra
FSF

τn
(Xn)). In general, SFE

n (V ) is not fully invariant since it is not closed
under substitutions and therefore SFE

n (V ) is not an equational theory. It is
easy to see that the operator

SFE
n : P(Wτn(Xn)×Wτn(Xn)) → P(Wτn(Xn)×Wτn(Xn))
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(where P denotes the formation of the power set) is a kernel operator. The
variety V is a subvariety of SFA

n (V ). The operator SFA
n : L(τn) → L(τn)

defined by V 7→ SFA
n (V ) is a closure operator. Indeed, extensivity and mono-

tonicity are clear. From SFE
n (V ) ⊆ IdModSFE

n (V ) there follows SFE
n (V ) ⊆

IdModSFE
n (V ) ∩WSF

τn
(Xn)2 and ModSFE

n (V ) ⊇ Mod(IdModSFE
n (V )∩

WSF
τn

(Xn)2) and therefore, SFA
n (V ) ⊇ Mod(SFE

n (SFA
n (V ))) = SFA

n (SFA
n (V )).

The converse inclusion follows from extensivity. Therefore SFA
n is idempotent

and thus it is a closure operator. As a consequence, the class of all varieties V
with V = SFA

n (V ) forms a sublattice LSF (τn) of the lattice L(τn) of all varieties
of type τn.

We recall that a variety V of type τn is called M -solid if every identity in V
is satisfied as an M -hyperidentity. For M = HypSF (τn) we speak of SF -solid
varieties. Then we have

Corollary 3.5 Let A be an algebra of type τn. Then the variety SFA
n (V (A))

is SF -solid iff T (n)
SF (A) is free with respect to itself, freely generated by the set

{fAi | i ∈ I}, meaning that every mapping from {fAi | i ∈ I} to T (n)
SF (A) can be

extended to an endomorphism of T (n)
SF (A).

Proof. Using the equivalence from Theorem 3.4, we will show that T (n)
SF (A) is

free iff every identity s ≈ t ∈ IdSFA
n (V (A)) is also an identity in T (n)

SF (A).
Suppose first that T (n)

SF (A) is free with respect to itself, freely generated by the
set {fAi | i ∈ I}. Let s ≈ t be any identity in IdSF

n (SFA
n (V (A))), so that

g(s) = g(t). To show that s ≈ t is an identity in T (n)
SF (A), we will show that

v(s) = v(t) for any valuation mapping v : Fτn −→ T
(n)
SF (A). Given v, we define

a mapping αv : {fAi | i ∈ I} −→ T
(n)
SF (A) by αv(fAi ) = v(fi(x1, . . . , xn)). Since

fAi = fAj =⇒ i = j =⇒ fi(x1, . . . , xn) = fj(x1, . . . , xn)
=⇒ v(fi(x1, . . . , xn)) = v(fj(x1, . . . , xn))
=⇒ αv(fi(x1, . . . , xn)) = αv(fj(x1, . . . , xn)),

the mapping αv is well-defined. Since the set Fτn generates the algebra cloneSF τn,
the mapping v can be uniquely extended to v on the set WSF

τn
(Xn). Then we

have
g(s) = g(t) =⇒ αv(g(s)) = αv(g(t)) =⇒ v(s) = v(t),

showing that s ≈ t ∈ IdT
(n)
SF (A).

For the converse direction, we show that when SFA
n (V (A)) is SF-solid, any

mapping α : {fAi | i ∈ I} −→ T
(n)
SF (A) can be extended to an endomorphism

of T (n)
SF (A). We consider the mapping α = α ◦ g : WSF

τn
(Xn) −→ T

(n)
SF (A)

with α(tA) = α ◦ g(t), which is a valuation of terms. Then for any terms
s, t ∈ WSF

τn
(Xn), it follows from sA = tA that g(s) = g(t) and hence that

α(sA) = α(g(s)) = α(g(t)) = α(tA), since α◦g is a valuation and every identity
of SFA

n (V (A)) is a cloneSF τn-identity. This shows that α is well-defined. It is
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also an endomorphism since α(Sn,A
n (sA, tA1 , . . . , tAn )) = α(g(Sn

n(s, t1, . . . , tn))) =
(α ◦ g)(Sn

n(s, t1, . . . , tn)) = Sn,A
n (α ◦ g(s), α ◦ g(t1), . . . , α ◦ g(tn)) = Sn,A

n (α(sA),
α(tA1 ), . . . , α(tAn )), using the fact that α ◦ g is the homomorphism extending the
valuation α ◦ g defined on the generating set of the free algebra cloneSF τn. Fi-
nally, α extends α since α(fAi ) = α ◦ g(fi(x1, . . . , xn)) = (α ◦ g)(fi(x1, . . . , xn))
= α(g(fi(x1, . . . , xn))) = α(fAi ), for each i ∈ I. 2

Proposition 3.6 Let A be an n-ary algebra.Then the set SFE
n (A) := SFE

n (V (A))
is a congruence on cloneSF τn and the quotient algebra cloneSF τn/SFE

n (A) is
isomorphic to T (n)

SF (A).

Proof. The set SFE
n (V (A)) is an equivalence relation on WSF

τn
(Xn). It is easy to

see that the operation Sn
n preserves the relation SFE

n (V (A)). Thus SFE
n (V (A))

is a congruence relation. The surjective homomorphism ḡ maps cloneSF τn onto
T (n)

SF (A). By the homomorphism theorem we have T (n)
SF (A) ∼= cloneSF τn/kerḡ.

Further we have kerḡ = SFE
n (V (A)). 2

For any congruence θ on cloneSF τn we may consider the quotient algebra
MSF (θ) := (WSF

τn
(Xn)/θ; (f∗i )i∈I) since θ is also a congruence on FSF

τn
(Xn).

This algebra is called SF -Myhill algebra of θ. The congruence SFE
n (V (A))

is called the SF -Myhill congruence ([5]) on A and the corresponding quotient
algebra is called SF -Myhill algebra MSF (A). For any variety V we introduce
MSF (V ) as quotient algebra (WSF

τn
(Xn)/IdSF

n ; (f∗i )i∈I).

Proposition 3.7 For every congruence θ on cloneSF τn we have T (n)
SF (MSF (θ))

∼= cloneSF τn/θ, in particular T (n)
SF (MSF (A)) ∼= T (n)

SF (A).

Proof. T (n)
SF (MSF (θ)) is the strongly full clone generated by {f∗i | i ∈ I}.

We consider a mapping ϕ : {fi(x1, . . . , xn) | i ∈ I} → {f∗i | i ∈ I} defined by
ϕ(fi(x1, . . . , xn)) = f∗i for all i ∈ I. Since cloneSF τn is free in the variety V SFC

τn
,

freely generated by the set {fi(x1, . . . , xn) | i ∈ I}, the mapping ϕ can be ex-
tended to a homomorphism ϕ̄ which is surjective, since ϕ maps the generating
sets to each other. By definition T

(n)
SF (MSF (θ)) = cloneSF /kerϕ. It is easy to

see that kerϕ = θ. Then the special case follows from the previous definition. 2

4. ISF -Closed Varieties of Type τn

In this section we examine the connection between a variety V of type τn

and the class of all strongly full clones {T (n)
SF (A) | A ∈ V } of its algebras.

Definition 4.1 Let V be a variety of type τn. Then SFA
n (V ) is called ISF -

closed if whenever A ∈ SFA
n (V ) and T (n)

SF (A) ∼= T (n)
SF (B), then also B ∈ SFA

n (V ).
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We consider the following set of hypersubstitutions of type τn:

OSF := {σ | σ ∈ HypSF (τn) and σ̂ is surjective}.

It is easy to see that OSF is a submonoid of HypSF (τn). Our aim is to show
that ISF -closedness is closely related to certain congruence relations. We recall
the concept of a weekly invariant congruence relation.

Definition 4.2 Let A be an algebra of arbitrary type. A congruence θ ∈ ConA
is said to be weakly invariant if for every ρ ∈ ConA, the following condition is
satisfied: if there exists a homomorphism from A/θ onto A/ρ, then θ ⊆ ρ.

Let A be an algebra, and let θ and ρ be any congruences on A. By the second
isomorphism theorem, it always follows from θ ⊆ ρ that there exists a surjective
homomorphism A/θ −→ A/ρ, but the converse is in general not true. Weakly
invariant congruences were introduced in [6] and used for semigroup varieties in
[5]. They are related to isomorpically closed principal filters in the congruence
lattice.

Definition 4.3 A set C of congruences of an algebra A of arbitrary type τ is
said to be isomorphically closed if whenever θ ∈ C and A/θ ∼= A/ρ it follows
that ρ ∈ C.

The following theorem was proved for semigroups in [5] and for algebras of
arbitrary type in [2] .

Theorem 4.4 Let A be an algebra of arbitrary type τ , let V be a variety of
type τ and let FV (X) be the free algebra with respect to V , freely generated by
X. Then
(i) A congruence θ on A is weakly invariant iff the principal filter [θ) generated
by θ in ConA is isomorphically closed.
(ii) Every weakly invariant congruence on A is invariant under all surjective
endomorphisms of A.

Now we can characterize ISF -closed varieties of type τn, generalizing the char-
acterization of σ-closed varieties given in [5] for the unary case and for the n-ary
case in [2].

Theorem 4.5 Let V be a variety of type τn. Then SFA
n (V ) is ISF -closed iff

SFA
n (V ) satisfies the following two properties:

(i) SFE
n (V ) is weakly invariant.

(ii) A ∈ SFA
n (V ) iff MSF (A) ∈ SFA

n (V ).
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Proof. Suppose first that SFA
n (V ) is ISF -closed. Property (ii) follows from ISF -

closure and the result from Proposition 3.7 that for any algebra A in SFA
n (V ) we

have T (n)
SF (MSF (A)) ∼= T (n)

SF (A). By Theorem 4.4, we can prove that (i) holds
by showing that [SFE

n (V )) is isomorphically closed. For this, let α ⊇ SFE
n (V ),

and let θ be a congruence on cloneSF τn such that cloneSF τn/α ∼= cloneSF τn/θ.
Since SFE

n (V ) = ∩{SFE
n (A) | A ∈ V }, the algebra MSF (V ) is isomorphic to

a subdirect product of the algebras MSF (A) with A ∈ SFA
n (V )(MSF (A) ∈

SFAn (V ) by (ii)), and thus MSF (V ) ∈ SFA
n (V ). The inclusion α ⊇ SFE

n (V )
implies that there is a surjective homomorphism from MSF (V ) onto MSF (α).
Combining these two facts gives MSF (α) ∈ SFA

n (V ). Furthermore by Proposi-
tion 3.7 we have T (n)

SF (MSF (α))∼= cloneSF τn/α∼= cloneSF τn/θ ∼= T (n)
SF (MSF (θ)),

and since SFA
n (V ) is ISF -closed this gives MSF (θ) ∈ SFA

n (V ). This means
that SFE

n (V ) ⊆ SFE
n (MSF (θ)), and we can finish the proof by showing that

SFE
n (MSF (θ)) = θ, so that θ ∈ [SFE

n (V )). This equality SFE
n (MSF (θ)) = θ

holds because

s ≈ t ∈ SFE
n (MSF (θ)) ⇔ [s]θ = [t]θ ⇔ (s, t) ∈ θ.

Conversely, we assume that the variety V of type τn satisfies (i) and (ii). From
(ii) we get MSF (A) ∈ SFA

n (V ), for all A ∈ SFA
n (V ), and since MSF (V ) is

isomorphic to a subdirect product of all these algebras, we also have MSF (V ) ∈
SFA

n (V ). To establish that SFA
n (V ) is ISF -closed, let B and C be any two n-

ary algebras, and suppose that T (n)
SF (B) ∼= T (n)

SF (C) and B ∈ SFA
n (V ). It follows

from Proposition 3.7 that cloneSF τn/SFE
n (B) ∼= cloneSF τn/SFE

n (C), and since
B ∈ SFA

n (V ) we have SFE
n (V ) ⊆ SFE

n (B). By (ii) SFE
n (V ) is weakly invariant,

so we get SFE
n (V ) ⊆ SFE

n (C). But then MSF (C) is a homomorphic image
of MSF (V ), and hence MSF (C) ∈ SFA

n (V ). By (ii) we have C ∈ SFA
n (V ),

establishing that SFA
n (V ) is ISF -closed. 2

The next Theorem characterizes ISF -closure for SF -varieties in terms of
SF -solidity.

Theorem 4.6 A SF -variety SFA
n (V ) of type τn is ISF -closed iff it is OSF -

solid.

Proof. First assume that SFA
n (V ) is OSF -solid, so that every s ≈ t ∈ SFE

n (V )
is an OSF -hyperidentity in SFA

n (V ). We claim that in fact A ∈ SFA
n (V ) iff A

satisfies as an OSF -hyperidentity every identity s ≈ t in SFE
n (V ). From the

OSF -solidity of SFA
n (V ) follows at first that from A ∈ SFA

n (V ) = ModSFE
n (V )

the algebra A satisfies every identity s ≈ t ∈ SFE
n (V ) as an OSF -hyperidentity.

For the other direction we note that any OSF -hyperidentity of an algebra is
also an identity, so A satisfies the basis identities SFE

n (V ) of SFA
n (V ). By

Theorem 3.4 from A |=
OSF -hyp

SFE
n (V ) there follows T (n)

SF (A) |= SFE
n (V ). If
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A ∈ SFA
n (V ) and T (n)

SF (B) is isomorphic to T (n)
SF (A) then B ∈ SFA

n (V ) and thus
SFA

n (V ) is ISF -closed.
Conversely, assume that SFA

n (V ) is ISF -closed. Then by Theorem 4.5 we
know that SFE

n (V ) is both, weakly invariant and invariant under all surjective
endomorphisms of cloneSF τn. Then for any identity s ≈ t ∈ SFE

n (V ), any
algebra A ∈ SFA

n (V ) and any surjective endomorphism η, we have η(s) ≈
η(t) ∈ IdT (n)

SF (A). Using the isomorphism from Proposition 3.3 this means
σ̂[s] ≈ σ̂[t] ∈ SFE

n (V ) for every σ ∈ OSF and SFA
n (V ) is OSF− solid. 2
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